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Coffee plants are highly N-demanding plants. Despite the importance of N nutrition for the development, acclimation and yield 
of coffee plants, there are few reports concerning N metabolism in this species. In this review, our intention is to summarize the 
information available in the literature and to point out the influence of environmental conditions on N assimilation, as well as com-
ment and discuss some apparently contradictory results and raise and enlighten queries about N assimilation in coffee plants.
Key words: Coffea, irradiance level, nitrate reductase, nitrogen fertilization, oxidative stress, photoinhbition, photoprotection, 
photosynthesis.

Aspectos do metabolismo de nitrogênio em plantas de café: Plantas de cafédemandam grandes quantidades de N. Apesar 
da importância da nutrição nitrogenada para o desenvolvimento, aclimatação e produtividade de plantas de café, são poucos os 
trabalhos sobre o metabolismo de N nesta espécie. A intensão desta revisão é sumarizar a informação disponível na literatura e 
discutir a influência das condições ambientais na assimilação de N, assim como comentar e discutir alguns resultados aparen-
temente contraditórios e levantar e destacar perguntas sobre a assimilação de N em plantas de café.
Palavras-chave: Coffea, estresse oxidativo, fertilização nitrogenada, fotoinibição, fotoproteção, fotossíntese, nível de irradiância, 
redutase do nitrato.

Abbreviations - A, net photosynthetic rate; Amax, photosynthetic capacity at CO2 and light saturating conditions; C16:0, palmitic acid; C18:3, linolenic acid; 
3Car triplet state of β-carotene; chl, chlorophyll; 1chl, singlet state of chl;  3chl*, triplet state of chl; cyt, cytochrome; DEPS, de-epoxidation state; Fo, minimal 
fluorescence of antennae in dark-adapted leaves; Fv/Fm and Fv´/Fm´, photochemical efficiency of PSII in dark-adapted leaves and under photosynthetic steady-
state conditions, respectively; H2O2, hydrogen peroxide; LHC, light harvesting complexes associated with photosystems; Jmax, electron transport capacity; 
NR, nitrate reductase; NRA, nitrate reductase activity; O2

•-, superoxide anion radical; 1O2, singlet state of oxygen; OEC, oxygen-evolving complex from PSII; 
•OH, hydroxyl radical; P680, PSII reaction centre; PPFD, photosynthetic photon flux density; PSI and II, photosystem I and II, respectively; QA, quinone A; qE, 
“high-energy” quenching; qNP, non-photochemical quenching; qP, photochemical quenching; TFA, total fatty acids; Vcmax, maximum carboxylation activity; Φ, 
quantum yield of photosynthesis; φe, estimation of the quantum yield of photosynthetic electron transport.

INTRODUCTION
Nitrate is the main inorganic nitrogen compound avail-

able to most cultivated plants grown under field conditions. 
The reduced forms of nitrogen (N) applied as fertilizers 
undergo rapid nitrification under normal conditions of soil 
management. In natural soils, nitrate is usually present in 
the soil solution at concentrations that can be lower than 1 
mol.m-3, while in agricultural soils concentrations reach val-
ues as high as 20 mol.m-3 in consequence of N fertilization 
(Andrews, 1986). 

Within the plant, nitrate must be first reduced to am-
monium before being assimilated into amino acids. Nitrate 
absorbed by plants is reduced to nitrite by nitrate reductase 
(NR) in the cytosol of cells. Nitrite is subsequently reduced 
to ammonium by nitrite reductase in the plastids, and am-

monium is then incorporated into amino acids. NR probably 
represents the rate-limiting step in nitrate assimilation and 
can be used as a marker to estimate the capacity of plant roots 
and shoots to assimilate external N (Beevers and Hageman, 
1980; Oaks, 1994). In fact, this enzyme is considered a major 
limiting factor for growth, development and protein produc-
tion in plants. Therefore, the regulation of nitrate assimila-
tion has been the focus of intensive research work aimed at 
improving the efficiency of this process and thereby enhance 
agricultural productivity through intervention in this growth-
limiting process (Solomonson and Barker, 1990). 

The fact that coffee plants are highly N-demanding 
plants has been known since the early 1950s.  N requirement 
increases with plant age  especially at the beginning of 
grain production (Catani and Moraes, 1958).  If there are no 
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limiting factors present, an adequate N supply will promote 
rapid plant development, specifically through the increase 
in number of leaf pairs and plagiotropic branches per plant, 
number of nodes per branch, and number of fruiting nodes 
and flowers per node, which, taken together, are associated 
with higher yields in coffee (Malavolta, 1986; Willson, 1985; 
Fahl et al., 1994, Nazareno et al., 2003). In addition, N is 
a decisive factor for the protection of coffee plants against 
photoinhibition of photosynthesis when plants are exposed 
to high irradiances, since it promotes the triggering and 
reinforcement of protective mechanisms (Nunes et al., 1993; 
Fahl et al., 1994; Ramalho et al., 1999, 2000).

Light influence on nitrate assimilation   
Before examining the effects of light on nitrate 

assimilation of coffee plants, some general considerations are 
appropriate. Coffea sp evolved as an evergreen understory 
tree in the African tropical forests, exhibiting typical features 
of shade-adapted plants. Coffee cultivation in agroforestry 
systems is a common practice in Latin America, but in Brazil, 
the cultivation under full sunlight is the prevailing system. 
This latter agricultural system has been highly successful due 
to the high acclimation capacity of coffee plants to different 
irradiance regimes, involving changes in physiological, 
anatomical and ultrastructural characteristics (Voltan et al., 
1992; Fahl et al., 1994, Ramalho et al., 1997, 1999, 2000).

