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Numerical Model for the Simulation of 
Fixed Wings Aeroelastic Response 
A numerical model for the simulation of fixed wings aeroelastic response is presented. The 
methodology used in the work is to treat the aerodynamics and the structural dynamics 
separately and then couple them in the equations of motion. The dynamic characterization 
of the wing structure is done by the finite element method and the equations of motion are 
written in modal coordinates. The unsteady aerodynamic loads are predicted using the 
vortex lattice method. The exchange of information between the aerodynamic and 
structural meshes is done by the surface splines interpolation scheme, and the equations of 
motion are solved iteratively in the time domain, employing a predictor-corrector method. 
Numerical simulations are performed for a prototype aircraft wing. The aeroelastic 
response is represented by time histories of the modal coordinates for different airspeeds, 
and the flutter occurrence is verified when the time histories diverge (i.e. the amplitudes 
keep growing). Fast Fourier Transforms of these time histories show the coupling of 
frequencies typical of the flutter phenomenon. 
Keywords: Aeroelasticity, flutter, vortex lattice method 
 
 
 

Introduction 1  

Aeroelasticity deals with a class of fluid-structure interaction 
problems where airflows are involved. Aeroelastic problems in 
aircraft have been observed since the earliest days of flight. The 
most dangerous aeroelastic problem is the flutter phenomenon, 
which can be defined as a catastrophic dynamic instability. The 
improvements in aircraft performance and the utilization of lighter 
and consequently more flexible structures increase the susceptibility 
to aeroelastic problems such as flutter. In this context, the 
development of aeroelastic numerical models for utilization in the 
aircraft design phase and the conception of mechanisms to suppress 
the aeroelastic problems have become very important and have 
received special attention from the research community. 

The numerical models for aeroelastic analysis can be divided in 
two vast categories, depending on if they treat the problem in the 
frequency or in the time domain. The solutions based on the 
frequency domain are the classical ones, but are valid only in the 
stability boundary, i.e., can be employed only for the prediction of 
critical conditions for flutter occurrence. In contrast, the solutions 
based on the time domain allow the determination of the structure 
aeroelastic response for any flight conditions, and have the 
additional advantages of allowing the inclusion of non-linear effects 
and the design of control systems for flutter suppression. 

The aim of this work is to present a numerical model for 
aeroelastic analysis in time domain. The methodology is to treat the 
aerodynamics and the structural dynamics separately and then 
couple them in the equations of motion. The dynamic 
characterization of the structure is done by the finite element 
method (Zienkiewics, 1986) and the unsteady aerodynamic loads are 
predicted using the vortex lattice method (Katz and Plotkin, 1991). 
More details about the present model can be found in Benini (2002) 
and similar models were presented by Strganac and Mook (1990) 
and Preidikman and Mook (2000). 

The vortex lattice method is based on potential aerodynamics 
and, as presented in this work, has limited applicability in predicting 
the actual loads on modern aircraft configurations operating at the 
transonic range. However the method has the advantage of a low 
computational effort when compared with modern CFD codes and 
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can be utilized as an effective tool in the design of control systems 
for flutter suppression (Luton and Mook, 1993; Hall et al., 2000). 

Nomenclature 

a = aerodynamic influence coefficient 
G, G  = trasformation coordinates matrices 
I = identity matrix 
K = stiffness matrix 
Km = modal stiffness matrix 
L = aerodynamic loads vector 
m = number of aerodynamic panels 
M = mass matrix 
Mm = modal mass matrix 
n = normal vector 
n = number of modes chosen for the simulation 
N = number of structural degrees of freedom 
p = static pressure 
r = position vector in the Biot-Savart law 
S = panel area 
t = time 
vm = velocity of the wing motion 
vw = velocity induced by the wake 
V = induced velocity (or local velocity in the Bernoulli 

equation) 
V∞ = airspeed 
W = factor for local truncation error calculation 
x, x  = physical displacements 
x  = physical velocities 
x  = physical accelerations 
y  = modal displacements and velocities 
y1 = modal displacements 
y2 = modal velocities 
Greek Symbols 
α = angle of attack 

xδ  = virtual displacements 
∆b = length of vortex ring in the spanwise direction 
∆c = length of vortex ring in the chordwise direction 
∆t = time interval 
φ = potential velocity 
φ  = mode shape 
Φ ,Φ  = modal matrices 
Γ = circulation 
η  = modal displacements 
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η  = modal velocities 
η  = modal accelerations 
ρ = air density 
ω = natural frequency 

