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Ultraviolet-B (UV-B) radiation and nitrogen are expected to increase simultaneously with future changes in global climate. In
this study, growth and photosynthetic responses of Picea asperata seedlings to enhanced UV-B and to nitrogen supply were
studied. The experimental design included two levels of UV-B treatments (ambient UV-B, 11.02 k] m? d"'; enhanced UV-B, 14.33
kJ m?d") and two nitrogen levels (0; 20 g N m?) to determine whether nitrogen can alleviate the negative impacts of enhanced
UV-B on seedling growth and photosynthesis. Enhanced UV-B significantly inhibited plant growth and impaired net
photosynthetic rate, stomatal conductance, transpiration rate, the light-saturated assimilation rate, assimilation capacity, light
compensation point, dark respiration rate, apparent quantum yield, photosynthetic pigments and maximum quantum yield of
photosynthesis of P. asperata seedlings, whereas minimal fluorescence and intercellular CO, concentration increased by
enhanced UV-B. On the other hand, nitrogen supply improved the photosynthetic performance and plant growth, but only
under ambient UV-B. In fact, nitrogen supply could not alleviate the photosynthetic impairments in P. asperata seedlings
exposed to enhanced UV-B radiation.
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Crescimento e respostas fotossintéticas de plantulas de Picea asperata ao aumento da radiagao ultravioleta-B e ao
suprimento de nitrogénio. Presume-se que a radiacdo ultravioleta-B (UV-B) e nitrogénio aumentem simultaneamente com
as mudancas climaticas globais futuras. Neste estudo, avaliaram-se o crescimento ¢ respostas fotossintéticas de
plantulas de Picea asperata ao aumento da radiagdo ultravioleta-B ¢ ao suprimento de nitrogénio. Utilizaram-se dois
tratamentos de UV-B (UV-B ambiente, 11.02 kJ m?d"'; e UV-B suplementar, 14.33 kJ m?2d") e duas dosesde N (020 gN
m?), a fim de se determinar se o suprimento de N poderia atenuar os impactos negativos do aumento da radiagdo UV-B
sobre o crescimento e a fotossintese. O aumento da radiagdo UV-B inibiu o crescimento ¢ fez reduzir a taxa de
fotossintese liquida, a condutancia estomatica, a taxa transpiratdria, a taxa de fotossintese saturada a luz, a irradiancia
de compensac¢do, a taxa de respiracdo escura, o rendimento quantico aparente, a concentracdo de pigmentos
fotossintéticos e o rendimento quéntico potencial das plantulas de P. asperata, enquanto a fluorescéncia minima e a
concentragdo intercelular de CO, aumentaram com o aumento da radiagdo UV-B. Por outro lado, o suprimento de N
afetou positivamente o desempenho fotossintético e o crescimento, porém apenas sob niveis ambientes de radiagao UV-
B. Com efeito, N ndo esteve associado a protecdo da maquinaria fotossintética das plantulas de P. asperata expostas a
radiacdo UV-B suplementar.

Palavras-chave: crescimento, fotossintese, nitrogénio, Picea asperata, radiagdo ultravioleta, trocas gasosas

Abbreviations: 4 — net photosynthetic rate; 4/C; — assimilate capacity; 4, — light-saturated assimilation rate; Car — carotenoids; Chl

— chlorophyll; C, — intercellular CO, concentration; E — transpiration rate; F — minimal fluorescence; F— maximal fluorescence; F /F
— potential quantum yield of photosystem II; LCP — light compensation point; N — nitrogen; PPFD — photosynthetic photon flux

density; R, — dark respiration rate; UV — ultraviolet; WUE — water-use efficiency; o — apparent quantum yield
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INTRODUCTION