The high ability of coffee plants to acclimate to different 
irradiance regimes might be the cause, at least in part, for the 
conflicting data in the literature concerning the influence of 
light on carbon assimilation (Fahl et al., 1994; Carelli et al., 
1999, 2001; Andrade Netto, 2005; for review see Da Matta, 
2004) and N assimilation, as will be described below. These 
pathways are highly coordinated in higher plants and the 
metabolic interactions between them involve several steps 
of reciprocal control (Noctor and Foyer, 1998; Kaiser and 
Huber, 2001). The photosynthetic capacity of coffee leaves, 
in response to changes in irradiance levels, is positively 
correlated with their N content (Fahl et al., 1994; Carelli 
et al. 1999; Ramalho et al., 2000; Andrade Neto, 2005; 
Carelli and Fahl, 2005), because most of the N is used in the 
synthesis of photosynthetic apparatus components (Evans, 
1989). Furthermore, recent evidence indicates that leaf NRA 
is positively correlated with carbon assimilation in coffee 
plants growing under different irradiances regimes (Andrade 
Netto, 2005; Carelli and Fahl, 2005).  

  Light is one of the most important environmental factor 
involved in the regulation of NR (Beevers and Hageman, 

1980, Lillo, 1994). Light stimulates de novo synthesis, as 
well as the activation of NR at the protein level (Lillo, 1994). 
Like many others enzymes, a circadian rhythm in NRA has 
been reported for several species, increasing during the light 
hours, with a peak about noon, and decreasing during the 
dark period. In this respect, Meguro and Magalhães (1982) 
found that light induced increased leaf NRA in young coffee 
leaves, reaching maximum values between two and six hours 
after the beginning of the illumination period, and decreasing 
thereafter until the end of dark period. 

Subsequently, it was shown that leaf NRA of coffee 
decreases continuously during the light period and increases 
during the night (Cordeiro et al., 1984; Alves et al., 1985; 
Carelli, 1987; Queiroz et al., 1993b; Ramalho et al., 1999). 
Results obtained by Alves et al. (1985) showed similar 
NRA behavior in leaves of 6-month-old plants, but not in 
12-month-old plants.  The latter exhibited enhanced NRA 
during the light hours and decreased during the night hours, 
as initially proposed by Meguro and Magalhães (1982). 
More recently it was observed that leaf NRA assayed in 
plants grown under full sunlight (1300 μmol m-2.s-1 at noon) 
decreased during the daytime, while leaf NRA in plants 
grown under 50 % of full sunlight (600 μmol m-2.s-1 at noon) 
was initially low, peaked around noon and decreased at the 
end of afternoon (Andrade Netto, 2005), thereby showing the 
classical pattern observed in others species. 

Hence, the assumption that leaf NRA in young coffee 
plants decreases continuously during the light period must be 
carefully considered. In experiments showing this behavior 
(Cordeiro et al., 1984; Alves et al., 1985; Carelli, 1987; 
Queiroz et al., 1993b), the leaf NRA was evaluated in plants 
acclimated to moderate irradiance (500-800 μmol m-2.s-1) 
and transferred to a growth chamber, under approximately 
85 μmol m-2.s-1 of irradiance level, for several days prior to 
when measurements were carried out. This latter irradiance 
level may be considered very low even for shade-adapted 
coffee plants, which show photosynthetic light saturation at 
around 300 μmol m-2.s-1 and a light compensation point of 
about 31 μmol m-2.s-1 (Fahl et al., 1994). It has been shown 
that carbon assimilation strongly decreases in leaves of coffee 
plants grown under irradiance levels below photosynthetic 
light saturation (ca. 290 μmol m-2.s-1) in relation to moderate 
irradiance (ca.700 μmol m-2.s-1) (Carelli et al, 1999; Carelli 
and Fahl, 2000, 2005; Andrade Netto, 2005). Photosynthesis 
is required for NRA and even under continuous high light 
NR becomes inactive when CO2 is absent (Kannangara and 
Woolhouse, 1967; Kaiser and Huber, 2001). In fact, leaf 
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NRA and carbon assimilation in coffee leaves are highly 
coordinated in response to the irradiance regime, both 
processes decreasing under low irradiance (Carelli and Fahl, 
2005). Therefore, it is possible that the previously reported 
decay in leaf NRA during the light period could be due to 
photosynthetic limitations caused by low irradiance levels. 
At the other extreme, the decay in leaf NRA during daylight 
observed when plants were first acclimated to low irradiance 
(150 μmol m-2.s-1) and then transferred to full sunlight (1500-
1700 μmol m-2.s-1 at noon), appears to be related to impaired 
photosynthesis (Ramalho, 1999). 

Nevertheless, besides the high acclimation ability 
to different irradiance regimes, coffee plants apparently 
maintain the genetic characteristics of a shade-adapted 
species with regard to nitrate assimilation. Leaf NRA is 
always higher in plants grown under 50 % full-sunlight than 
in plants under full sunlight (Faleiros et al., 1975; Carelli et 
al, 1990b; Carelli and Fahl, 2000; Andrade Neto, 2005). The 
effect of irradiance regime on root NRA will be discussed in 
the next section. 

Undoubtedly, the physiological and biochemical role of 
light in nitrate assimilation, as well as its interaction with 
photosynthesis, is still not very clear for coffee plants and the 
subject requires more extensive research.  

