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In this paper a direct boundary element hypersingular formulation for three-dimensional
potential problems is presented. It is shown that the integrals which arise in this
Jformulation are Cauchy principal value integrals, i.e., divergent terms of the finite part
integrals cancel one another. Since in the present formulation the collocation points are
placed within boundary elements, free terms are computed by simple expressions. The
resulting integrals are one-dimensional and regular, therefore can be evaluated by
Gaussian quadrature. For the numerical implementation, both linear and quadratic
isoparametric triangular and quadrangular elements were used. Numerical results are
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finite part integral

Introduction

Hypersingular integrals play an important role in the recent
development of boundary element methods (BEM). Many
hypersingular integral formulations have been proposed and applied
to solve boundary value problems using boundary element
techniques. One can distinguish two main approaches: those which
use the Cauchy Principal Value (CPV) and those which use
formulations in terms of the Finite Part (FP) (see Guiggiani, 1995;
Mantic, 1994; Sladek and Sladek, 1996; Tanaka, Sladek and Sladek,
1994). One of the hypersingular formulations in terms of Cauchy
principal values has been developed by Mansur, Fleury and
Azevedo (1997) for two-dimensional potential problems. This
approach ensures that the singular terms cancel out. The
hypersingular equation is obtained by assuming that the solution is
Holder continuous ruling out collocation points on edges and
corners, so that discontinuous elements have been adopted. The
finite part approach was used, for instance, in papers by Guiggiani
(1995) and Mantic (1994) and required the evaluation of additional
free terms. An alternative approach that results very simple
expressions to calculate the hypersingular integral was proposed by
Kolm and Rokhlin (2001), however this method is restricted to two-
dimensional problems only.

This paper presents a hypersingular formulation for three-
dimensional potential problems using Cauchy principal value
integrals. These CPV integrals are computed by using Hadamard's
FP, following the one-dimensional technique developed by Brandao
(1987). The existence of Cauchy's principal value integrals is
explained. Collocation points are placed inside the boundary
elements so that free terms can be computed through simple
expressions. The resulting integrals are one-dimensional and regular
and can be evaluated by Gaussian quadrature. In the numerical
implementation, triangular and quadrangular linear or quadratic
boundary elements have been used. We compare results of
numerical implementation of our formulation and BEM formulation
based on the Classical Boundary Integral Equation (we call it
“classical formulation”).
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presented to show the efficacy of the proposed hypersingular formulation.
Keywords: Boundary element method, hypersingular formulation, cauchy principal value,

Nomenclature

n(x) = exterior normal to the boundary
P, (x) =normal derivative of the potential function

p"(x,€) =normal derivative of the fundamental solution
u(x) = potential function
u” (x,&) = fundamental solution

X = point of the boundary
B, (&) =small ball of radius & centered at the point &

C.

; = coefficient of the Laurent series, i = 0,1,2,...

E =number of the boundary elements

M ¢ =number of geometrical nodes of element T,
N = total number of functional nodes

N, =number of Gauss point

Greek Symbols

V. = unit vector

X
& = source point (functional node)
T; = orthogonal direction, i =1,2
oy (11,M,) = interpolation functions
v ,,(M1,n,) = shape functions

I', = boundary element

I'; =boundary element where the source point is located

Hypersingular Boundary Integral Equation

The solution of the boundary value problem for Laplace’s

equation V2u=0 in Q cIR® is considered here. The numerical
solution of this problem can be obtained by using the Classical
Boundary Integral Equation (CBIE), see Brebbia, Telles and Wrobel
(1984):

(&) + [ py(&,0u(x)dly = [u”(&,x)p, (x)dl,. (1)
r r
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Here xeI', T is the boundary of Q, &€ IR*\T s the

source point,

i geq,
=0 it cemr@ur)

u(x) is the potential or density function, n(x) is the exterior normal to
the boundary and p,, (x) = Vu-n(x) is the normal derivative. The

fundamental solution " of Eq. (1) and its normal derivative p” are
given by

e
" (é’x)_477: 7’
Pr(Ex) =2 (),
T

where » = | x - &| and v, =V r = (0r/0x,0r/0x,,0r/dx;) is a
unit vector.

