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Improving the Power Consumption in 
Pneumatic Conveying Systems by 
Adaptive Control of the Flow Regime 
The pneumatic conveying of solids in a gas stream is a recurrent process in petrochemical 
industries. However, due to practical limitations the majority of existing systems have 
capacities ranging from 1 to 400 tones per hour over distances less than 1000 m, mainly 
because of a high power consumption per transported unit mass. More specifically, to 
avoid the formation of dense structures such as dunes and plugs, which, depending on the 
characteristics of the material and on the availability of a pressure head from the carrier 
phase may cause a violent pressure surge or a possible line blockage, the system is 
preferably operated at homogeneous dispersed flow. To sustain such a flow regime high 
velocities are needed and, accounting for the resulting higher pressure drops, higher 
power consumption is demanded. An optimized pneumatic conveying system can be 
conceived with the help of adaptive control techniques. In the context described above, 
lower transport velocities are allowed if the formation of aggregates that precedes the 
transition to dense phase flow regimes are automatically detected and destroyed, thus, 
artificially stabilizing the light phase homogeneous flow regime. This work assesses the 
reduction in the necessary power that the application of such adaptive control technique 
could produce. Experimental results are presented for a 45 mm i.d. pneumatic conveying 
system used to transport Setaria Italica seeds. The instrumentation used to identify the flow 
regime is constituted of several pressure sensors installed along the transport line. The 
proposed control strategy is based on processing these signals through a neural network 
model to assess the flow condition and to mimic an optimized gain scheduled PID 
algorithm. Preliminary results show that reductions in power consumption can reach 50% 
when compared with classical non controlled transport. 
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Introduction 

The pneumatic conveying of solids in a gas stream is a recurrent 
process in petrochemical industries, mainly because of its flexibility, 
security in the transport of high valued products, ease of 
automation/control and low maintenance costs. The range of 
material that can be pneumatically transported is extensive: powders 
and rocks of up to 50 mm in size to finished manufactured parts 
such as electronic components for instance. However, due to 
practical limitations the majority of existing systems have capacities 
ranging from 1 to 400 tones per hour over distances less than 
1000 m and average particulate size less than 100 mm. Among these 
limitations probably the most important one refers to a high power 
consumption per transported unit mass. More specifically, to avoid 
the formation of dense structures such as dunes and plugs, which, 
depending on the characteristics of the material and on the 
availability of a pressure head from the carrier phase may cause a 
violent pressure surge or a possible line blockage, the system is 
preferably operated at homogeneous dispersed flow. To sustain such 
a flow regime high velocities are needed (15 to 20 m/s for instance) 
and, accounting for the resulting higher pressure drops, higher 
power consumption is demanded. Another important problem 
associated with the increase in the transport velocity is the abrasion 
of the equipment and degradation of the transported particulate.1

From a phenomenological point of view, pneumatic transport 
can be seen as a special application of gas-solid flows which can be 
described with the help of the so called state diagram, i.e. the curves 
of specific pressure drop in function of the gas superficial velocity. 
It is also possible to define a state diagram by plotting mass flow 
ratios in terms of the Froude number, which is a more general and 
convenient representation of the phenomenon. Either way, gas-solid 
flow state diagrams indicate that the transition from dispersed (or 
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light) type flows to dense phase flows is associated to a minimum in 
the specific pressure drop, which would be an ideal operating 
condition if the above mentioned problems could be avoided.  