Partitioning of NRA between leaves and roots
Nitrate is easily transported in the plant and can be 

assimilated both in leaves and roots. The partitioning of 
nitrate reduction between roots and shoots may vary with 
plant species, age and environmental factors. In most 
herbaceous plants nitrate reduction occurs predominantly in 
the leaves (Andrews et al., 1986; Gojon et al., 1994), while 
studies on nitrate concentration in xylem sap exudates and 
in vivo and in vitro NRA showed that woody species reduce 
most of their nitrate in the roots (Cruz et al., 1991, 1993; 
Gojon et al., 1991; Lee and Titus, 1992; Thomas and Hilker, 
2000). 

Coffee plants present high potential for nitrate assimi-
lation in leaves as well as in roots. Nevertheless, there is a 
lot of controversy about this subject in the literature. Some 
reports have shown higher NRA in leaves (Carelli et al., 
1990a; Da Matta et al., 1999; Amaral et al., 2001), and oth-
ers in roots (Carelli and Fahl, 1991, Queiroz et al., 1991, 
1993a). 

It is generally accepted that distribution of nitrate 
reduction between roots and shoots is mainly dependent on 
the ability of the root to export nitrate to the shoots (Radin, 

1978, Smirnoff and Stewart, 1985; Gojon et al., 1994). 
Under high nitrate availability, roots of young coffee trees 
showed high capacity to export nitrate to the shoots.  After 
supplying 15 mol.m-3  NO3

- to nitrogen starved intact plants, 
both roots and leaves accumulated similar nitrate levels; at 
the same time, NRA was rapidly induced in roots and leaves 
in a similar way (Carelli and Fahl, 2005). Such evidence is 
consistent with the composition of nitrogenous compounds 
in the xylem sap exudates of coffee seedlings reported by 
Mazzafera and Gonçalves (1999). These authors observed 
that seedlings fed with Hoagland’s solution presented 
nitrate-N as the most abundant N form in the xylem sap, 
representing 51.9 % of the total sap nitrogen, whereas 
amino acids and ureides accounted for 41.2 % and 6.6 %, 
respectively. Hence, it would appear that coffee plants have 
a high ability to partition absorbed nitrate and NRA between 
leaves and roots (Carelli and Fahl, 2005). In this sense, 
coffee trees differ from some other woody species, in which 
the nitrate influx into the leaf may be a major factor limiting 
the leaf NRA (Smirnoff and Stewart, 1985; Cruz et al., 1993; 
Lee and Titus, 1992; Gojon et al., 1994).

The balance of nitrate reduction between root and shoot is 
not necessarily constant for every species and may vary with 
plant growth conditions and plant development (Andrews, 
1986). In fact, during coffee plant development the average 
NRA was higher in leaves than roots, however, the NRA 
leaf/root ratio ranged from 0.8 to 2.1 (Carelli and Fahl, 
2005). These authors suggested that the observed variations 
in NRA leaf /root ratio was not related to changes in external 
nitrate availability nor plant development stages, as observed 
for other species (Andrews, 1986), but could be dependent 
on the irradiance levels (Carelli and Fahl, 2005). Under low 
irradiance (290 μmol m-2.s-1) higher NRA was found in roots 
than leaves, and in contrast, plants grown under moderate 
irradiance (720 μmol m-2.s-1) showed higher leaf NRA, 
while at high irradiance (1540 μmol m-2.s-1) similar NRA 
values were found in leaves and roots. These findings could 
explain, at least in part, the contrasting data in the literature 
concerning the partitioning of NRA in coffee plants. In this 
sense, higher NRA was obtained in roots than leaves when 
experiments were conducted under low irradiance (Carelli 
et al., 1991; Queiroz et al., 1991,1993a; Carelli and Fahl, 
2005), and vice-versa under higher irradiances (Carelli et al., 
1990a; Da Matta et al. 1999, Amaral et al. 2001; Carelli and 
Fahl, 2005). 

It has been suggested that when the photosynthesis is 
light-limited, increased nitrate assimilation in roots may 
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allow greater control over the use of limited energy between 
nitrogen and carbon assimilation (Smirnoff and Stewart, 
1985). In fact, Carelli and Fahl (2005) showed that nitrate 
reduction in roots was highest when plants were grown 
below the photosynthetic light saturation for coffee leaves, 
which range from 300 μmol m-2.s-1 for shade-adapted 
plants to 600 μmol m-2.s-1 for sun-adapted plants (Kumar 
and Tieszen, 1980; Fahl et al., 1994; Ramalho et al. 2000). 
On the other hand, leaf NRA was positively correlated 
with carbon assimilation (r = 0.78, P< 0.01) in response 
to irradiance regimes. Under intense shading carbon and 
nitrogen assimilation were limited in a similar way, while 
under moderate shading (around 800 μmol.m-2.s-1), under 
which conditions both nitrate (Carelli et al. 1990b) and 
carbon assimilation are favored (Carelli et al., 1999), 
these two pathways achieved the highest values (Carelli 
and Fahl, 2005). These results emphasize that nitrate 
and carbon assimilation are highly coordinated in coffee 
leaves and respond to irradiance regimes, as previously 
documented for the ageing leaf (Fahl et al. 1992). Therefore, 
it would appear that in coffee, under conditions of maximum 
carbon assimilation, a higher proportion of nitrate would 
be assimilated in the leaves. In contrast, under limiting 
conditions for the photosynthetic process and consequently 
for leaf nitrate assimilation, higher NRA would occur in 
roots, compensating the diminished leaf NRA.