The hypersingular formulation arises by taking the directional
derivative of Eq. (1), with respect to the source point & Note that in
three-dimensional integral equations, strong singularities and
hypersingularities exist whenever the source point & is placed on
the boundary.

When the source point is situated inside the domain Q, functions

u'(,x) and p*(&,x) Thus, Eq. (1) can be

differentiated along any direction @ yielding the following boundary
integral equation:

are regular.

Po &)+ [ PpoE ()T, = [uly(§,x)p, ()dTy . (2)
r r

If the source point & is located on I', T augmented by a small
ball B, (&) centered at & with radius € (Fig. 1). The integrals are

evaluated now along a new boundary consisting of two parts: I'-I",
and T¢, being T'¢ the boundary of B, (&), as shown in Fig. 1.

The boundary integral equation obtained by this procedure is given
by Eq. (3), where in order to restore the original Q domain and I"
boundary, one takes the limit when € — 0 in this equation:

Pu(©)+ lim 1P & 0u(x) = (€, x) p, ()T
I'-T,

+ [[Pno(EXux) —uly(E )P, ())Tx, =0, (3)
Te

where

(&, 0= >V -a©),
(Vx ) w(é))(vx

“n(x)) = (@(S) - n(x)) '

P:,w(gax)=_ 3

4y
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Figure 1. Domain augmented by a hemisphere of radius € centered at &.

The limit indicated in Eq. (3) exists in a neighborhood of &

whenever u € Cl’a, 0<a<l,ie.:

u(x) = (@) +u g (E)x; &) +0(x—E|H%),
up(¥)=uy(@)+0(x-£1%), )

for k=1,2,3; & — x. The limit of the second integral in Eq. (3) can
be considered by parts:

1= lim FI-pZ,m(é,x)u(x)dFe

and

u

1. =lim [u}, (& x)p,(x)dle .
E—)OFE

Taking into account that on boundary Te:

ve = n),
Wy = > (n(x) - @(§)),
% 2

Pro = " (n(x)- @(©)),

and wusing Eq. (4) and considering that on T'¢:

ny(x)=(xy —&;)/e one obtains:

I. j (ro)- “’@)u@dr + j LGk “@)(qu@'n(X))dl: €fs

o sﬁ{)
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Therefore, Eq.(3) can be written as:

PO~ hw{ JRS ""’ ) eyt + J "") N ) ol

= lim | [u,w(&x)pn(x)—p:,w@,x)u(x)]drx. )
£ r-r,

The limit of the second integral on the Lh.s. of equation (5) is

as shown in Appendix Al. Therefore, for

et o L1, @)
(&) =n():

—pn@ lw f - ”@)u(é)dfsdgg [ &P 0= Bl EX MO,
e

(6)

If the potential field is constant in the augmented domain

QuUQ,, u(x)=u() and p,=0, thus in Eq. (6):
I () ) n(c'f)) @ =tim | ) ;«é))(vx ),
54)277: g EA)F—FS 4

Therefore, the equation for the normal derivative in €T, is
obtained in the CPV form, (see Fig. 2):

—pn(é) CPVI{M 0 (G 0)Py (1) = Py (. 0)[u(x) ~u(@)]}dl ., (7)

where
Wy = (v, ().
’ arr?
i o W mONvy 1) - (1) n(x)
w 477:r3

Figure 2. Domain of CPV integrations.

The integral equation for boundary derivatives (when £€ T') in
the direction of a unit vector 7; can be obtained similarly:
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2 pe (€)= CPY [l (€00, (9= P, (E0)u(0) ~u(@I},,
I

®)
where
uy, = o v, -7,(9),
o3 @)y n() — @ () - n(x)
" an '

The integral equations (7) and (8), obtained here in CPV terms,
can also be calculated, following Brandao (1987), as FP integrals,
by using Taylor expansion and polar coordinates, as shown in the
Section 3. In addition to the normal derivative, two tangent
derivatives in two arbitrary orthogonal directions 7; (i=1,2) can

be calculated in order to define completely the gradient at any
boundary point.