Atmospheric ozone (O,) remains depleted and the
annual average ozone loss is approximately 3 % globally
(Executive Summary, 2003). Researches have shown that
enhanced ultraviolet-B (UV-B) reaching the surface of
the earth has very many adverse impacts on plants
(Jordan, 2002; Yao and Liu, 2006). Photosynthetic
processes of plants are very important for plant growth.
Musil et al. (2003) reported that photosynthesis of
legume was unaffected by enhanced UV-B, whereas
Correia et al. (2005) reported that photosynthesis of
maize was inhibited by enhanced UV-B. The depression
of photosynthesis induced by enhanced UV-B
includes direct and indirect causes: direct depression
is from the down-regulation of photosynthetic genes,
photomodification of chloroplast thylakoid membranes
(Strid et al., 1994), damage to photosystem II (Bornman,
1989) and the inhibition of photosynthetic enzymes
(Murthy and Rajagopal, 1995); the indirect effects are
linked to altered stomatal function, photosynthetic
pigments, leaf and canopy morphology (Teramura and
Sullivan, 1994).

Plants usually grow under a combination of stresses
related to the present changes of global climate, such as
temperature, precipitation, atmospheric CO, enrichment, O,
and nitrogen deposition. Nitrogen is the mineral nutrient
needed in largest amounts by plants and it is usually also
the limiting factor for plant growth in terrestrial ecosystems
(Vitousek and Howarth, 1991). At the same time, nitrogen is
also an important constituent of the photosynthetic
apparatus (Correia et al., 2005). Maximum photosynthetic
capacity is strongly regulated by leaf nitrogen
concentration (Field and Mooney, 1986). In contrast to UV-B
radiation, nitrogen supply improved growth and net
photosynthesis of plants (Nakaji et al., 2001).

UV-B radiation and nitrogen nutrition are expected to
increase simultaneously with future changes in global
climate. Nitrogen can affect UV-B response in plant
photosynthesis (Pinto et al., 1999; Correia et al., 2005).
Previous studies have mainly focused on crop and herb
plants, though forests account for over two-thirds of
global net primary productivity, compared to about 11 %
for agricultural land (Barnes et al., 1998). Unfortunately,
only a few papers have reported the combined effects of
nitrogen nutrition and enhanced UV-B radiation on
woody plants (especially coniferous tree species).
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Picea asperata is a key species in the southeast of
the Qinghai-Tibetan Plateau of China and presently
widely used in reforestation programs (Liu, 2002). This
paper describes the short-term influence of enhanced UV-
B radiation and nitrogen supply on growth and
photosynthesis of P. asperata seedlings under semi-
controlled conditions. On the basis of previous studies in
other species, we hypothesized that nitrogen supply
would reduce the photosynthetic sensitivity of P.
asperata to UV-B. Our major goal was, therefore, to
achieve a better understanding of the responses of a
woody plant species to both enhanced UV-B and to
nitrogen supply.

MATERIAL AND METHODS

Plant material and experiment design: The experiment
was conducted in open semi-field conditions from April
15 to October 15, 2005 at the Maoxian Ecological Station
of the Chinese Academy of Sciences (31°41°N, 103°53’E,
1820 m asl), Sichuan province, China. Four-year-old P.
asperata seedlings were obtained from a local nursery.
The plant height, basal diameter and whole-plant fresh
weight at the beginning of the experiment were 15.38 +
0.48 cm, 6.52 +0.35 mm, and 7.52 + 0.43 g, respectively.
Seedlings were transplanted (one seedling per pot) into
plastic pots (25 cm diameter and 35 cm depth) and grown
under a 12 h photoperiod with a diurnal average
photosynthetic photon flux density (PPFD) of 1200 pmol
m? s, The substrate used for growing the seedlings was
a sieved topsoil from a spruce-forest. In a preliminary
experiment, the plastic pots did not affect growth of
seedling roots during a 2-year growth period.

