Implante de filtro de veia cava com uso de dióxido de carbono como meio de contraste: série de casos

Carbon dioxide use as contrast for vena cava filter implantation: case series

Matheus Pessanha de Rezende¹, Bernardo Massière², Arno von Ristow³, Alberto Vescovi⁴, Alexandre A. Duarte¹, Daniel A. Drummond¹, Leonardo Stambovsky¹, Antonio Luiz de Medina⁵

Resumo

Objetivo: Avaliar o resultado do implante de filtro em veia cava inferior empregando angiografia digital por subtração com dioxide de carbono (CO₂) como meio de contraste.

Métodos: No período de abril de 2010 a fevereiro de 2011, sete pacientes foram submetidos ao implante de filtro na veia cava inferior, utilizando-se CO₂ como meio de contraste em subtração digital. Os pacientes apresentaram como critério de inclusão trombose venosa profunda no setor ilíaco-femoral e contraindicação à anticoagulação.

Resultados: Foi obtido sucesso técnico em todos os casos, com adequada visualização da veia cava e veias renais, não havendo complicações relacionadas ao uso do CO, ou ao procedimento.

Conclusão: O implante de filtro de veia cava utilizando o CO₂ como meio de contraste é segura e efetiva em pacientes portadores de alergia ao contraste iodado ou com insuficiência renal não dialítica.

Palavras-chave: angiografia; dióxido de carbono; trombose venosa.

Abstract

Objective: To assess the use of digital subtraction with carbon dioxide (CO₂) for vena cava filter implant.

Methods: From April 2010 to February 2011, seven patients underwent inferior vena cava filter placement with digital subtraction angiography with the use of CO₃ as contrast media. All patients had iliac and femoral deep venous thrombosis and contraindications for anticoagulation.

Results: Technical success was achieved in all cases. Inferior vena cava e renal veins were identified in all cases. There were no evidences of complications related to the use of CO₂ during or after the procedure.

Conclusion: The placement of inferior vena cava filter with CO_2 and digital subtraction angiography is safe and effective with good results in patients with renal insufficiency and allergy to iodine.

Keywords: angiography; carbon dioxide; venous thrombosis.

Introdução

A embolia pulmonar constitui um aparente paradoxo da medicina moderna – à medida que ocorre o progresso médico, maior o número de situações que predispõem ao tromboembolismo. No entanto, diversos avanços tecnológicos favoreceram o diagnóstico e o tratamento. O implante de filtros de veia cava é uma opção terapêutica

habitualmente realizado empregando-se iodo como meio de contraste. No entanto, alguns pacientes podem evoluir com nefropatia induzida por contraste, sendo ela a maior causa de insuficiência renal em pacientes hospitalizados^{1,2}.

O dióxido de carbono (CO₂) foi usado como meio de contraste na década de 1950 para o diagnóstico de derrame pericárdico. Com o advento da angiografia por subtração digital (DSA), em 1980, a angiografia com CO₂ tornou-se

Trabalho realizado no Departamento de Cirurgia Vascular e Endovascular do Centervasc-Rio – Rio de Janeiro (RJ), Brasil.

¹ Médico. Pós-graduando em Cirurgia Vascular e Endovascular na Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) – Rio de Janeiro (RJ), Brasil. Estagiário do Centervasc-Rio – Rio de Janeiro (RJ), Brasil.

² Cirurgião vascular. Diretor do Centervasc-Rio; Brasil. Professor Instrutor do curso de Pós-graduação em Cirurgia Vascular da PUC-Rio – Rio de Janeiro (RJ), Brasil.

³ Cirurgião vascular. Diretor do Centervasc-Rio; Brasil. Professor Associado do curso de Pós-graduação em Cirurgia Vascular da PUC-Rio – Rio de Janeiro (RJ), Brasil.

⁴ Cirurgião vascular. Médico associado do Centervasc-Rio; Brasil. Professor Instrutor do Curso de Pós-graduação em Cirurgia Vascular da PUC-Rio – Rio de Janeiro (RJ), Brasil.

⁵ Cirurgião vascular. Professor Titular do curso de Pós-graduação em Cirurgia Vascular da PUC-Rio – Rio de Janeiro (RJ), Brasil.

uma ferramenta útil para o diagnóstico, especialmente em pacientes portadores de alergia ao contraste iodado ou portadores de insuficiência renal em tratamento conservador.

A angiografia com ${\rm CO_2}$ pode ser empregada para medida precisa do diâmetro da veia cava, avaliação das características anatômicas, demonstração de trombos não oclusivos, estenoses ou até oclusões. Pode ainda orientar intervenções, como o implante de filtro de veia cava ou a recanalização da veia cava $^{3-5}$.

O objetivo deste estudo foi relatar uma série de sete pacientes submetidos ao implante de filtros na veia cava inferior utilizando CO₂ como meio de contraste.