In more specific words, the problem of operating the transport 
line near transition velocities lies on the hysteretic behavior of the 
transition. This can be better understood through a test on a 
horizontal line where the velocity of the carrier phase is slowly 
varied between zero and a maximum value, above which the flow 
regime is dispersed and does not change. The different stages of this 
experiment are indicated in figure 1, where the flowing particles 
velocity Up is plotted against the gas  velocity Ug. In stage (a) Ug is 
not sufficiently high to levitate the particles so Up = 0 until a critical 
value is reached (Ug = U1). After this, in stage (b), Ug > U1, the 
particles are entrained by the gas flow and fully dispersed regime is 
asymptotically reached (Up  Ug). From a maximum gas velocity 
value, Ug is decreased in stage (c) of the experiment and different 
flow  regimes  may  appear, such as stratified flow, intermittent flow  

Figure 1. Schematic representation of the different flow regimes in 
horizontal gas-solid flow when varying the carrier velocity. 
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and dune flow, until another critical value Ug = U2 is reached. At 
this point particles are no longer sustained in the core, some of them 
will segregate and stop and others will roll and bounce over the 
fixed particle layer at Up = U3. Operating the transport line near the 
light-dense transition means setting Ug to lay between U1 and U2
and handling a strong hysteretic behavior of Up as well as of the 
pressure drop and other relevant macroscopic parameters. Therefore, 
the safe operation within these conditions requires special control 
strategies, which is one of the main objectives of this work.  

This work assesses the reduction in the necessary power that the 
application of such adaptive control technique could produce. 
Experimental results are presented for a 45 mm i.d. pneumatic 
conveying system used to transport Setaria Italica seeds (bird seed). 
The proposed control strategy is based on a neural network model 
responsible for both assessing the flow condition and for 
reproducing an optimized gain scheduled PID algorithm. 
Preliminary results show that reductions in power consumption can 
reach 50% when compared with classical non controlled pneumatic 
transport.

Nomenclature 

D = pipe inner diameter  
Dp = avarege particle diameter 
e = power optimization factor 
E = penalty function 
fi = activation function 
Fr = Froude number 
g = gravitational acceleration  
H = total number of interconnections 
Kd = derivative gain 
Ki = integral gain 
Kp = proportional gain 
mg = gas flow rate 
ms = solids flow rate 
N = nominal operating condition 
O = optimized operating condition 
pi = neural network input 
Pi = static pressures  
qi = desired neural network  output  
ri = neural network output 
T = transition line 
Ug = gas velocity 
Up = particle velocity 
U1, U2, U3 = critical velocities 
wi,j = neural network weigth 
Wadaptive = power consumed with adaptive control 
Wnom = power consumed without adaptive control 
xi = input of the i-th neuron 
yi = output of the i-th neuron 
Greek Symbols 

,  = exponent in Marcus equation
mg = gas flow rate correction
ms = solid flow rate correction
  = mass flow ratio
s = solid density

Neural Network Models 

From a functional point of view a neural network model can be 
defined as a large number of simple interconnected processing units 
used to establish an input/output relationship, and for which most of 
the stored information is associated to the strength of the 
interconnections. A typical processing unit, or neuron as it is called 
in the jargon, produces a scalar output by applying an activation 

function to a biased weighted sum of its inputs. In other terms, if yi
and xi,j represents respectively the output and the inputs of the i-th 
neuron, fi(  ) its activation function, wi,j the corresponding 
weighting coefficients and bi a bias coefficient, the input/output 
relationship is given by 

y = f ( w x + b )ji i i,j i,j i  (1) 

A typical feed-forward multi-layer network is then formed by 
interconnecting several neurons and, consequently, defining a 
formal relationship between an input vector { pi } and an output 
vector { qi }, as depicted in figure 2. 

Figure 2. Schematic representation of a feed-forward neural network with 
3 layers    (input, hidden and output ) and generating 3 output values { qi } 
from 7 input values { pi }. The number of neurons at the input and output 
layers is generally taken to be equal to the number of input and output 
values respectively. 