Existence of the Cauchy's Principal Value

The Holder continuity condition, Eq. (4), is necessary for the
existence of CPV. If the integral with hypersingular kernel exists in
the CPV sense, this integral exists as a sum of finite parts. The
developments to be performed in what follows require two
successive coordinates changes; the first from cartesian to natural
coordinates and the second from natural to polar coordinates:

h= Jpnn«f X)) |G ldmdny = [F(p,0)dT,q, (9)
T,

with
Fip.0) =229 11O o), (10)
p P
5= l Pun(&x)| G| dnydn, =rj [(P.0)dTpe ., (11
with
f(p,6)= fz“ f‘(9)+0<1) (12)
g= £ ',y (&, X)PM1,M2) | G| dnydn, =Fj g(p,0)dTyp . (13)
where
2(p,0)= glf) +oq). (14)

Expressions (10), (12) and (14) can be used to calculate CPV in
terms of finite parts. The existence of CPV in Eq. (7) and taking
into account Egs. (7), (9) and (11) yield:

2
lim [In|&|[f1(0)~F(©)1d0 =0 (15)
Foid 0
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and

2
lim J' lw[m:o_

16
€0 ) € B6) (16)

The results above can be easily checked since F), = %f f> and

A=3[o fi+3]

4nd’
f

(13), one has:

q)lfJ, see Appendix A3. Likewise, for Eq.

2
lim [In|e|g(0)d6 =0. 17)
-0 0

This is due to the presence, in gy, of the inner products of

orthogonal vectors, (see Section 4.1). Therefore, with (15), (16) and
an

%pn (&) = CPV [’ (E.5) p (X) = Pl (€ 0)[u(x) — u(E)]1Ts
r

holds, as well as

CPV [{u},(£.)p, (X) = pp (&, 0)u(x) —u(E)]}dT,
I

i{ui(é,xm(x)—pZ,n@,x)[u(x)—u(é)]}drx (18)

In formulations in which p™ is not multiplied by [u(x)—u(&)]
one must not to ignore free terms. In Eq. (6), for instance, the
integral on the r.h.s. does not exist in the CPV sense but its finite
part can be computed. The left hand side of Eq. (6) can be written as
a Laurent series as
&+C—;2+...+Clr+czr2 +o

r 7

lim [ E X)) = P E T, =G +
& L

19

when 7 —> O ; the terms containing Cj,C,,... vanish and one is left
with C, (the finite part) plus terms which tend to infinity with

growing orders of singularity. Eq. (19) has no limit; thus

Spa(@)=lim—— | @) 18), ¢4,
&

20
e—0 21 T 20)

has no limit either, but it has the same finite part and same singular
terms coefficients C;,C,,.... The lack of analysis of the existence of

this limit is one of the reasons for errors when computing the free
terms in earlier formulations (Guiggiani et al., 1992). The
formulation presented here, Eq. (7), includes all free terms without
leaving out any terms.

If the boundary is not smooth when the source point is at a
corner, additional free term arises from the discontinuity of the
normal vector at the collocation point on the boundary. The detailed
analysis and evaluation of the free terms in this case is given in
Mantic and Paris (1995).