2ω  = diagonal matrix containing the squared natural 
frequencies 

Subscripts 
1,2 = refer to the ending points of a vortex segments 
a = refer to the aerodynamic points 
i,j = aerodynamic panel identifiers 
K = refers to a vortex ring 
l = refers to the lower side of the panel 
L = refers to a control point 
r = refers to a particular mode of vibration 
s = refer to the structural points  
TE = trailing edge 
u = refers to the upper side of the panel 
Superscripts 
C = refers to the corrected solution 
P = refers to the predicted solution 
T = transpose of a matrix 

Dynamic and Structural Model 

The wing structural response is assumed to be linear and without 
internal damping. The equation of motion for the structure 
discretized in N degrees of freedom (DOF) is shown in Eq. (1), 
where M  and K  are N x N matrices, representing the mass and 
stiffness properties, and )(tx , )(tx  and ( )t,, xxL  are N x 1 vectors, 
representing the displacements, accelerations and external 
(aerodynamic) forces. It is important to note that the aerodynamic 
damping is provided implicitly by the aerodynamic forces. 

 
 ( ) ( ) ( )ttt ,,xxLKxxM =+ . (1) 

 
The process of discretization is performed using the finite 

element method, and the eingenvalue problem (Eq. 2) provides the 
natural frequencies ωr and the mode shapes rφ . 

 
( ) 0φMK =− rr  2ω . (2) 

 
The mode shapes can be arranged in a matrix according to Eq. 

(3). This matrix is named modal matrix and is used as a coordinate 
transformation matrix, according to Eq. (4), where )(tη  represents 
the structural displacements in a modal domain and can be 
interpreted as a vector of coefficients which determines the 
influence of each mode shape in the physical structural response 
(Meirovitch, 1986). 

 
 [ ]N1 φφφφΦ 32= . (3) 

 

( )ttt r

N

r
rηφΦηx ∑

=

==
1

)()( . (4) 

 
Since the matrix Φ  is constant with time, Eq. (5) can be written 

as 
 

( ) ( )tt ηΦx = . (5) 
 
Substituting Eqs. (4) and (5) in Eq. (1) and pre-multiplying both 

sides by TΦ  (transpose of Φ ) yields Eq. (6), where 
ΦMΦMm   T=  and ΦKΦK m   T=  are named modal mass and 

modal stiffness matrices, respectively. 
 

( ) ( ) ( )ttt T ,, xxLΦηKηM mm =+ . (6) 
 
Due to the orthogonality properties of the mode shapes, one can 

prove that the matrices mM  and mK  are diagonal matrices. In 
addition, it is possible to normalize the eingenvectors in a form that 

IMm = , and then the division of both sides of Eq. (6) by the matrix 

mM  yields Eq. (7), where 2ω  is a diagonal matrix containing the 
squared natural frequencies. 

 
 ( ) ( ) ( )ttt T ,,2 xxLΦηωη =+ . (7) 

 
In order to simplify the solution of Eq. (7), it is useful to 

consider only a few natural modes to describe the structural 
response. This is done truncating the summation in Eq. (4). In fact, 
only a few modes are necessary to obtain a solution with good 
precision (Meirovitch, 1986). 