Material e métodos

Foi realizado estudo em um único centro, durante o período de abril de 2010 a fevereiro de 2011, sendo admitidos, no estudo, pacientes portadores de trombose venosa profunda acometendo o setor ilíaco-femoral, portadores de contraindicação à anticoagulação e ao emprego de contraste iodado.

Os procedimentos foram realizados no centro cirúrgico e os pacientes foram submetidos à anestesia local e punção da veia femoral comum pela técnica de Seldinger. Os sistemas de injeção foram montados utilizando-se seringa de 60 mL com *Luer Lock*, conectada à torneira de três vias, que por sua vez tinha uma via conectada a um tubo de látex ligado ao insuflador empregado em cirurgia videolaparoscópica (Electronicendoflator264305 20, Karl Storz Endoskope, Tuttlingen, Alemanha). Antes de usar o sistema para a injeção de CO₂, deve-se aspirar o gás e purgar no ambiente o conteúdo da seringa por três vezes, para evitar a contaminação com ar. Posteriormente, a via restante é conectada à via lateral da bainha que compõe o sistema do filtro (Figura 1). Em todos os casos, foi implantado filtro Vena Tech LP® (BBraun, Melsungen, Alemanha).

O procedimento foi iniciado com cavografia pré-implante com injeção de 60 mL de CO_2 para estudo da veia cava, sendo determinada a morfologia da veia cava inferior e localização dos óstios das veias renais (Figura 2). Em seguida, o filtro foi implantado seguindo as instruções para uso publicadas pelo fabricante. Cavografia de controle foi realizada após o implante com injeção de 60 mL de CO_2 (Figura 3). O limite de três minutos entre as injeções de CO_2 foi sempre respeitado³.

Resultados

No período de abril de 2010 a fevereiro de 2011, 45 pacientes foram submetidos ao implante de filtro na veia

cava inferior. Sete pacientes apresentavam contraindicação ao emprego de contraste iodado e foram submetidos ao implante de filtro de veia cava inferior, com ${\rm CO_2}$ como meio de contraste.

As características da população estudada estão listadas na Tabela 1. Todos os pacientes apresentavam trombose venosa profunda dos membros inferiores no setor ilíacofemoral e contraindicação à anticoagulação.

Ao analisarmos as contraindicações ao emprego do contraste iodado, observamos que quatro pacientes possuíam insuficiência renal não dialítica e três pacientes, alergia

Figura 1. Sistema utilizado para injeção de dióxido de carbono (mangueira, torneira de três vias e seringa de 60 mL).

Figura 2. Cavografia inferior com dióxido de carbono.

Figura 3. Cavografia inferior com dióxido de carbono evidenciando posicionamento adequado do filtro de veia cava.

Tabela 1. Grupo de pacientes submetidos ao implante de filtro de veia cava com utilização de dióxido de carbono (CO₃).

			L	
Paciente	Idade	Sexo	Contraindicação à anticoagulação	Contraindicação ao uso de CO ₂
DF	86	F	hemorragia digestiva	IRCND
ET	71	F	hemorragia digestiva	alergia
RS	83	F	hemorragia digestiva	IRCND
MB	77	F	hemorragia digestiva	IRCND
HS	68	M	Hematúria maciça	alergia
SC	52	F	politraumatismo	alergia
DP	78	F	hemorragia digestiva	IRCND

M – masculino; F – feminino; IRCND – insuficiência renal crônica não-dialítica.

ao iodo. Em média, 120 ml de ${\rm CO_2}$ foram injetados em cada implante.

Foi obtido sucesso técnico em todos os casos e não foram evidenciadas complicações relacionadas ao procedimento ou ao uso de ${\rm CO_2}$ no acompanhamento pósoperatório.

Discussão

Existem evidências que sugerem que os efeitos nefrotóxicos do contraste iodado sobre o parênquima renal não são transitórios, mas sim permanentes e cumulativos^{3,6,7}. Pacientes portadores de insuficiência renal em tratamento conservador, ou alergia ao contraste iodado, são beneficiados com o implante de filtro de veia cava utilizando meios de contraste alternativos ou não os utilizando⁴⁻⁷. Além do CO₂, é possível implantar filtros de veia cava utilizando gadolíneo ou através de técnica guiada por ultrassom que prescinde o emprego de contrastes⁸. Alguns autores relatam o emprego do gadolíneo como meio de contraste alternativo ao iodo. No entanto, quando comparado ao CO₂ também apresenta densidade radiográfica menor que o contraste iodado e seu emprego está associado ao desenvolvimento de fibrose nefrogênica sistêmica em pacientes portadores de insuficiência renal^{9,10}.

O CO₂ é de baixo custo e disponível na maioria dos centros cirúrgicos. Para seu uso é necessário apenas um cilindro com CO₂puro, insuflador videolaparoscópico e mangueira estéril para conectar o insuflador à seringa injetora.