The contribution of shoot and roots to whole plant nitrate 
reduction depends on the relative size of each organ and var-
ies with the age of each specific tissue. Taking into account 
these factors it was estimated by Queiroz et al. (1993a) that 
in young coffee plants growing under 85 μmol m-2.s-1 of ir-
radiance level, leaves and roots contributed, respectively, 
with 43 % and 52 % of whole plant nitrate reduction. On the 
other hand, it was shown by Carelli (1987) and Carelli and 
Fahl (2005) that leaves are the main site of nitrate assimila-
tion in young coffee plants grown under a moderate irradi-
ance regime, contributing with 69.7 % of the whole plant 
nitrate assimilation. Even under intense shading, when root 
NRA is 39 % higher than leaf NRA, the shoot contribution 
would be also higher, since the young coffee plants showed 
2.2-fold higher leaf fresh biomass compared to roots (Carelli 
and Fahl, 2005). Thus, under adequate irradiance levels for 
growth of coffee plants, leaves seem to be the main site of 
nitrate assimilation. This conclusion is in good agreement 
with the general proposal of Andrews (1986), suggesting that 
tropical wood species would carry out a substantial propor-
tion of their nitrate assimilation in the shoots.

Effect of tissue age on nitrate assimilation
It is widely accepted that the ability of leaves and roots 

to reduce nitrate decreases with age (Schrader et al., 1974; 
Srivastava, 1980; Carelli and Magalhães, 1981; Kenis et al., 
1992). Like in other species, leaf NRA in coffee plants is 
low during initial leaf expansion, reaches a peak in recently 
expanded leaves and declines in the older ones (Meguro and 
Magalhães, 1982; Carelli, 1987; Fahl et al., 1992; Queiroz 
et al., 1993a; Carelli and Fahl, 2005). However, this age-
dependent NRA decrease in coffee leaves was not as evident 
as in annual plants, since in the latter case very low NRA 
values were observed in older leaves (Schrader et al., 1974; 
Carelli and Magalhães, 1981). In the young coffee tree, a 
perennial evergreen species, older leaf NRA maintained 
nearly 70 % of the values observed for recently expanded 
leaves, remaining nearly constant thereafter (Fahl et al. 1992; 
Carelli and Fahl, 2005). In addition, total N and chlorophyll 
content increased as the leaf expanded, remaining constant in 
mature leaves. All these results indicate that coffee leaves are 
able to maintain their metabolic activities for a longer period 
of time (Fahl, et al.1992).

During the initial six months of coffee plant development 
there is a synchronism in the NRA partition among the 
various leaf pairs. The initial NRA increase, as each leaf pair 
emerges, coincided with the peak of NRA in the subsequent 
older leaf pair. It is interesting to note that, although the NRA 
changed during each leaf development, the average shoot 
NRA remained nearly constant (Carelli and Fahl, 2005).

The NRA decrease with leaf aging has been correlated 
with the tissue’s ability in synthesizing proteins (Wallace 
and Pate, 1965; Beevers and Hageman, 1969; Travis and 
Key, 1971). The lower NRA activity found in older leaves of 
corn is mainly due to a low level of NR-protein (Kenis et al., 
1992). These authors suggested that the decreased ability of 
older leaves to form an active NR-protein in response to its 
substrate may be due to a decrease in NR-mRNA abundance 
with age (Kenis et al., 1992). On the other hand, the finding 
that NR-synthesis is dependent on the photosynthesis 
suggests that the fall in NRA in older leaves could also be 
related to the lower photosynthetic capacity (Kannangara 
and Woolhouse, 1967). That could also be the case in coffee 
plants, where a parallelism between NRA and photosynthesis 
is evident, in response to increasing leaf age (Fahl et al., 
1992) 

Coffee roots usually show a similar behavior as for 
leaves. Young root sections reduce nitrate more efficiently 
than mature tissues (Carelli et el., 1990a; Queiroz et al., 
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1993a), independently of the carbohydrate and nitrate tissue 
level (Queiroz et al., 1993) and plant development stage 
(Carelli et al., 1990). In considering the whole root system, 
fine roots show higher NRA than the lateral roots, which 
exhibit higher NRA than the pivoting root (Carelli and Fahl, 
2005).

Physiologycal significance of root nitrate assimilation
Considering the whole plant, roots are less efficient 

sinks than shoots. In coffee plants, when carbohydrate 
availability is a limiting factor, shoots compete with roots 
for photoassimilates, and roots are the first to reduce growth 
and generate less energy for metabolic processes (Cannell, 
1975). 

Nitrate assimilation in a heterotrophic organ such as 
the root requires metabolic energy and carbon skeletons 
supplied by sugar translocation from shoot. In coffee, root 
NRA and sugar content, mainly sucrose, decline rapidly after 
stem girdling or shoot excision (Carelli, 1987; Queiroz et 
al., 1992). Furthermore, nitrate reduction may be restored in 
roots of detopped coffee plants by the addition of sugar to the 
in vivo NRA assay (Queiroz et al., 1992). Nitrate absorption 
seems to be also sugar-limited in roots of coffee plants, 
however, to a lesser extent than root NRA (Carelli, 1987). All 
these results suggest that root nitrate assimilation in coffee 
plants is highly dependent on the continuous photosynthate 
supply and that the sugar reserves present in the roots are 
only sufficient to sustain nitrate reduction and active nitrate 
uptake for a short time period.

The effect of nitrate on roots is particularly complex 
because it induces increased NRA at the same time that 
it depletes the root’s supply of sugar that supports nitrate 
assimilation (Radin et al., 1978). In coffee plants root growth 
and nitrate assimilation might compete for the available 
carbohydrates (Carelli and Fahl, 1991). In addition, the 
increase in external nitrate concentration induced larger 
increases in root NRA than leaf NRA (Carelli and Fahl, 
1991), hence, causing a strong depletion of sugar content 
in the roots. In consequence, increasing nitrate availability 
for young coffee plants resulted in higher shoot/root biomass 
ratio (Carelli and Fahl, 1991). 