Finite Element Model 

The wing employed in the aeroelastic simulations was designed 
by the EESC/USP Team for the 2000 SAE International 
AeroDesign® East Competition, Florida, USA. The wing has a 
rectangular planform, with a 0.22 meter chord and a 3 meters span. 
The structural scheme consists of a StyrofoamTM core, a KevlarTM 
shell in +/- 45o orientation and two unidirectional (UD) Carbon fiber 
spars, as shown in Fig. 1 (EESC/USP Team, 2000). The carbon fiber 
spars have constant width and vary from one layer at the wing tip up 
to three layers at the wing root. A finite element (FE) model of the 
semi-wing was generated using the software ANSYS®. Two types 
of elements were employed: a quadrilateral laminated shell element 
for the composites, and a tetrahedral solid element for the 
StyrofoamTM core. The FE mesh over the semi-wing is shown in 
Fig. 2, together with the schemes of the mode shapes selected to 
represent the dynamic response. 

 

sparsspars

 
Figure 1. Wing structural characteristics and geometry (dimensions in 
mm).
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Figure 2. Semi-wing FE mesh and selected mode shapes.

Aerodynamic Model: The Vortex Lattice Method 

The vortex lattice method consists of distributing plane vortex 
singularities over the wing and over the wake. The plane vortex 
singularities satisfy the Laplace equation and when combined with 
the uniform stream can simulate incompressible and potential flows 
around the wing. 

To implement the method, the wing is represented by a lifting 
surface without thickness and discretized in quadrilateral elements, 
called panels. A vortex ring is associated with each panel, being the 
leading segment of each vortex ring placed on the panel quarter 
chord line and its control point placed at the center of the three-
quarter chord line. The wing discretization scheme is shown in 
Fig.3. To guarantee that the flow streamlines pass over the lifting 
surface, it is necessary to satisfy the boundary condition of zero 
normal velocity on the wing surface. This boundary condition is 
applied at the control points and results in the correct values for the 
vortex singularities (represented by the circulation Γ). 

 

 
Figure 3. Wing discretization scheme (Katz and Plotkin, 1991). 

 
The boundary condition in each panel can be expressed 

according to Eq. (8), where the gradient of the potential velocity φ  
corresponds to the perturbed velocities induced by the wing vortex 
singularities, mv  corresponds to the velocity of the wing motion 
(the freestream velocity relative to the wing plus the velocities of the 
wing structural deformations), wv  corresponds to the velocities 
induced by the wake, and n  is the normal vector. 

 
( ) 0=⋅++∇ nvv wmφ . (8) 

 
The velocity ( V ) induced by each straight vortex segment, 

extending from point 1 to point 2, at an arbitrary point P, is given 
using the Biot-Savart law (Eq. 9), where 1r  and 2r are the vectors 
that define the position of point P in relation to the points 1 and 2. 

 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅−

×

×Γ
=

2

2

1

1
212

21

21

4 r
r

r
rrr

rr
rrV

π
. (9) 

 
It is important to note that the value of the circulation Γ is still 

not known in Eq. (9). So, only the values of the other terms will be 
calculated. This is done by assuming Γ=1. The velocity induced by 
each vortex ring at a point P is obtained adding the results obtained 
with Eq. (9) for the four corresponding vortex segments. 

The velocity KLV  will be referred as the velocity induced by 
the vortex ring L on the control point K. Applying the zero normal 
velocity boundary condition at the control point K=1, Eq. (10) can 
be written, being the circulation in each vortex ring the unknowns 
and m the number of panels used in the wing aerodynamic 
discretization. Based on Eq. (10) the called influence coefficients 
( KKLKLa nV ⋅= ) are defined. Writing Eq. (10) as a function of the 
influence coefficients for each of the m control points and passing 
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vm and vw  to the right-hand side (RHS) of the equation, the linear 
system represented in Eq. (11) is obtained. 

 
( ) 01111313212111 =⋅++Γ++Γ+Γ+Γ nvvVVVV wmmm

. (10) 
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The evaluation of mv  consists of two steps: 1) the freestream 

velocity is obtained moving the wing in the aft direction, and 2) the 
velocities of the structural deformations are obtained solving the 
equation of motion (Eq. 7). The velocities induced by the wake (vw 
vector) are obtained employing the Biot-Savart law (Eq. 9). It is 
important to consider that a portion of the wake is generated at each 
time interval, according to Fig.4. The circulation values of the last 
vortex rings generated are the same as those of the trailing edge 
vortex rings, to satisfy the three-dimensional Kutta condition. Thus, 
at each time interval new vortex rings are generated and the 
corresponding values of circulation are found. The value of 
circulation of each wake vortex ring remains the same during all the 
simulation time. In the present simulation, the wake rollup was not 
considered, so the wake is parallel to the freestream velocity plane. 