One of the most important features of a neural network model is 
its ability to store input/output patterns, the so-called associative 
memory, and to produce similar outputs from similar input patterns, 
the projection property. This can be done by properly adjusting the 
weighting coefficients according to a given learning heuristics, such 
as the supervised back-propagation method adopted in this work. In 
more precise terms, consider a learning data set of input/output pairs 
( { pi }n , { qi }n ) , where n = 1,2...N. and also weighting 
coefficients { wi,j }k, in which the subscript k will stands for the 
adjustment cycle (or epochs as it is called). During the adjustment 
process, the application of the inputs { pi }n  will produce outputs 
{ ri, }n,k progressively closer to { qi }n , i.e. the desired ones. The 
process can be formulated as an optimization problem with a 
penalty function defined as 

N 2

i,j k i n i n,k
n=1

1E { w } = { q } - { r }
2

 (2) 

This is clearly a continuous differentiable function of the 
weights { wi,j }k and, thus, a classical gradient descent method can 
be applied to determine the set { wi,j }  which minimizes (2). This is 
the essence of the back-propagation method, although there are 
crucial details regarding the choice of the activation functions and 
the strategy of updating { wi,j }k. A detailed discussion of this can be 
found in Hertz et al. (1991). The performance of a neural network is 
profoundly affected by its internal architecture (the number of 
hidden layers and the number of neurons in each one) and the type 
of interconnections (feed-forward, recursive, winner-take-all, etc.). 
Despite this, there is no general mathematical theory but rather a 
number of empiric rules to be considered when constructing such 
models (Crivelaro et al., 2002).
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Regarding the problem of controlling gas-solid flow regimes, 
somewhat analogous to the problem of recognizing characters from 
a scanned text for which there is a well established knowledge base, 
a modular architecture presents advantages over a fully 
interconnected model (see for instance Cao et al., 1996, or Gader et 
al., 1996). In particular, empirical estimations indicate that the 
learning time on a conventional single processor computer depends 
approximately on H3 (the total number of interconnections to the 
third). Thus, the decomposition of the global network into 
independent modules facilitates the rapid and efficient adjustment of 
the weighting coefficients. It is thus convenient to adopt a model 
based on two independent neural networks, the first one responsible 
for assessing the flow regime by defining proper target and gain 
values for the controller, the second one dedicated to the calculus of 
the flow rate corrections in order to have optimal flow conditions. 
This architecture is depicted in figure 3, in which mg, ms, mg and 

ms  stands for the gas and solids flow rates and their corrections 
respectively, Pi (i = 1,2,...M ) denotes the static pressure measured 
along the transport line, d is the target value and KP, KI and KD are 
the proportional, integral and derivative gains. Before entering in 
further details on how these variables are processed, it is convenient 
to present the proposed control strategy.

Figure 3. Controller internal architecture defined in terms of two 
independent neural network models. 

Gain Scheduled Control Strategy for Pneumatic 
Transport 

The automatic change in the parameterization of a process 
controller is known as gain scheduling. Discretely scheduled PID 
algorithms and linear controllers with a statistical approach to 
schedule its internal parameters correspond to different realizations 
of the same concept. Generally, scheduled control algorithms are 
used as non-linear compensation for processes with known non-
linearities when auxiliary measurements are available that correlate 
well with the system dynamics (Doyle et al., 1998). As it was 
discussed above, this is exactly the case in pneumatic transport 
when operating near the light-dense flow transition and could be 
thus adopted in this work. Alternative strategies, mostly based on 
nonlinear control, although its recent advances, often lead to 
controllers of very complex structures (Knoop and Perez, 1994) and 
often lacking the necessary robustness to be applied in an industrial 
process (Doyle et al., 1989). 

In view of this, the successful use of a scheduled gain control 
strategy in a solids pneumatic conveyor requires additional process 
variables to assess the non-linearities of the system dynamics, i.e. 
the dynamics of the flow regime transition and, also, the possibility 
to adjust optimum non-scheduled PID controllers which are specific 
for different flow regimes. The first condition can be 
straightforwardly fulfilled through the state diagram of the transport 
system, which justifies the choice of the input variables as shown in 
figure 3 (gas and solids mass flow rates and static pressure along the 
transport line). The fulfillment of the second condition was the 
object of a previous research work (Schiavon, 2000), in which 

optimal PID controllers were tuned, i.e. optimum KP, KI and KD
values were determined, around specific operating states of a 45 mm 
internal diameter 3 m long pneumatic transporter, using 0.8 mm 
average diameter sand particles (an analogous situation to the one 
treated in this work). 