As described earlier, coffee plants are capable of 
reducing nitrate in both leaves and roots (see Section 4). The 
balance of nitrate assimilation between leaves and roots is an 
important feature to consider in terms of energy cost at the 
whole plant level. In leaves, the reductant and ATP for nitrate 
reduction, and for the subsequent assimilation of ammonium 

into glutarate, is generated directly by photosynthesis 
(Beevers and Hageman, 1980; Cires et al, 1993). When 
nitrate assimilation takes place in the roots, high amounts of 
photosynthates must be transported to the roots and oxidized 
to provide the required reductants, energy and carbon 
skeletons. Consequently, the energy cost of leaf nitrate 
assimilation is about half to a quarter of the root assimilation 
cost (Schrader and Thomas, 1981; Smirnoff et al., 1984). The 
energy cost of root assimilation would be further increased 
if compounds such as asparagine and allantoin/allantoic 
acid were the major forms of organic nitrogen translocated 
to the leaves, which is the case of coffee plants (Mazzafera 
and Gonçalves, 1999). This is because in order to make the 
nitrogen in these compounds available for the synthesis 
of amino acids they must first be catabolized, released as 
ammonium and reassimilated in the leaves (Smirnoff et al., 
1984).

All these findings considered together may have some 
important agronomical consequences. In Brazil, coffee is 
traditionally cultivated under full sunlight, but seedlings are 
produced in nurseries under shade conditions. Due to the higher 
energetic cost of root nitrate assimilation, environmental 
nursery conditions favoring nitrate assimilation in roots, 
such as high nitrate availability (Carelli and Fahl, 1991) 
and/or intense shading (Carelli and Fahl, 2005), may cause 
higher shoot development, in relation to roots. This enhanced 
shoot/root biomass ratio may be unfavorable when seedlings 
are transferred to the field, where they will be submitted to 
high irradiance-temperature regimes and eventually low 
water availability. In this situation, the relatively smaller 
roots will not provide the plants with enough water and 
nutrients to maintain shoot turgor and vigor. On the other 
hand, appropriate N fertilization is particularly important in 
the nursery, since this nutrient is believed to be a key factor 
for plants to endure and counteract the photoinibitory effects 
that occur when young coffee plants are transferred to the 
open field (see Section 7).

Seasonal changes in nitrate assimilation
During the annual reproductive cycle, coffee plants 

usually exhibit changes in nitrate uptake (Carvajal et al., 
1969; Cannell and Kimeu, 1971) and assimilation capacity 
(Taleisnik el al., 1980; Carelli et al., 1989) which have 
been associated with the several developmental stages of 
flowers and fruits. In Costa Rica, Carvajal et al. (1969) 
observed that nitrate uptake rate of mature coffee plants, 
growing in nutrient solution, was higher before anthesis and 
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at the beginning of fruit maturation. Similarly, Carelli et al. 
(1989) found that leaf NRA in coffee-trees growing in Brazil 
under natural light-temperature regimes and constant nitrate 
supply in nutrient solution, showed higher values prior to 
anthesis and at the end of fruit development. Such results 
indicate that the differential nitrate uptake, associated with 
the phenological phases, might be an important factor in the 
control of leaf NRA during the annual cycle of the mature 
coffee tree, independent of the variations promoted by 
seasonal environmental conditions (Carelli et al. 1989). 

Both phenological phases, in which coffee plants present 
higher leaf NRA values, are coincident with the periods 
of intense metabolite and nutrient demand from the sinks 
(flowers and fruits). The first is the late phase of flower 
development (Taleisnik et al. 1980; Carelli et al., 1989), 
when the flower buds rapidly expand and show an expressive 
increase in dry matter, requiring rapid metabolite transport 
from the nearest photosynthesizing leaves (Barros et al., 
1982). The second is the late phase of fruit development, 
when seed endosperms are in formation, which are powerful 
sinks of carbohydrates and minerals (Cannell, 1975).

In accordance, coffee trees (or branches) bearing fruits 
exhibited higher leaf NRA than the deblossomed ones 
(Taleisnik et al. 1989; Carelli et al., 1989; Amaral et al., 
2001). Leaf nitrate concentrations followed the same trend of 
NRA suggesting that there is a preferential course of nutrient 
flow to the higher consuming branches (sink strength) 
(Cannell and Kimeu, 1971; Taleisnik et al., 1980; Carelli et 
al., 1989). 

Coffee fruits during their rapid expansion phase may 
draw over 95 % of the current total uptake of N (Cannell, 
1985), often causing N deficiency symptoms in foliage and 
restricting vegetative growth (Amaral et al., 2001). Besides, 
Cannell (1971) observed that photosynthetic rate was higher 
in fruiting trees than in deblossomed ones. 

On the other hand, root NRA apparently is not influenced 
by the presence of fruits. Amaral et al. (2001) reported that 
coffee roots, although containing more nitrate than leaves, 
showed much lower NRA and were not affected by fruiting.

Variations in the environmental conditions may also 
contribute to changes in the nitrate assimilation capacity of 
coffee trees during the annual cycle. Taleisnik et al. (1980), 
in Costa Rica, observed that leaf NRA presented seasonal 
variations correlated with rainfall regime and with the soil 
and plant water contents, with higher NRA values found 
during the dry season, when plants were in the flowering and 
maturing stages. In contrast, it was observed in Brazil that 

the highest leaf NRA and leaf nitrate concentration occurred 
during the warm and wet season, when periods of high air 
temperature and high evaporative demand also occur (Da 
Matta et al., 1999; Amaral et al., 2001). Such conditions led 
to an increase in the water inflow, and consequently to an 
enhanced nitrate influx to the leaves, which in turn brought 
about a rise in NRA (Da Matta et al., 1999; Amaral et al., 
2001).