 

 
Figure 4. Wake discretization scheme (Katz and Plotkin, 1991). 

 
The solution of the linear system of Eq. (11) provides the 

circulation values for the wing vortex rings, which will be employed 
for the aerodynamic loads calculation. The unsteady Bernoulli 
equation for each panel is written in Eq. (12), where p is the static 
pressure and the subscripts u and l refer to the upper and lower sides 
of the panel. 

 

tt
pp luluul

∂
∂

−
∂
∂

+−=
− φφ
ρ 22

22 VV . (12) 

 
The last two terms in Eq. (12) refer to the unsteady case. The 

difference between them is given by Eq. (13), obtained from the 
definition of circulation (Katz and Plotkin, 1991). 

 
( )

t
tt

tttt
lulu

∆
−Γ−Γ

=
∂
Γ∂

=
∂
−∂

=
∂
∂

−
∂
∂ )1()(φφφφ . (13) 

 
If 0/ =∂Γ∂ t , Eq. (12) is analogous to the classical Bernoulli 

equation for the steady case, and the first two terms can be 
determined with the aid of the Kutta-Joukowski theorem (Eq. 14), 
where ∞V  is the freestream velocity, α  is the local angle of attack, 

b∆  is the length of the panel in the spanwise direction and S  is the 
panel area. 

 

S
bVlu αcos

22

22 Γ∆
=− ∞VV . (14) 

 
Substituting Eqs. (13) and (14) in Eq. (12), the normal force in 

each panel can be computed and supplied as input to the equation of 
motion (Eq. 7). It is important to emphasize that the values of Γ in the 
above equations are given by Γi,j for the wing leading edge panels, 
and by (Γi,j - Γi-1,j) for the other panels (Katz and Plotkin, 1991). 

Coupling Between Aerodynamic and Structural Meshes 

Because the mode shapes and the aerodynamic forces are 
calculated using distinct meshes, it is necessary to convert the 
aerodynamic forces to the structural points and to supply the 
structural displacements to the aerodynamic points. The scheme 
chosen to exchange this information between the meshes is based on 
the fact that the aerodynamic and structural points are related through 
a coordinate transformation matrix, according to Eq. (15), where the 
subscript a refers to the aerodynamic points, the subscript s refers to 
the structural points and the matrix G  is the transformation matrix. 
The same matrix can be employed to write the mode shapes in terms 
of the aerodynamic points, according to Eq. (16). 

 

sa Gxx = . (15) 
 

  
sa ΦGΦ  = . (16) 

 
To write the aerodynamic forces in terms of the structural points, 

it is necessary to guarantee that the virtual works done by the forces 
are the same in both meshes, according to Eq. (17), where T

axδ  and 
T
sxδ  are the virtual displacements. As these displacements are 

arbitraries, it is possible to write Eq. (18). 
 

s
T
sa

TT
sa

T
a LxLGxLx δδδ == . (17) 

 

a
T

s LGL = . (18) 
 
Substituting Eq.(18) into Eq. (7) and making use of Eq. (16) 

yields Eq. (19), which represents the conversion of forces between 
the two meshes. 

 
 ( ) ( ) a

T
ass tt LΦηωη =+ 2 . (19) 

 
It is important to note that the aerodynamic forces are applied at 

the control points, represented here by the vector ax , and that the 
structural displacements must be supplied at the vortex rings corner 
points, grouped in the vector ax . So, to perform the conversion of 
displacements between the meshes, it is important to define a 
different transformation matrix, which will be called G . Pre-
multiplying both sides of Eq. (4) by the matrix G , the modal 
displacements provided by the solution of Eq. (19) are converted to 
the physical displacements in the vortex rings corner points, 
according to Eq. (20). 