Therefore, a general formulation (7), for smooth or not smooth
boundaries, does not require the computation of other free terms;
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these are included in the r.h.s. of Eq. (7) except the p,(§)
coefficient (1.h.s) that will depend on the interval angle at &.

o

1
n, b i
-1 1 O
—- ] :
-1
3 ih

Figure 3. Quadrangular and triangular parametric elements.
Numerical Implementation

E
The boundary I is subdivided into £ elements, i.e., I' = EF .

e=l1
in order to get an approximate solution. The boundary geometry is
discretized by triangular or quadrangular elements as shown in Fig.
3. The global Cartesian coordinates x;,x,,x; at any point in an

element I', are expressed in terms of shape functions vy, (11,1,) .,
is defined by

interpolation functions ¢ »(1;,,) which can be taken as constant,

The functional variation of wu(x) and p,(x)

linear or quadratic. Thus:

u axk M au/m
X = Z‘I/mxk,,, > I X o, ke
m=1 Ny =1 9N

Ve Ve
u@®) =Y ¢rur, py(X)=20r(py)s
f=1 /=
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where M is the number of geometrical nodes of element [,
N¢ is the number of functional nodes of element I,, £=1,2,3 and

[=1,2. Equation (7) can be separated into a regular and a singular
part. Let I'; be the singular element where the source point is
located. Considering the smooth boundary and denoting p, (&;) by
(py); and wu(&;) by u; one has

N
-05(p7); = ZEM ZZgApn>f+2h‘;u? (7 +2v) Zg,?(p,?)f
e 4 e;l/:l =
ero eto

with the following influence coefficients:

hlj‘ = J.p:,n(p;(nl’UZ) ‘ G | dnldrh >
T,

e

8if = J.”,*n(l);(m,’lz”G | dnydn, ,
L,

st = [pnn|Gldndn,,
r

where f =1..N° is the number of the functional nodes of u and
p, on the element T, . The total number of functional nodes is N

E
(N = ZN ). Thus these coefficients are accumulated in the H i
e=1 ’
and G; J matrices, for N functionals nodes, as indicated below:

N .
_0-5(pn)1 Z(H u Sléyu])_E%Gi,j(pl1)j s
Jj=
or
N N
Y Hiju;=3Gi (P @n
J=1 J=1
A N n .~ NE
H;;=H;;~S5;, G;;=G;;~055;, Si=3sf,
e=1
where 1) is the Kronecker's delta. In  matrix

i.j>
form: [H]{U} = [G)P,}, where [H] and [G]
symmetric matrices of order N.

are full non-

Singular Integrals

The influence coefficients in the elements I',, e# o can be

evaluated using Gaussian quadrature. To determine the influence
coefficients containing singularities (element I'; ), one simply has
to write the original integral as simple integrals by using directly
Taylor expansion around the singular point &'=&(1;,1m,) in polar
coordinates, as described in Appendix A3 (see Huacasi, 1999;
Guiggiani et al,, 1992 and Mantic, 1994). Following Brandao
(1987), the one-dimensional CPV integrals are simply computed as
the sum of FP integrals, as shown in Appendix A2, (see Hadamard,
1923;  Branddo, 1987 and Huacasi, 1999), thus avoiding
subtractions and additions usually adopted to separate singular and

368 / Vol. XXV, No. 4, October-December 2003
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regular integral terms as can be seen in Guiggiani et al., 1992;
Karami and Derakhshan, 1999.
If quadrilateral plane elements are used, it is convenient to

subdivide the singular element into triangles and, following Brandao
(1987), the coefficient h{fr becomes a one-dimensional regular

integrals which can be evaluated using Gaussian quadrature over the
four triangles, i.e:

4
Z{E[Fl(ennp(e)

A=1|g=ll

Fy(0) |97 -0i
50) }—2 wg r, (22)

where N g

expression (22) below holds, being worthwhile noting that
Brandao's approach has been used in conjunction with some
developments presented by Guiggiani et al. (1992) to transform
natural to polar coordinates, that is:

is the number of Gauss points. For curved elements,

4 | N 0,-06.
= 2 Eg F1(9)ln p( ) Fz(@) 7(9) 1 S 4 wég ,
A=l | g=1 B©®) B? (9) (9) 2
(23)
0,-6; 0,6, .~ . . :
where 0 = 5 0, + 5. P s defined in Appendix A2 and

F,(0), F5(0),7(0), B(6) in Appendix A3. Similarly for S? , one

has:

£

N,
{ {ﬂ(Q)l np()-

M-P

)