In hot sunny weather, even coffee trees growing under 
high water availability may exhibit increased internal 
resistance to water movement, except in genotypes tolerant 
to high irradiance–temperature regimes (Cannell, 1975; 
Carelli et al., 1989). In fact, most coffee genotypes presently 
cultivated in Brazil were obtained by genetic breeding 
under full sunlight and wide spacing, and maintain high 
stomatal conductance and transpiration rates even under high 
irradiance-temperature regimes, when water availability 
is not limiting (Carelli et al., 1999; Fahl et al., 2001). In 
addition, maximum air temperature in traditional coffee 
growing regions of Costa Rica and Brazil (ca. 34ºC) does not 
appear to affect the seasonal trends of NRA in both leaves 
and roots (Taleisnik et al. 1989; Carelli et al., 1989; Amaral et 
al., 2001). On the other hand, periods of low air temperature 
during the annual cycle of the coffee tree seemed to adversely 
affect leaf nitrate assimilation. In Brazil, regardless of the N 
fertilization, leaf NRA was apparently null in the cool season 
(May to September) with temperatures around 15ºC at 09:
00 h, while root NRA was sustained by N supplementation 
during the cold period (Amaral et al., 2001).

Photoprotective role of nitrogen under photoinhibitory 
conditions

As stated above, Coffea arabica L. grows naturally in 
shaded habitats and bears some physiological and structural 
characteristics of a shade plant (Rhizopoulou and Nunes, 
1981). This results in severe photoinhibition when exposed 
to high irradiance, namely when young plants are transferred 
from nursery into open field. Since the cultivation of coffee 
without shading is becoming very attractive worldwide, due 
to higher potential production, the ability of coffee to avoid 
photodamage is an important issue in coffee production 
and has encouraged research into technological and genetic 
improvements to overcome the problems resulting from 
exposure to high light.

It is well known that exposure of leaves to light levels 
higher than those that can be used in photosynthesis, that 
is, when the rate of transfer of excitation energy from the 
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antennae to the photochemical reaction centres exceeds the 
rate of transfer from those reaction centres to the electron 
transport chain, may cause photoinhibition (Young and 
Britton, 1990). It is now evident that photoinhibition, which 
results from the conjunction of excessive light energy 
pressure with other stress factors, like drought, chilling, etc., 
has an important impact under natural conditions.

Overexcitation of the photosynthetic apparatus and 
photoinhibition can occur in nature due to changes in light 
irradiance, namely when plants are exposed to diurnal and 
seasonal variations, when the inner part of a canopy is 
briefly exposed to high irradiance, or even when the plants 
are exposed to moderate levels of light coexisting with other 
stresses (e.g., low temperature or water shortage). Under 
excess of light energy photooxidative stress may occur due to 
an accumulation of excited molecules (e.g., 3chl*, 1chl, 1O2) 
in the pigment bed and the overreduction of O2, leading 
to the formation of O2

•-. In chloroplasts, under normal 
metabolic conditions, the production of O2

•- is controlled and 
almost restricted to PSI, through the pseudocyclic electron 
flow, also known as the Mehler reaction. However, under 
stress conditions their production may increase and the 
photoproduction of 1O2 and O2

•- (that in turn promotes the 
production of H2O2 and .OH) can also occur at the PSII level, 
if photoinhibition at the PSII donor side arises (Lidon and 
Henriques, 1993; Asada, 1994; Foyer et al., 1994). These 
highly reactive chemical entities may cause damage, namely 
lipid peroxidation, bleaching of pigments (e.g., in P680), 
protein degradation (e.g., D1), enzyme inactivation and even 
DNA damage (Asada and Takahashi, 1987; Winston, 1990; 
Barber and De Las Rivas, 1993; Foyer et al., 1994; Niyogi, 
1999), resulting in impaired membrane functionality and 
lower ability of photon-use and enhanced photoproduction 
of reactive molecules (Asada, 1994).

To prevent oxidative stress at the chloroplast level, 
due to the production of active forms of oxygen and chl, 
plants have evolved complex systems to remove such highly 
reactive chemical entities at their generation site. For that, 
the over-expression of antioxidative scavengers, such as 
enzymes (e.g., superoxide dismutase, ascorbate peroxidase), 
and hydrophilic (e.g., ascorbate, glutathione) and lipophilic 
(e.g., zeaxanthin, β-carotene and α-tocopherol) antioxidants, 
is of great importance (Foyer et al., 1994; Adams and Barker, 
1998; Strand et al., 1999; Adams et al., 2002; Munné-Bosch, 
2005).

It has been demonstrated that the pathways of carbon 
and nitrogen metabolism are clearly interdependent. The 

photosynthetic electron transport associated with carbon 
metabolism is the driving force for both of these processes 
(Huppe and Turpin, 1994, Foyer et al., 1995) and carbon 
assimilation products have regulatory functions over the 
activity of nitrate reductase (Cires et al., 1993). Furthermore, 
a close relation between light-saturated photosynthetic 
rate in air and N content of leaves is widely recognized 
(Evans, 1989), explained by the fact that leaf N is essentially 
allocated to photosynthetic components. On the other hand, 
N limitation imposes a reduction in the cellular concentration 
of pigments, photosynthetic units and Calvin cycle enzymes, 
which in turn causes a decrease in the capacity for carbon 
assimilation (Sukenik et al., 1987) and thereby a higher 
sensitivity to photoinhibition. Consequently, any given 
irradiance is potentially in greater excess under conditions of 
N deficiency (Verhoeven et al., 1997).