Cuidados devem ser adotados para evitar a contaminação com o ar ambiente. O CO_2 é um gás incolor e inodoro e não pode ser visualmente distinguido do ar. A aplicação incorreta pode resultar na contaminação com ar, o que pode causar embolia gasosa¹¹. Aconselha-se purgar a seringa injetora por três vezes, ou seja, a mesma deve ser preenchida com CO_2 e esvaziada por três vezes para que somente esse permaneça no sistema.

O volume de CO_2 injetado e o intervalo entre as injeções devem ser respeitados, principalmente se o paciente apresentar dor ou hipotensão. Em nossa rotina, administramos as injeções com intervalos mínimos de três minutos. O CO_2 é cerca de 20 vezes mais solúvel que o oxigênio. Quando injetado em um vaso sanguíneo, bolhas de CO_2 dissolvemse completamente dentro de dois a três minutos. Nos procedimentos de pacientes portadores de doença pulmonar obstrutiva crônica, o volume por injeção deve ser reduzido e o intervalo entre injeções deve ser aumentado^{4,5,11}.

O CO₂ é eliminado pelos pulmões em uma única passagem. No entanto, as bolhas injetadas no sistema venoso podem acessar o sistema arterial através de forame oval patente ou defeitos septais intracardíacos^{3,4}.Não existem contraindicações absolutas ao uso do CO₂. Entretanto, é prudente evitar seu uso na aorta torácica devido ao risco de embolia gasosa espinhal, coronariana e carotídea^{4,5}.

Por apresentar menor densidade radiográfica do que o contraste iodado, a imagem gerada é de qualidade inferior. O uso da subtração digital permite a melhora da qualidade. Em alguns casos, podem ser necessárias várias injeções de CO₂, o que aumenta o tempo de exposição à radiação para o operador e para o paciente.

Conclusão

A utilização do CO₂ como meio de contraste para o implante de filtros de veia cava é uma opção que apresenta

resultados satisfatórios em pacientes portadores de alergia ao contraste iodado ou insuficiência renal não dialítica.

Referências

- Nash K, Hafeez A, Hou S. Hospital-aquired renal insuficiency. Am J Kidney Dis. 2002;39(5):930-6.
- 2. Solomon R. Contrast-medium-induced acute renal failure. Kidney Int. 1998;53(1):230-42.
- Hawkins IF, Caridi JG. Carbon dioxide (CO₂) digital subtraction angiography: 26-year experience at the University of Florida. Eur Radiol. 1998;8(3):391-402.
- 4. Baiocchi MTP, Menezes FH, Luccas GC. Angiografia com gás dióxido de carbono. Rev Col Bras Cir. 1998;25(6):435-6.
- Cho JK, Hawkins Jr IF. Carbon dioxide angiography. Medscape reference: drugs, diseases and procedures [internet]. [cited 2011 Oct 28]. Available from: http://emedicine.medscape.com/ article/423121-overview#showall
- Wong GTC, Irwin MG. Contrast-induced nephropathy. Br J Anaesth. 2007;99(4):474-83.
- ten Dam MA, Wetzels JF. Toxicity of contrast media: an update. Neth J Med. 2008;66(10):416-22.
- Neser RA, Capasso Filho M, Homa CMO. Implante de filtro de veia cava inferior guiado por ultra-som: relato de dois casos. J Vasc Bras. 2006;5(1):71-3.

- Kaufman JA, Geller SC, Bazari H, et al. Gadolinium-based contrast agents as an alternative at vena cavography in patients with renal insufficiency – early experience. Radiology. 1999;212(1):280-4.
- Girardi M, Kay J, Elston DM, et al. Nephrogenic systemic fibrosis: Clinicopathological definition and workup recommendations. J Am Acad Dermatol. 2011.
- Cho DR, Cho KJ, Hawkins IF. Potential air contamination during CO₂ angiography using a hand-held syringe: theoretical considerations and gas chromatography. Cardiovasc Intervent Radiol. 2006;29(4):637-41.

Correspondência

Bernardo Massière

Departamento de Cirurgia Vascular e Endovascular – Centervasc-Rio Rua Sorocaba, 464 – 1º andar CEP 22271-110 – Rio de Janeiro (RJ), Brasil E-mail: bmassiere@yahoo.com.br

*Todos os autores leram e aprovaram a versão final submetida ao J Vasc Bras.

Contribuições dos autores

Concepção e desenho do estudo: BM, AVR
Análise e interpretação dos dados: MPR, BM
Coleta de dados: MPR, AAD, DAD, LS
Redação do artigo: MPR, BM
Revisão crítica do texto: AVR, AV, ALM
Aprovação final do artigo*: BM, AVR, MPR, AAD, DAD, LS, AV, ALM
Análise estatística: AV, MPR
Responsabilidade geral pelo estudo: BM