The experiment consisted of four treatments: (1) ambient
UV-B without extra nitrogen supply (control, C); (2)
ambient UV-B with extra nitrogen supply (N); (3)
enhanced UV-B without extra nitrogen supply (UV-B); (4)
enhanced UV-B with extra nitrogen supply (UV-B+N)).
Each treatment consisted of three blocks and each block
was composed of 10 pots. The pots within blocks were
rotated approximately every 20 d.

UV-B treatments and treatments:
Supplementary UV-B was supplied by UV-B fluorescent

lamps (Beijing Electronic Resource Institute, Beijing,

nitrogen

China) mounted in metal frames with minimum shading.
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The distance from the lamps to the top of plant apex was
100 cm and kept constant throughout the experiment. In
ambient UV-B frames, UV-B from the lamps was excluded
by wrapping the tubes with 0.125 mm polyester film
(Chenguang Research Institute of Chemical Industry,
Chengdu, China), which transmits UV-A. In enhanced
UV-B frames, lamps were wrapped with 0.10 mm cellulose
diacetate film, which transmits both UV-B and UV-A.
Vertical polyester curtains were placed between the
frames in order to prevent the UV-B radiation from
reaching the control seedlings (De La Rose et al., 2003).
Films were replaced every week. The lamps were changed
at monthly intervals. The spectral irradiance from the
lamps was determined with a spectroradiometer (model
742, Optronics, Orlando, USA). The spectral irradiance
was evaluated according to the generalized plant action
spectrum (Caldwell, 1971) and normalized at 300 nm to
obtain the effective radiation (UV-B,,). The supplemental
UV-B,, dose was 3.31 kJ m™ d' (a 30% difference in
ambient UV-B, ) in addition to the effective 11.02 kJ m™d"!
UV-B,, (ambient UV-B,) from the sky. All pots also
received natural solar radiation. Seedlings were irradiated
for 8 h daily centered on the solar noon.

Nitrogen was added as a 9.5 mM NH,NO, solution
(300 mL) to the potted soil every 3 d. The treatment
without extra nitrogen supply was watered with 300 mL
water at the same interval. The amount of nitrogen added
to the soil was equivalent to 20 g N m™? on the basis of the
soil surface area. Nitrogen supply was based on other
similar studies (Nakaji et al., 2001; Bowden et al., 2004).

Growth parameters: Six randomly selected seedlings
from each treatment were harvested at the end of the
experiment. Seedlings were divided into needle, root and
stem. Roots were rinsed free of soil. All the organs were
dried at 80°C for one week and weighed.

Pigment analysis: Needles after photosynthetic
parameters and chlorophyll (Chl) fluorescence
measurements were taken for pigment analyses. Needles
were ground in 80% acetone for determination of Chl and
carotenoids (Car) according to Lichtenthaler (1987).

Gas exchange: Net photosynthetic rate (4, pmol CO, m™
sl), transpiration rate (E, mmol m?s!), stomatal
conductance (g, mmol m?s"') and intercellular CO,
concentration (C,, umol mol™) of the fully expanded

needles from six plants in each treatment were measured
with a portable photosynthesis system (LI-6400, Li-Cor,
Lincoln, USA) at a saturating photosynthetic photon flux
density (PPFD) of 1000 + 50 umol m2s™'. The saturating
PPFD was determined from a light response curve
(between 0 and 1500 pmol m?s™), provided by a LED
module and the steady-state rate of photosynthesis was
calculated. The CO, concentration during measurements
was maintained between 360 and 400 pmol mol™ air, and
leaf temperature was maintained at 25 + 1.5°C. Needle
carboxylation capacity was expressed as the ratio of 4 to
C, (A/C; Blum, 1990) and needle water-use efficiency
(WUE) was calculated as the ratio of 4 to E. Data from two
replicate measurements were averaged for each plant.

Photosynthetic light response curves of needles were
determined as follows. The temperature inside the leaf
was set to 25°C and the CO, was set to 400 umol mol™" air.
The PPFD was gradually increased from 0 to 1500 pmol m™
s (0,20, 50, 80, 100, 200, 400, 600, 800, 1000, 1200, 1500),
allowing a 3 min interval at each light intensity to achieve
steady-state photosynthesis. The photosynthetic light-
response curves were fit using the Michaelis-Menten
equation (Zhang et al., 2000).