Consider then, the generic state diagram shown in figure 4, 
which is very similar to the one  constructed for the test loop used in 
this work and described in details in the following section. The 
dotted line (T) indicates the frontier between dense and light phase 
flow regimes. The continuous inclined lines represent the constant 
solids mass flow rate lines plotted according to the corresponding 
mass flow ratio , defined as 

s

g

m=
m

 (3) 

and to the Froude number Fr defined as 

gU
Fr =

D g  (4) 

where D is pipe internal diameter and g denotes the gravitational 
acceleration. The other two dotted lines, indicated by (O) and (N) in 
figure 4, represent the loci of the specified operating condition with 
and without adaptive control of the flow regime. More exactly, (O) 
represents the optimized operating condition, defined by  setting  Ug
to be approximately  5% higher than the transition velocity, while 
(N) represents the nominal condition determined by imposing Ug to 
be 2 or 3 times higher than the transition velocity (18 m/s for the 
particulate used in this work, according to Marcus et al., 1990). 

Figure 4. Schematic representation of a state diagram for a pneumatic 
transport line in terms of the mass flow ratio  and the Froude number Fr. 

Within this framework, and considering the objective of 
minimizing the power consumption associated to the transport 
process, the variable d quantifies an abstract distance or error 
between the optimum and the actual flow regime and, thus, should 
be kept as closest to zero as possible. The way this should be done is 
implemented through the internal parameterization of the controller, 
which should be scheduled to cope the differences associated with 
the flow regimes. If the operating point lies below the optimum line 
(O), i.e. d > 0 as indicated in figure 4, the flow regime is dispersed 
and smooth corrections are required to bring d back to zero. Usually 
in this flow condition, KD is tuned at relatively high values in order 
to produce an asymptotic trajectory back to (O) to avoid overshoots. 
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If the operating point lies within (O) and (T), that is d < 0 but d  0, 
a fast correction is needed and some overshooting is allowed or even 
desired. To reproduce this behavior KP must be comparatively big 
and KD  0. For the last, if the operation point lies above (T), the 
flow regime is dense and the transport line is possibly blocked. 
Special procedures should be triggered in order to protect the 
equipment and to restart the process again.  

Figure 5. Schematic representation of the pneumatic transport test loop at 
the NETeF – USP. 

The main advantage of using neural network models is that such 
a complex control strategy can be easily implemented by adjusting 
their internal weighting coefficients and bias, according to a training 
rule such as the supervised back-propagation method for instance. 
Another important advantage is that the variable d does not need to 
be explicitly calculated from the input variables. Applying an on-
site calibration technique (Rolnik and Seleghim, 2002) the controller 
can gain knowledge of the loci of the optimum operation points (line 
(O) ), through which d can be reproduced directly from the 
corresponding flow rates and pressures. In other words, the neural 
model will work as a nonlinear fit between the input and  output 
variables. 

The Test Facilities and the Test Grid 

The validation tests were done at the experimental facilities of 
the Thermal and Fluids Engineering Laboratory of the University of 
São Paulo at São Carlos (NETeF-USP). The pneumatic transport 
loop, drawn schematically in figure 5, has a transparent 45 mm inner 
diameter test section, extending horizontally through 12 m and 
vertically through 9 m. Air is supplied by a 60 hp screw compressor 
(1), capable of generating air speeds up to 40 m/s in the transport 
line. The air flow rate is controlled with the help of a servo-valve (2) 
and measured by an orifice plate (3), instrumented with temperature 
and pressure transmitters (differential and absolute). The particulate 
is introduced in the transport line through a venturi feeder (4), which 
receives the particulate from a screw conveyor (5). The solids flow 
rate is controlled by imposing the rotation of  the screw conveyor 
with a frequency converter (6). A cyclone separator (7) is placed at 
the exit of the test section, from where the particulate may be 
returned to a separated storage container (8) for batch operation or, 
alternatively, to a rotary airlock (9) connected to the feeding silo 
(10) for continuous operation. 