Thus, a higher N content might allow for better 
photosynthetic performance (Hikosaka and Terashima, 1995) 
and consequently it is expected that N fertilization would 
improve plant performance under suboptimal conditions. 
In fact, nitrogen fertilization, applied in a broad range of 
doses, has positive effects on growth and may improve plant 
performance in conditions such as marginal temperature 
(Lawlor et al., 1987), high light (Osmond, 1987; Ferrar and 
Osmond, 1986; Algarra and Rudiger, 1993) and shortage 
of water (Shimshi 1970, Bennett et al., 1986). Under stress 
conditions, higher N availability was observed to trigger 
photoprotective mechanisms in C. arabica (Fahl et al., 
1994; Ramalho et al., 1998, 1999, 2000) and to promote 
osmotic adjustment and an increase in the long term water 
use efficiency due to improved carbon assimilation in C. 
canephora (Da Matta et al., 2002).

Plants may be able to acclimate photosynthesis to 
different light intensities by triggering some protective 
mechanisms, which are regarded as responses to short-
term high irradiance exposure and as acclimation when 
related to long-term high irradiance exposure, which implies 
marked adjustments in the structures and composition of 
the photosynthetic apparatus (Ferrar and Osmond, 1986; 
Evans, 1989; Seemann, 1989; Long et al., 1994). Since N 
availability is particularly important for protein synthesis, 
the level of N nutrition will determine photosynthetic shade 
to sun acclimation as well as sensitivity to and recovery from 
photoinhibition (Ferrar and Osmond, 1986; Ramalho et al., 
1998, 2000).

Recent studies with young (ca. 1.5 years old) Coffea 
arabica plants, emphasize an interesting ability to acclimate 
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to high irradiance, both on a short-term (Ramalho et al., 
1997) and a long-term basis (Fahl et al., 1994; Ramalho et 
al., 1998; Ramalho et al., 1999), if appropriate N nutrition 
were provided. The observed N-dependent photosynthetic 
performance and acclimation was a consequence of several 
processes with their own characteristic time responses. First, 
it should be noted that higher N availability promoted a 
better general status of the plant before exposure to high 
PPFD. Support for this conclusion was obtained through 
the higher values of some gas exchange (e.g., Amax, F) 
and fluorescence (e.g., Fv’/Fm’, fe) parameters, levels of 
photosynthetic pigments (both chlorophylls and carotenoids) 
and protein and TFA (Ramalho et al., 1998, 2000) associated 
with changes in leaf morphological features and chloroplast 
ultrastructure (Fahl et al., 1994).

Nevertheless, independent of N availability, all plants 
were affected at the beginning of the imposed high irradiance 
period, both in the photochemical and enzymatic processes 
of photosynthesis, reaching their lowest performance usually 
around the 3rd to 7th day of high PPFD exposure. However, 
the plants with higher N availability were less affected, both 
during the first hours (Ramalho et al., 1997) and until the 3rd 
to 7th day (Nunes et al., 1993; Ramalho et al., 2000), showing 
that the reported better status helped of those plants helped 
to endure the stress during the initial phase. Evidence for this 
were the higher values obtained for photochemical efficiency 
of PSII (Fv/Fm and Fv’/Fm’), electron transport (qP, fe and 
Jmax), carboxylation activity of rubisco and photosynthetic 
rates (A and Amax) (Nunes et al., 1993; Ramalho et al., 1997; 
1999; 2000). Such improved photosynthetic performance 
was also due to the triggering of some protective and repair 
processes. Among these we would underline the increase 
in content of the xanthophyll cycle pigments, namely 
zeaxanthin (Ramalho et al., 1997, 2000), responsible for 
energy dissipation in the photosystems and the increase of 
de novo synthesis of protein (Nunes et al., 1993; Ramalho 
et al., 1997), indispensable for the repair of photodamaged 
structures. 

After the initial shock phase, N availability promoted 
the recovery of the photosynthetic machinery, since plants 
with higher N nutrition presented a complete (or almost 
complete) recovery of several photosynthetic parameters. 
Such a response was observed for the in vivo parameters, A, 
Amax, Jmax, Vcmax, Fv/Fm, Fv’/Fm’, qP, fe (Nunes et al., 1993; 
Ramalho et al., 2000) as well as for the in vitro electron 
transport rates around PSII, rubisco content and activity, and 
QA content (Ramalho et al., 1999). Furthermore, only these 

plants showed an increase in the PPFD required to saturate 
A and to obtain Amax, to irradiance levels close to those used 
to impose the stress (Ramalho et al., 2000). Such improved 
photosynthetic functioning would reduce the overreduction 
of the electron transport chain and the overacidification of 
the thylakoids lumen, which are known sensitive factors for 
photooxidative damage of PSII (Müller et al., 2001) and PSI 
(Sonoike, 1996; 1999).

As in other tropical plants subjected to excessive energy 
levels (Sonoike, 1996, 1999; Kudoh e Sonoike, 2002), the 
PSI constituted a preferential photoinhibitory target in all N 
treatments, as inferred from the decrease in the chl a/b ratio 
and in β-carotene. These changes were interpreted to indicate 
a preferential photobleaching of PSI chlorophyll (Williams et 
al., 1986; Miller and Carpentier, 1991) and a decrease in PSI 
complex (Schäfer and Schmidt, 1991; Schmidt and Schäfer, 
1994), with which most of the leaf β-carotene is associated 
(Miller and Carpentier, 1991), and is in agreement with the 
observed loss of cyt b6 and f (Nunes et al., 1993; Ramalho 
et al., 1998, 1999). Nevertheless, such effects did not limit 
the photosynthetic rates in plants with higher N availability, 
which presented a complete recovery after 2 weeks of high 
irradiance exposure.

