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Abstract

Aim: To analyze the influence of exposure and time of exposure to phosphate buffered saline
(PBS) on the push-out bond strength (BS) of Biodentine to dentine. Methods: Eighty 2-mm-thick
dentin discs were obtained from transversal sections of human teeth roots. The space of the canal
was enlarged using #2–#5 Gates-Glidden burs to obtain 1.3-mm-diameter standardized cavities.
The discs were immersed in 17% EDTA followed by 1% NaOCl and dried. The spaces of the
canals were filled with Biodentine and the samples were divided into 2 groups (n=40) according
to the storage: G1:  exposure to moistened cotton pellet; G2: exposure to PBS. After 30 min, 1, 3
and 28 days, 10 samples of each group were subjected to the push-out test. Data were analyzed
using ANOVA and Tukey test (p < 0.05). Results: The specimens exposed to PBS had lower BS
(p < 0.05), except for the 1-day period (p = 0.6017). In specimens of Group 1 the BS increased
up to 3 days (p < 0.05). In specimens in Group 2, the BS increased from 30 min to 1 day (p <
0.0001) and remained stable up to 3 days (p = 0.9876). At 28 days, a significant decrease was
observed in the BS values of both groups (p < 0.05). Conclusions: The exposure of Biodentine
to PBS led to lower BS values. In general, the BS increased gradually up to 3 days and reduced
at 28 days.
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Introduction

When sealing communications between the pulp cavity and the periodontium,
repair materials should remain in place when submitted to functional pressures or
condensation of restorative and root canal filling materials1.

Currently, mineral trioxide aggregate (MTA) is one of the most used repair
cements. Several studies have demonstrated that the bond strength (BS) of MTA
to dentin ranges from 3.55 to 4.67 MPa2-4.

However, the BS of MTA increases with time3,5 and is greater when the material
is maintained in contact with phosphate buffered saline (PBS) (4.21 MPa – 7.14
MPa)2-3.

Recently, Biodentine (Septodont, Saint Maur des Fossés, France) was
introduced as a new repair material alternative to MTA6. The powder is mainly
composed of tricalcium silicate, calcium carbonate and zirconium oxide. The
liquid contains water, calcium chloride (used as setting accelerator) and a modified
polycarboxylate (superplasticising agent)7-8. Biodentine is presented by the
manufacturer as a “bioactive dentin substitute” and its indications are similar to
the aggregate.
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The BS of Biodentine to dentin ranges from 7.18 to
8.79 MPa4,9, values higher when compared to MTA, even if
exposed to different solutions such as sodium hypochlorite,
chlorhexidine and saline solution4.

Similar to MTA, the exposure of Biodentine to PBS10

and Hank Balanced Saline Solution (HBSS)11 leads to
precipitation of hydroxyapatite and interacting with dentin
in PBS, this material provides formation of extensions that
penetrate into the dentinal tubules12-13. However, the BS of
Biodentine to dentin after contact with PBS is not known.
Therefore, the aim of this study was to analyze the influence
of exposure and time of exposure to PBS on the push-out
bond strength of Biodentine to dentin. The null hypothesis
was that the exposure of Biodentine to PBS would improve
its push-out bond strength to dentin over time.

Material and methods

Forty single-rooted, extracted human teeth were used
under a protocol approved by the Ethics Committee of the
Federal University of Santa Catarina, Brazil (protocol number
232.508).

The procedures were performed as described by Reyes-
Carmona et al.2 and de Almeida et al3. The crowns were
removed, and the middle thirds of the roots were sectioned
transversally by using a water-cooled low-speed ISOMET
diamond saw (Buehler, Lake, Bluff, NY, USA) in order to
obtain 2-mm-thick sections. In each section, the canal space
of was enlarged using #2-#5 Gates-Glidden burs, to obtain
1.3-mm-diameter standardized cavities. The sections were
immersed in 17% EDTA for 3 min followed by 1% sodium
hypochlorite for the same time. They were then immediately
washed in distilled water and dried. The cavities were filled
with Biodentine (Septodont, Saint Maur des Fosseés, France),
which was mixed following the manufacturer’s
recommendations.

The cement mixture was placed into cavities with a MTA
carrier and compacted with pluggers. Excess material was
trimmed from the surface with a scalpel. All specimens were
examined under a microscope (10X) in order to discard any
cracks, defects or gaps between the material and dentin walls.

After filling, the root sections were randomly divided
into 2 groups (n=40): exposure to moistened cotton pellet
(group 1) or immersed in 15 mL of PBS (Dermus,
Florianópolis, SC, Brazil; pH=7.2) (group 2). The root
sections were stored at 37 °C for 30 min, 1, 3 and 28 days.
The PBS solution was replaced every 5 days.

Push-out test
After the experimental periods, 10 samples of each group

were randomly chosen and submitted to the push-out test.
The samples were placed in a steel holder that was screwed
to an aligning device that held it centered below a steel
piece with a cylindrical punch. This aligning device was
then fixed to an Instron machine (Model 4444; Instron Corp,
Canton, MA, USA) and a vertical force was placed directly

on the cement in each sample with the Instron probe moving
at 0.5 mm/min. The maximal force applied to the cement
before displacement was recorded in Newtons (N). The push-
out value in MPa was calculated from force (N) divided by
area in mm2 (1 MPa = 1 N/mm2).