The particulate used in the tests was Setaria italica seeds with 
an average diameter DP = 2.5 mm and an approximately density of 
800 kg/m3. Several steady state experiments were done with 
different combinations of gas and solids mass flow rates resulting in 

 ranging from 1.99 to 6.15 and Fr ranging from 18.4 to 29.2. In 
dimensional units this corresponds to mg between 79.6 and 133 
kg/h, and ms between 158 and 820 kg/h. The transition line 
(minimum pressure drop line) agrees extremely well with the 
following correlation proposed by Marcus et al. (1990) 

-= 10 Fr  (5) 

in which the exponents  and  are calculated from the average 
particle diameter (in mm) according to 

P= 1.44 D + 1.96  (6) 

2.5D1.1 P
 (7) 

The test data points and the corresponding transition line are 
plotted in figure 6. 

Figure 6. State diagram and corresponding transition and constant solids 
mass flow rate lines. 

Power Optimization Results 

By controlling the flow regime it is possible to operate near the 
dense-light transition line and obtain a significant reduction in the 
power needed to transport a given solids charge. To be able to 
quantify this, a power optimization factor was defined according to 
the following expression 

nom adaptive

nom

W - W
e =

W  (8) 

in which Wnom and Wadaptive indicate the necessary power 
respectively without and with adaptive control of the flow regime. 
These powers were calculated by assuming isothermal flow 
(RT = constant) and imposing energy balance, that is 

1
g

N

PW = m R T ln
P  (9) 

where P1 is the pressure at the inlet of the test section (1.5 m 
downstream from the solids feeder) , and PN the  pressure at its 
outlet (1.5 m upstream from the cyclone).  

Results concerning the power optimization factor obtained at 
constant solids flow rate are listed in the following table. It is quite 
clear that the application of the proposed flow regime control 
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technique may result in power savings around 50%, for the 
experimental conditions of this work 

Table 1. power optimization results calculated according to (8) and 
obtained at different constant solids mass flow rates. 

ms (kg/s) Wnom (kW) Wadaptive (kW) e (%) 

0.0739 2.63 1.34 48.91 
0.1037 3.15 1.56 50.68 
0.1228 3.23 1.63 49.45 
0.1343 3.06 1.55 49.34 
0.1395 2.99 1.54 48.60 
0.1437 3.12 1.42 54.49 

Conclusions and Perspectives 

A technique for the adaptive control of gas-solids flow regimes 
occurring in pneumatic transport systems was proposed in this work. 
The control algorithm is based on two independent neural models, 
the first one being responsible for assessing the flow regime by 
defining proper target and gain values for the controller, the second 
one mimics an optimized gain scheduled PID loop and is dedicated 
to the calculus of the flow rate corrections in order to have optimal 
flow conditions. This technique allows the operation near the 
minimum pressure drop line in the state diagram and a significant 
reduction in the power consumption for the same solids charge, 
when compared with a non-controlled system operating at fixed 
nominal conditions. This is so because without adaptive control the 
carrier phase velocity must be 2 or 3 times higher than the light to 
dense phase transition to avoid the formation of dense structures 
such as dunes and plugs, which, depending on the characteristics of 
the material and on the availability of a pressure head from the 
carrier phase may cause a violent pressure surge or a possible line 
blockage. Experimental testes performed with Setaria italica seeds 
in a 45 mm i.d. pneumatic conveying line show that the proposed 
control technique is capable of producing power optimization 

factors of up to 50% approximately. Future work should include 
systematic experimental tests, with different types of particulate and 
extended flow rate ranges, in order to assess the applicability of the 
proposed control technique in industrial processes. 
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