 
 

saa ηΦx = . (20) 
 
The matrices aΦ  and aΦ  can be obtained by the method of 

interpolation using surface splines (Harder and Desmarais, 1972). 
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The method is based on the solution of the bending equation of a flat 
plate and have some limitations. Firstly, the aerodynamic and 
structural points should be projected in the wing plane, and secondly, 
only the out-of-plane displacements are interpolated. To implement 
the method, some structural points (65 in this work) were selected in 
the FE mesh to reproduce the structural modes. A schematic picture 
showing the superposition of these 65 structural points and a 52 
panels aerodynamic mesh can be seen in Fig. 5. 
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Figure 5. Schematic picture showing the superposition of aerodynamic (o) 
and structural meshes (x). 

Integration of the Equation of Motion 

The equation of motion represented in Eq. (19) consists of a 
system of n second order ordinary differential equations (ODE), 
being n the number of modes chosen to represent the structural 
response. To facilitate the integration, this system will be re-written 
as a system of 2n first order ODE, utilizing Eqs. (21) and (22), where 

1y  and 2y  are n x 1 vectors representing the modal displacements 
and modal velocities, respectively. The vectors 

1y  and 
2y  can be 

grouped together according to Eq. (23), where the vector y  has 
dimension 2n x 1 and represents the modal displacements and 
velocities. 

 
ηy1 = . (21) 

 
ηy2 = . (22) 

 

⎭
⎬
⎫

⎩
⎨
⎧

=
2y

y
y 1 . (23) 

 
Differentiating Eqs. (21) and (22) and considering Eq. (19) 

yields Eqs. (24) and (25). 
 

 
21 yy = . (24) 

 
 

12 yωLΦy 2−= a
T
a

. (25) 
 
Eqs. (24) and (25) can be rearranged in a unique equation 

according to Eq. (26), where the vector y  is obtained in the same 
way than the vector y  (Eq. 23) and the vector RHS  represents the 
corresponding right hand side terms of Eqs. (24) and (25). 

 
RHSy = . (26) 

 
The 2n ODE of Eq. (26) will be solved employing a predictor-

corrector method, implemented in PECLE form (Lambert, 1991). 
The letter P refers to the prediction of the vector y, the letter E to the 
evaluation of the vector RHS, the letter C to the correction of the 
vector y values, and the letter L to the evaluation of the local 
truncation error. The family of Adams-Bashforth methods is 
employed as the predictor equations, and the family of Adams-
Moulton methods is employed as the corrector equations. The local 
truncation error is given by the Milne’s estimate and modifies the 
corrected values, according to Eq. (27), where the superscripts P and 
C refer to the predicted and corrected values and the factor W 
depends on the order of the predictor-corrector equations. For the 
first time interval (i=1) only the E step is performed. For the second 
time interval (i=2) only the PE steps are performed. Then, for i=3 an 
up, all the PECLE steps are performed. The predictor-corrector 
equations for each time interval, together with the factor W value, 
are shown in Tab. 1. 

 
)( PCCC W yyyy −+= . (27) 

 

Table 1. Predictor-corrector equations. 
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Results and Discussion 

Aeroelastic responses of the prototype aircraft wing model are 
shown in Figs. 6, 7 and 8, for different airspeeds. The aeroelastic 
responses are represented by time histories of the modal 
coordinates. The fast Fourier transforms (FFTs) of the aeroelastic  

responses show the oscillatory frequencies contained in each 
response. All of the FFT curves have been normalized to make their 
peak amplitudes equal to one. 

The structural and aerodynamic meshes are the same as those 
represented in Fig. 5 and no camber was considered for the wing. 
The initial angle of attack is 5 degrees and the air density 
corresponds to the sea level condition. The modal displacements and 
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velocities are set to zero as the initial conditions for the solution of 
Eq. (26) and the initial perturbation is due to a step input in the 
freestream velocity, in the aerodynamic model. 