Chlorophyll fluorescence: Chlorophyll fluorescence was
measured in dark-adapted (15 min) needles (the same
needles used for gas-exchange measurements) with a
portable fluorometer (PAM-2100, Walz, Effeltrich,
Germany). The maximal fluorescence (F, ) with all PSII
reaction centers closed was determined using a 0.8 s
saturating pulse of 8000 wumol m? s*!. The minimal
fluorescence (F ) was measured with weak light which did
not induce significant variable fluorescence. The variable
fluorescence (F = F -F ) and the maximum quantum
efficiency of PSII (F /F ) were then calculated.

Statistical analysis: Analyses were performed using the
Software Statistical Package for the Social Science (SPSS)
version 11.0. Homogeneity of variance was tested using
the Levene test prior to analysis. A two-way analysis of
variance was used to determine the main effects of UV-B
radiation, nitrogen supply and their interactions on
growth and photosynthetic characteristics. Individual
treatment means were compared using Duncan’s test to
determine whether they were significantly different at the
0.05 probability level.
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RESULTS

Growth parameters: Enhanced UV-B significantly
decreased plant height and total biomass of P. asperata
seedlings (Table 1), whereas basal diameter and the ratio
of root / shoot were not affected by enhanced UV-B. On
the other hand, nitrogen supply significantly increased
height of P. asperata seedlings, but basal diameter and
total biomass were affected by nitrogen supply only
under ambient UV-B. Significant interactive effects of UV-
B x nitrogen were also detected for plant height and basal
diameter.

Gas exchange: Enhanced UV-B markedly reduced 4, g, E,
and A/C; of P. asperata seedlings, and increased C,
significantly (Figure 1), whereas WUE was not affected
by enhanced UV-B. Nitrogen supply, per se, significantly
enhanced g, whilst £, C, and WUE were unresponsive to
nitrogen supply; in contrast, 4 and A/C, in plants grown
at ambient UV-B were increased with extra nitrogen.
Prominent UV-B X nitrogen interactions were observed
for A and A/C, (Table 2).

Photosynthetic light response curves: Photosynthetic
capabilities of the needles of P. asperata seedlings were
compared by measuring several parameters (Table 3)
derived from photosynthetic light-response curves.
Enhanced UV-B induced a decrease in the light-saturated
assimilation rate (4__ ), the light compensation point
(LCP), dark respiration rate (R,) and apparent quantum
yield (o) of needles. On the other hand, nitrogen supply
_under ambient UV-B,
but induced a significant decrease in 4__ under

caused a significant increase in 4

a:

enhanced UV-B. Nitrogen supply also markedly increased
LCP, whereas R, and a were not affected by nitrogen
supply. Significant interactive effects of UV-B x nitrogen
were also detected for4__ , LCP and a.

Chlorophyll fluorescence: Enhanced UV-B significantly
increased F and reduced F /F_ in needles of P. asperata
seedlings (Table 4). On the other hand, nitrogen supply
reduced F  under both ambient UV-B and enhanced UV-B,
whereas nitrogen supply caused an increase in F /F_only
under ambient UV-B. Fm was not affected by enhanced
UV-B and nitrogen. The interaction between UV-B and
nitrogen was also evident for F and F /F .

Photosynthetic pigments: Enhanced UV-B markedly
reduced Chl a, Chl b, Chl (a + b) and Car concentrations
(Table 5). On the other hand, Chl a, Chl b and Chl (a + b)
concentrations of plants grown at ambient UV-B were
increased by nitrogen supply, whereas nitrogen supply had
no influence on Chl pigment under enhanced UV-B. Car
concentration was increased by nitrogen supply. A parallel
change in Chl ¢ and Chl b resulted in no significant change
in Chl a/b ratio under enhanced UV-B or nitrogen supply.
Significant interactive effects of UV-B and nitrogen were
also detected for Chl a content (P =0.001).