On the other hand, the plants with lower (and intermedi-
ate) N availability showed low rubisco activity together with 
strong negative effects, both in the light harvesting and elec-
tron transport processes, namely in the antennae (Fo), OEC, 
PSII photochemical efficiency and activity, and the cyt b6 and 
f contents, which suggests the presence of both a donor and 
an acceptor side photoinhibition of PSII. In these plants the 
effects at the PSI level further constituted a major limiting 
step for thylakoid electron transport and CO2 assimilation. In 
view of these results it was not surprising that some “global” 
gas exchange and fluorescence parameters presented strong 
negative effects, namely A, Amax, Jmax, Vcmax and qP, with 
some of these effects being detected from the very beginning 
of high irradiance exposure (Nunes et al., 1993; Ramalho et 
al., 1997, 1999, 2000).

The reported recovery in the plants with higher N 
availability was supported, at least partly, by dissipative 
mechanisms, which constitute adjustments of the efficiency 
of light harvesting and primary photochemistry and will 
act against photo-oxidative damage. That was observed 
through the presence of higher contents of zeaxanthin, 
lutein and β-carotene, a high DEPS throughout the stress 
period and a strong qNP and qE observed by the end of stress 
(Ramalho et al., 2000). They operate mainly through thermal 
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dissipation and are determinant for the photoprotection of 
the photosynthetic apparatus (Ma et al., 2003).  Zeaxanthin 
and lutein transform 1chl to chl with heat production, while 
β-carotene removes 3chl and 1O2, producing chl, O2 and 
3Car, the latter dissipating the excitation energy through heat 
(Siefermann-Harms, 1987; De Las Rivas et al., 1993; Niyogi 
et al., 1997; Niyogi, 1999; Foyer, 2002). Concomitantly, 
the non-photochemical quenching and its main component, 
qE, related to the energy state of thylakoid membranes, also 
perform thermal dissipation of excess energy. That process 
involves conformational changes of the LHC and requires 
the presence of some xanthophylls (zeaxanthin, lutein) and 
of PsbS protein from PSII (Li et al., 2000; Müller et al., 2001; 
Külheim et al., 2002).

Furthermore, the reinforcement of ascorbate peroxidase 
and glutathione reductase activities (Ramalho et al., 1998) 
would promote detoxification of active oxygen species 
through the direct control of H2O2 levels.

Altogether, these mechanisms effectively alleviated 
the energetic overcharge in the photosystems and protected 
them against highly reactive molecules of chl and oxygen. 
That allowed the maintenance of a lower reduction state 
of the electron transport chain, as observed by the higher 
oxidized state of the QA pool (higher qP) and sustained the 
higher photosynthetic rates shown by the plants with higher 
N availability, which in turn would have contributed to the 
reduced leakage of electrons towards oxygen, decreasing the 
O2

•- production rate (Ramalho et al., 1998). In fact, such higher 
utilization of energy through photochemistry denotes better 
functioning of the photosynthetic apparatus and constitutes 
the best protection against further photoinhibition.

The above mentioned photoprotective processes and the 
better photosynthetic performance promoted by a higher N 
availability presumably give the plants the time required to 
develop some more permanent (structural) readjustments at 
the chloroplast level. In fact, after about 2 weeks of high ir-
radiance exposure, clear quantitative and qualitative changes 
were observed that represent acclimation features with char-
acteristics similar to those displayed by sun plants, thereby 
allowing the plants to cope with the new irradiance condi-
tions. These changes included decreases in the investment in 
light harvesting pigments, namely chl and some carotenoids 
(Nunes et al., 1993; Ramalho et al., 2000) which will reduce 
the collected energy and thus the energetic pressure over the 
photosystems. Also, the decrease in chl/N and α/β carotene 
ratios, the increase in N-protein/total N and total carotenoid/
total chl ratios (Nunes et al., 1993; Ramalho et al., 2000), the 

higher investment in stromal versus thylakoid components 
(increases of the rubisco/chl ratio and of rubisco content) 
(Ramalho et al., 1999), indicates changes towards an accli-
mation (Lichtenthaler et al., 1983; Hikosaka and Terashima, 
1995; Logan et al., 1996) in the plants with higher (and to 
some extent with intermediate) N availability. Finally, the 
changes in the TFA of chloroplast lipids and the increase of 
the saturation level, mainly due to a preferential synthesis 
of C16:0 relative to C18:3 (Ramalho et al., 1998), enhance 
chloroplast membrane stability and preserve the photosyn-
thetic processes (Raison et al., 1982; Hugly et al., 1989), as 
well as decreasing membrane susceptibility to photooxida-
tive stress (Pham Thi et al., 1990; Paula et al., 1993).

From the above discussion it can be concluded that the 
level of N nutrition clearly determines whether acclima-
tion to high irradiance may take place or not in C. arabica 
(cv. Catuaí). Indeed higher N availability clearly alleviated 
photoinhibitory impact from the first day, allowing recovery, 
usually after the 3rd to 7th day, and promoted the photosyn-
thetic acclimation after about 2 weeks of high irradiance ex-
posure, both in the photochemical and carboxylation reaction 
components. As part of the acclimation process N promoted a 
better initial status of the photosynthetic apparatus before the 
stress was imposed, and during stress imposition promoted 
the ability to undergo biochemical/structural changes involv-
ing membrane lipid characteristics and the reinforcement of 
the antioxidative mechanism.
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