B
I

1| g=1

Lo wg’} 9

and

4 | N, _n
J ) }/(6) 1 ef 6! g
= 0 _J v )
AZILZI{A() ‘ﬁ@‘ f()[ R0 p(e)ﬂ 2 “’9}

(25)

Polar coordinates are used in g,‘f’ to evaluate it directly; in this
of the

transformation, is O (p -1

case, the order singularity, after the coordinate

) . Alternatively, g;; can be calculated

also by:
4
pO)
= 0)In g, 26
Azl{z @O ﬁ(ﬂ)‘ 2 “""} 20
where
(o) - 200
an4’

Therefore, in the three-dimensional boundary element
formulation presented here, all singular boundary integrals can be
evaluated as one-dimensional Riemann integrals.
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Validation

In order to show the efficacy of the proposed hypersingular
formulation two examples are considered here. The functional nodes
(source points &) are always located inside the element. As the
problems are symmetric, only a quarter or one-half of the domain
was discretized. The full domain is taken into consideration by using
appropriate reflection of the symmetric elements. To solve the
resulting system of linear equations the Gauss method is used.

Example 1. The solution of Laplace’s equation in a hollow
cylinder with length / = 50 wnits is analyzed now, where the
potential on the inner surface is # = 100 and on the outer surfaces is
u = 0; on upper lateral surfaces p, is considered and x;x; is a

symmetry plane, the boundary is discretized using quadrilateral
isoparametric quadratic boundary elements. The results for
hypersingular and classical formulation are given in Table 1.

1=50

Figure 4. Example 1. Discretization.

Table 1. Normal derivative of potential calculated by classical and
hypersingular formulations using quadratic isoparametric elements.

1=22.9; r=80 [=22.9; r=30
0 Normal Derivative Normal Derivative
Classical | Hypersingular | Classical | Hypersingular
85° 1.278122 1.280202 3.41-7681 -3.454093
75° 1.279165 1.288170 3.42-3176 -3.464768
65° 1.278122 1.280202 3.41-7681 -3.454093
55° 1.278122 1.280202 3.41_7681 -3.454093
45° 1.279165 1.288170 3.42-3176 -3.464768
35° 1.278122 1.280202 3.41-7681 -3.454093
25° 1.278122 1.280202 3.41_7681 -3.454093
15° 1.279165 1.288170 3.42-3176 -3.464768
5° 1.278122 1.280202 3.41-7681 -3.454093

J. of the Braz. Soc. of Mech. Sci. & Eng.

Copyright © 2003 by ABCM

Example 2. In this example, Laplace’s equation is solved in a
sphere with a cavity is analyzed. A horizontal symmetry plane has
been used so that only half of the boundary had to be discretized.
The boundary conditions are: the potential # = 10 and u = 5 on the
interior and exterior surfaces, respectively. The solution obtained is
shown in Table 2.

Figure 5. Example 2. Discretization.
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Table 2. Normal derivative of the potential along the intersecting planes: x3 = -0.25 with the sphere r=1, and x3 = -0.5 with the sphere R=2, calculated

by classical and hypersingular formulations using quadratic isoparametric elements.