In Fig. 6 (V∞ = 30 m/s) the aerodynamic damping is strongly 
evidenced for all modes and the responses reach the wing static 
equilibrium position. The FFTs show the peaks clearly separated, 
with exception of the 2nd and 3rd modes. In Fig. 7 (V∞ = 70 m/s), all 
the modes are beginning to be excited by a common frequency 
(around 65 Hz), but the response is still stable. In Fig. 8 (V∞ = 100 
m/s), this common frequency dominates the motion of all modes and 
the response is clearly unstable. The general form of the curves 
seems to be in agreement with similar simulations (Preidikman and 
Mook, 2000), but because the structures are completely different it 
is impossible to have a quantitative comparison. 

The wing tip displacements for the leading and trailing edges, 
and the wing tip angle of attack time histories are shown in Figs. 9 
to 12 for the subcritical (V∞ = 30 m/s) and supercritical (V∞ = 100 
m/s) conditions. These curves were obtained converting the modal 
displacements to physical displacements by using Eq. (4). 

The influence of the time interval (∆t) in the numerical 
simulations is emphasized in Fig. 13, where the aeroelastic response 
of the 5th mode for V∞ = 10 m/s is shown for two different time 

intervals. It is observed that a numerical instability can occur 
depending on the value chosen for ∆t. This indicates that one should 
be very careful when analysing the results, to avoid a numerical 
instability to be interpreted as a physical instability (flutter). In this 
work the simulations for each speed were performed for different 
time intervals. An initial value for ∆t was assumed and then this 
value was decreased until the point where no difference was noticed 
between consecutive simulations. This procedure however can be 
very time consuming. 

As the dependence of the time interval for the numerical 
stability is a characteristic of the predictor-corrector methods 
(Hughes, 1987), one of the options to improve the presented 
numerical model is the automation of the time interval choice, or the 
use of a different numerical method to integrate the equation of 
motion. It is important to point that predictor-corrector methods 
were also employed by Strganac and Mook (1990) and Preidikman 
and Mook (2000) in similar aeroelastic models, but no mention was 
made about problems with numerical instability. 
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Figure 6. Aeroelastic responses and FFTs for V∞ = 30 m/s (∆t = 0.0001 s). 
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Figure 7. Aeroelastic responses and FFTs for V∞ = 70 m/s (∆t = 0.00008 s). 
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Figure 8. Aeroelastic responses and FFTs for V∞ = 100 m/s (∆t = 0.00008 s).
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Figure 9. Wing Tip Displacements for V∞ = 30 m/s. 

 

0 0 . 0 5 0 . 1 0 . 1 5 0 . 2 0 . 2 5 0 . 3
3 . 5

4

4 . 5

5

5 . 5

6

V  =  3 0  m / s

T i m e  [ s ]

W
in

g 
Ti

p 
A

ng
le

 o
f A

tta
ck

 [D
eg

re
es

]

 
Figure 10. Wing Tip Angle of Attack for V∞ = 30 m/s. 
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Figure 11. Wing Tip Displacements for V∞ = 100 m/s. 
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Figure 12. Wing Tip Angle of Attack for V∞ = 100 m/s. 
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Figure 13. Comparison of the 5th mode aeroelastic response for V∞ = 10 
m/s for two different time intervals of integration. 

Conclusions 

The aeroelastic response of a prototype aircraft wing is obtained 
for different airspeeds. The results presented in this paper were 
obtained for three particular airspeeds, corresponding to a stable 
condition (30 m/s), an almost unstable condition (70 m/s) and a 
clearly unstable condition (100 m/s). It should be pointed that the 
exact flutter speed is anywhere between 70 and 100 m/s and that the 
only way to discover it is performing simulations for small 
increments in the airspeed. In this sense, if one is interested just in 
computing the flutter speed it is better to use a frequency domain 
model, which provides the flutter speed directly. However the time 
domain simulations can provide valuable additional information, 
such as the vibration levels suffered by the structure, and can be 
used as an effective tool to design control systems for flutter 
suppression or gust alleviation. 

It was shown that the precision of the results depends strongly 
on the time interval choice, what can make the application of the 
numerical model very time consuming. Procedures to automate the 
time interval choice or to avoid this dependence would be of great 
value. 

As a final remark, it is important to emphasize that the obtained 
responses are valid only for incompressible and potential flows. 
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