Statistical Analysis
Mean and standard deviations were determined for each

group. The Shapiro-Wilk test was used to check the normality
of data distribution. The data were statistically analyzed by
one-way ANOVA and Tukey’s HSD post hoc test (p < 0.05).

Results

The mean values of push-out strength (MPa) for each
group, in different experimental periods, are shown in Table
1. Bond strength was significantly greater in Group 1 (p <
0.05), except for the 1-day period (p = 0.6017). Both groups
presented increase of BS from 30 min to 3 days. In the
specimens from Group 1 the BS increased at each period up
to 3 days (p < 0.05). However, there was significant
reduction at 28 days (p = 0.0005), similar to the 1-day period
(p = 0.9941). For the specimens in contact with PBS (Group
2), the BS increased from 30 min to 1 day (p < 0.0001) and
remained stable up to 3 days (p = 0.9876). At 28 days, a
significant decrease was observed in the BS values (p =
0.0003), similar to the 30 min period (p = 0.0564).

           Group 1             Group 2
       (Biodentine)                    (Biodentine + PBS)

Period Mean SD Mean SD
30 min 1.37aC 0.41 0.32bB 0.16
1 day 8.06aB 3.14 9.85aA 7.36
3 days 16.8aA 7.60 9.97bA 4.49
28 days 7.77aB 3.80 2.84bB 1.38
Mean 8.50a 2.96 5.75b 3.23

Table 1Table 1Table 1Table 1Table 1 Mean bond strength value (MPa) and standard
deviation (SD) recorded for groups 1 and 2, in each period.

Same lowercase letter within the same row, and same uppercase letter within the
same column indicate that the means are not statistically different (p > 0.05).

Discussion

The material used to seal communications between
periodontium and the root canal should resist the forces that
cause its displacement4.

The push-out test aims to assess the bond strength of a
restorative material to dentin. Our study was designed to
assess the resistance to dislodgement of Biodentine from
dentinal wall.

The mean push-out BS values of both experimental
groups are in agreement with previous studies4,9.

It is known that environment humidity is a factor that
affects the properties of tricalcium silicate-based cements14.
The setting conditions play an important role on the retention
characteristics of MTA. Gancedo-Caravia and Garcia-Rabelo
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(2006)5 showed that the push-out strength of dry-cured MTA
is lower than that of wet-cured MTA. A study by Vizgirda et
al. (2004)15 supports the importance of humidity for a proper
curing of MTA, as the authors found that the MTA sealing
was deficient when used to fill the entire length of the root
canal and suggested that this may be caused by incomplete
curing of MTA.

Another advantage of the humidity in contact with the
tricalcium silicate-based cements is the release of the calcium
hydroxide it contains5. This hydroxide may be responsible
for the advantageous properties that cements have in contact
with dental and periapical tissues11,16-17.

However Sluyk et al. (1998)18 demonstrated no
significant differences in the push-out strength of MTA set
in dry environment and in the presence of humidity.
Nevertheless, under real clinical conditions, a complete
absence of humidity at side of the cement is not possible
because the internal tissues always provide a wet environment
at the external surface of the root5.

Then, as Biodentine has a composition similar powder
to the MTA, it is expected that its shows similar values of
BS when submitted to the push-out test.

Our study demonstrates that in humid environment (G1),
the mean BS of Biodentine to dentin (8.5 MPa) was similar
to that reported in other studies (7.18-8.79 MPa)4,9 and higher
than BS of MTA2-4,19.

It is known that when in contact with PBS, MTA presents
higher BS values2-3, possibly due to formation of a carbonated
apatite layer at the interface with dentin20. Biodentine is also
able to interact with PBS and promote the biomineralization
process13. Therefore, similar to what is observed for MTA, the
interaction of Biodentine with PBS should lead to increase in
the BS values. However, the data achieved in this study
demonstrated that this interaction did not promote the
expected increase. The presence of the modified
polycarboxylate polymer in the Biodentine liquid, used as
water reducing agent, may have contributed to this outcome21.
This polymer is a dispersant widely used in civil engineering,
being classified as a super-plastifying agent. When mixed with
water, the cement grains tend to uptake part of the liquid.
Polycarboxylate, acting as a dispersant, prevents this uptake
and assures greater fluidity to the cement22. However, when in
contact with PBS, it is possible that Biodentine has a greater
quantity of water available, consequently presenting greater
dispersion of particles, allowing the incorporation of air and
facilitating the formation of pores, leading to cement
displacement.

The calcium chloride (CaCl2) present in the Biodentine
liquid may also have affected its BS after exposure to PBS.
When a cement containing tricalcium silicate is associated
with CaCl2,

 smaller quantity of water is necessary for the
mixture23, due to the hydration of silicates24 and the
hygroscopic action of CaCl2

25. The contact of Biodentine
with PBS may have allowed greater water absorption by the
cement, changing the powder-liquid ratio. When a cement
containing tricalcium silicate is prepared with a powder-liquid
ratio above the ideal, nearly all excess water favors the

formation of pores and increases the material solubility14.
Surprisingly, the results evidenced a significant decrease in
BS at 28 days. Explanations for this observation should be
further analyzed in other studies.

The exposure of Biodentine to PBS led to lower BS
values. In general, the BS was gradually increased up to 3
days and reduced at 28 days.
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