x3=-0.25, radius r=1 x3=-0.5, radius R=2

Coordinates Normal Derivative Coordinates Normal Derivative

X; X, Classical Hypersingular X; X, Classical Hypersingular
0.770 -0.586 -10.02226 -10.09819 1.539 1.172 2.478522 2.478896
0.959 -0.130 -9.930579 -9.999921 1.918 0.259 2.501745 2.505482
0.895 -0.370 -10.00043 -10.10981 1.789  0.741 2.481408 2.473390
0.130 -0.959 -9.930579 -9.999921 0.259 1918 2.501745 2.505482
0.586 -0.770 -10.02226 -10.09819 1.172 1.539 2.478522 2.478896
0.370 -0.895 -10.00043 -10.10981 0.741 1.789 2.481408 2.473390
-0.586 -0.770 -10.02226 -10.09819 -1.172 1.539 2.478522 2.478896
-0.130 -0.959 -9.930579 -9.999921 -0.259 1918 2.501745 2.505482
-0.370 -0.895 -10.00043 -10.10981 -0.741  1.789 2.481408 2.473390
-0.959 -0.130 -9.930579 -9.999921 -1.918 0.259 2.501745 2.505482
-0.770 -0.586 -10.02226 -10.09819 -1.539  1.172 2.478522 2.478896
-0.895 -0.370 -10.00043 -10.10981 -1.789  0.741 2.481408 2.473390
-0.770  0.586 -10.02226 -10.09819 -1.539 -1.172 2.478522 2.478896
-0.959  0.130 -9.930579 -9.999921 -1.918 -0.259 2.501745 2.505482
-0.895 0.370 -10.00043 -10.10981 -1.789 -0.741 2.481408 2.473390
-0.130  0.959 -9.930579 -9.999921 -0.259 -1.918 2.501745 2.505482
-0.586 0.770 -10.02226 -10.09819 -1.172 -1.539 2.478522 2.478896
-0.370  0.895 -10.00043 -10.10981 -0.741 -1.789 2.481408 2.473390
0.586 0.770 -10.02226 -10.09819 1.172 -1.539 2.478522 2.478896
0.130  0.959 -9.930579 -9.999921 0.259 -1.918 2.501745 2.505482
0.370 0.895 -10.00043 -10.10981 0.741 -1.789 2.481408 2.473390
0.959 0.130 -9.930579 -9.999921 1.918 -0.259 2.501745 2.505482
0.770  0.586 -10.02226 -10.09819 1.539 -1.172 2.478522 2.478896
0.895 0.370 -10.00043 -10.10981 1.789 -0.741 2.481408 2.473390

The tests show good agreements of the results obtained by
implementation of our hypersingular with the classical formulation Appendices

results.

Conclusions

The hypersingular formulation discussed in this paper in terms
of CPV is direct and simple. The choice of collocation points
located inside the boundary elements allows to compute the free
terms through simple expressions. The existence of the Cauchy
principal value is explained by showing that divergent terms of the
finite part integral cancel each other. The one-dimensional
Branddo's technique to calculate the CPV integrals used to solve
three-dimensional problems leads to integrals which are regular one-
dimensional and that can be calculated by Gaussian quadrature. The
numerical solution of the test examples show good agreement with
the classical formulation, validating the proposed formulation and
the technique used to evaluate the CPV integrals.
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Al. The Second Integral on the Lh.s. of Eq. (5)

Let x be any point of I:g, n(x) a unit normal vector,
{1(€),75(&), n(&)} an orthogonal coordinate system at the point

&, where n(€) is normal to I at & . Then, in spherical coordinates,
we have (Fig.1):

x = (esin@cosB, €sinPsin b, € cos @)
and
n(x) =7, (E)sindcos O + T, (&)sin Psin 6 + n(E) cos ¢ .
Thus

(Vah&)-1x))=(V,24) 7 (§) sinpeo§+(Vau) 7,(&) bingsirtd+(V,uE)- nE) od
=py, (&)sindcos + Pr, (&)singsin@ + p, (§)cos¢ .

Taking (&) :=n(€) we have (n(x)-w(&))=(n(x)-n(&))=cose.
Then, changing from orthogonal coordinates to spherical ones, we
get:

_ 2t D)
[ () &NV u(©) - n(x))dTe = [dO | p,(E)cos” psing d .
T 0 0

Te
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Since for any 6, 0 <60 <2, we have lim = % (see Fig. 1),
£—0

then

.3 (x)-n(6) = _1
g%ﬂ!%(vru(é)n()ﬂ)drf zzpn(é) .
Similarly, taking @(§):=7;(§) and w(§):=17,(§) we obtain
as the limit of this integral values 0.5p; (§) and 0.5p, (§)
respectively. Thus
3 () 0@) -
lim FI %(w@m))drg =2 Pu©).