DISCUSSION

The decreases of Chl (a + b) and Car concentrations
we found were also observed in other plant species under
extra UV-B (e.g., Casati et al., 2001; Correia et al., 2005).
The decrease of total Chl concentration might be due to
the decreases in Car concentration because Car may

Tablel.The effects of enhanced UV-B and nitrogen supply on growth parameters of P. asperata seedlings. Seedlings
were grown under ambient UV-B without extra nitrogen supply (control, C); ambient UV-B with extra nitrogen supply
(N); enhanced UV-B without extra nitrogen supply (UV-B); and enhanced UV-B with extra nitrogen supply (UV-B+N)).
Values are the mean + SE of six replicates. The values in the same row with different letters are significantly different from
each other (P < 0.05). *, ** *** indicate significant difference among treatments at P < 0.05, P < 0.01, P < 0.001,
respectively. ns = not significant (P > 0.05). N x UV-B interaction effects are also shown.

Treatments
Growth parameters
C N UV-B UV-B+N N UV-B  NxUV-B
Plant height (cm) 18.36+0.06 b 24.10+0.28 a 16.460.46 ¢ 19.53+0.46b hokok kol oK
Basal diameter (mm) 7.08+0.26 b 8.484+0.15a 7.62+0.36 ab 7.29+0.51 ab ns ns *
Total biomass (g) 20.80+0.27b 24.324+0.71a 16.41£1.30¢ 17.22+41.02¢ * ok ns
Root / shoot ratio 0.86+£0.10a 0.914£0.09a 0.80+0.04 a 0.82+0.08 a ns ns ns
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Figurel. Net photosynthetic rate, 4 (A), transpiration rate, £ (B), stomatal conductance to water vapour, g (C), intercellular
CO, concentration, C, (D), assimilate capacity, 4/C, (E) and water-use efficiency, WUE (F) of P. asperata seedlings
affected by enhanced UV-B and nitrogen supply. The bars with different letters are significantly different from each
other (P <0.05). Values are means of six replicates + SE.
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Table 2. The effects of UV-B, nitrogen supply and their interaction by analysis of variance (ANOVA) for photosynthetic
parameters of P. asperata seedlings. Values are the mean + SE of six replicates. Symbols as in abbreviation list. See

further details in Table 1.

A E g, C AlC, WUE
Between-subjects F P F P F P F P F P F P
N 032 ns 0.12 ns 3256  k** 2.56 ns 2.70 ns 0.02 ns
UV-B 5183  *** 2489  k*¥¥ 3834 Kk¥* 15.70 *¥*%k - 103.56 ok 240 ns
NxUV-B 9.65 * 0.84 ns 1.75 ns 0.08 ns 1222 ** 0.28 ns

Table 3. Photosynthetic variables and fitted parameters for light response curves of net photosynthetic rate of P.
asperata seedlings. Values are the mean = SE of six replicates. Symbols as in abbreviation list. See further details in

Table 1.
Variables Treatments

C N UV-B UV-B+N N UV-B  NxUV-B
A (umolCO,m?s™) 9.56+0.18 b 10.84+0.54 a 7.97+0.44 c 5.74£0.20d  ns Hkk **
LCP (umolm?s™) 16.06+0.08 b 18.32+1.07a 11.65+0.26 ¢ 16.33+0.32b  *** ns ok
R, (umol CO, m?2sT) 0.90+£0.05a 1.06+£0.13 a 0.59+0.03 b 0.60+0.10b  ns K ns
o, (umol CO, mol™) 0.0617+£0.00 a 0.0717+£0.00 a 0.0452+0.00b 0.0383+0.01b  ns Hkk **

Table 4. The effects of enhanced UV-B and nitrogen supply on chlorophyll fluorescence variables of P. asperata
seedlings. Values are the mean = SE of six replicates. Symbols as in abbreviation list. See further details in Table 1.

. Treatments
Variables
C N UV-B UV-B+N N UV-B NxUV-B
F, 0.25+0.01b 0.18+0.01 ¢ 0.29+0.01a 0.25+0.00b ol HEE *
F_ 1.06£0.03 a 1.28+0.14a 0.98+0.11a 0.87+0.20a ns ns ns
F/F_ 0.76+0.00b 0.86+0.03 a 0.70+£0.02 ¢ 0.71£0.00 ¢ * ko *

protect chlorophylls from photooxidative destruction
(Singh, 1996). On the other hand, the decrease in Car may
be directly associated with the damage caused by UV-B
radiation.

Since nitrogen is closely related to photosynthetic
pigment content and activity of Rubisco, nitrogen
affects the
photosynthesis and related gas exchange (Li et al., 2004).

nutrition strongly processes of
Overall, 4, A/C, and photosynthetic pigments responded
positively to the nitrogen supply under ambient UV-B,
but not under extra UV-B radiation, i.e. the harmful effects
of enhanced UV-B on photosynthetic pigments were not
alleviated by the nitrogen supply.

Changes in Chl fluorescence parameters may indicate
the absorption and transmission of light energy, the
conversion processes of physiological condition and its

Braz. J. Plant Physiol., 20(1):11-18, 2008

photosynthetic effect in plants. The F /F_ ratio, which is
believed to be a good measure of the photosynthetic
efficiency (Hanelt et al., 1995), is often used as a stress
indicator of the photosynthetic apparatus and describes
the potential yield of photochemical reactions (Bjorkman
and Demmig, 1987). The decrease in F /F ratio under
enhanced UV-B suggests that P. asperata seedlings were
under stress, which may be associated with decreased
efficiency of energy transfer from the antenna to the
reaction centres and/or inactivation of PSII reaction
centres (Briantais et al., 1986). Similar results have been
reported elsewhere (Bjerke et al., 2005). The decrease of
F/F_ might impair photosynthesis, and ultimately plant
growth and development. It should be stressed that
nitrogen supply enhanced F /F_under ambient UV-B, as
also noted by Guo et al. (2005) in larch seedlings, but not
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Table 5. The effects of enhanced UV-B and nitrogen supply on the concentration (on a fresh weight basis) of photosynthetic
pigments of P. asperata seedlings. Values are the mean + SE of six replicates. See further details in Table 1.

Pi Treatments
igments
C N UV-B UV-BN N UV-B NxUV-B

Chla (gkg?) 0.35+0.01b 0.43+0.00a 0.28+0.01 ¢ 0.30+0.00 ¢ *kk *okk *okk
Chlb (gkg™) 0.10+£0.00b 0.12+0.00 a 0.07£0.01 ¢ 0.08+0.01 ¢ * *xx ns
Chla/b 3.50+0.38a 3.58+0.31a 4.00+0.49a 3.75+0.24a ns ns ns
Chl(a+b)(gkg) 0.45+0.02b 0.55+0.00a 0.35+0.05¢ 0.37+0.00 ¢ * ok ns
Car(gkg") 0.08+0.00b 0.10£0.00a 0.04+0.00d 0.06+0.00 ¢ ko *xx ns

under extra UV-B, which further suggests that nitrogen
supply was unable to alleviate the harmful effects of UV-
B on the photochemical reactions.

In summary, this paper illustrated that enhanced UV-B
significantly affected the growth and photosynthesis of
P asperata seedlings. On the other hand, nitrogen
supply was more favorable for the growth and
photosynthesis of P. asperata seedlings under ambient
UV-B, whereas nitrogen supply could not reduce the
photosynthetic impairments in P. asperata seedlings
exposed to extra UV-B radiation.
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