€

A2. CPV Computation

Considering parametric coordinates instead of global Cartesian
coordinates, one has for the CPV integral:

11
h =CPV [ [ ppn¢,1.m2) |G | dmdn,.
-1-1

When the transformation to polar coordinates (p,0) is used,
this integral can be written in FP terms. When a coordinate system
with origin point &'= (é{,éé) (image of & in parametric
transformation) is considered, the following relation holds:

N =& +pcosod
b dnydn, = pdpde

My =& +psind
then
2m p(o)

hy=1lim [ [F(p,0)dpdo, (A2.1)
200 p0)

{3rn;(E)1 Gy ) - G ()}
orp

F(p,0)=pp, 97 |Glp=0(07) = .

4rr

Performing the Taylor expansion of F(p,0) (see Appendix A3)
one has

F(p,0) =

F©O) F(@®
2+ i )+0(1) (A22)
o P

Only the first two terms of the series need to be considered,
since lim of the others vanish.
p—0
Note that there is no need to be restricted to the first two terms
of the Taylor series; in fact, any order of singularity can be dealt
with following the approach presented here. The n-1 first terms of
the Taylor expansion (A2.2) in polar coordinates can be used to

remove singularities of order n-1, whenever ue C"™>% in the

neighborhood of & This idea was used previously by Karami and
Derakhshan (1990) in order to generalize the procedure presented in
Guiggiani et al. (1995).

Now, from (A2.1) and (A2.2) one obtains:
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h$ = lim dpdo.
7 =0 P

2w H(0)
il (ﬂ;9)+Fz(29)
0

0 p.(0)
For plane elements, following Brandao (1987), one can write:

2

h = { {Fl(e)lnp(e) E 2((09))7[19
with
:zf[fl(e)lnﬁ(e) /(6 )}de
0 p(0)

and expressions (21) and (23) are obtained. When curve elements
are used, taking advantage of the results of Guiggiani et al. (1992):

2r ~
= [| RN p(g)‘—F ) ERAC R |7
{{ R T 52@) PO
with
2r A
s o p()‘ 7O 1|
{{m T R ey

A3. Taylor Expansion of the Integrand
When:

F(p,6)=f(0,0),

{31, (E) 1 Gy ) — Gin (§)}p
3

f(0,0)=p,,|Glp=
4rr

and using polar coordinates, the Taylor expansion of each term is:

T :Lél:ﬁ+p(ﬂ_l4i%j+o(p2)’

r A A
:ai cos@+i sinf ,
My 2lp=¢'
9%x 2 92 92x .2
B; = le| cos 9+ Ji | sin90059+—xZ’ Sin 0,
on; |n=§' 2 a’?lafl2|n=5, on; = 2

where 4 and B are the magnitudes of vectors having components 4;

and B; . For the remaining components:

rn=pnAn(]+npAk§k]+O(pn+2),
A
34, B,
o1 A1

s

r3_p3A3 p2A5 0

cosB+ aﬂ
n=g 2

G,
G, =Gy(& )+p Tk
e =Gi(€) {aﬂ]
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sin9:|+o(p2 )=Gyy +pGy, +O(0*)
=g



o, 9% .
o =¢,E)+ —f‘ cosf+—2|  sing +o(p2):(p0f+pq/ +0(p?)>
ony =g on, =g
3 _ 1, 4nm©)
€0k Ge) = G (@) = 37 (B G, + 4G =Gy @) |-Gy @)
T =Gyni (), T, = 4n; (&),
Ty =Gni(§), P =BGy, + 4Gy
1 _7]¢0f 1 3AkBk f 1 T2 f i i
Flp,0)=—— = Tg +—|3-2 Pyl -0 ~To/ |||
(0.0) | A ol A i% Bl 2 ¢ — T30 —Tidf
1 | 34;B; 1 T,
0)=—— L+—|3—=%P-T5 ||,
fl( ) 47'[|: AS 1 A3[ Az 3
) 1 T
0)=——,
f2( ) A A3
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