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Wind Pressures in Framed Structures 
with Semi-rigid Connections 
In the analysis and design of framed structures, the traditional methods are based on the 
simplified assumption that the joints are completely either pinned or rigid. However, the 
experimental investigations show that the frame connections present an intermediate 
behaviour between these two extreme cases. The present work is concerned with the 
dynamic elastic analysis of semi-rigid plane frames subjected to wind pressures. The 
dynamic excitation induced by the wind is estimated by adopting the simulation method of 
Monte Carlo. The wind flutuation pressures are decomposed into a limited quantity of 
harmonic components that are then combined many times, making possible the 
accomplishment of a probabilistic analysis and the choice of a characteristic response. 
The frame is considered as a set of contiguous bar elements, connected to each other at the 
nodes, and the connections are modelled as zero-length rotational springs. A  nodal 
description of the kinetic and kinematic laws is given under the restriction of small 
displacements. The behaviour of the frame material and connections is described by linear 
elastic moment-rotation relationships, which are presented in the stiffness form. In order 
to take into account the effect of the semi-rigid behaviour of beam-to-column connections, 
the mass and stiffness matrices are developed as the sum of the conventional finite element 
matrices and correction matrices that incorporate the flexibility of the end joints. The 
problem of forced vibrations is then solved by means of the numerical integration of the 
motion equations. 
Keywords: Semi-rigid frames, wind forces, vibration analysis, dynamic response 
 
 
 

Introduction 

The methods commonly used in the analysis and project of 
framed structures are developed under the supposition of a 
simplified behavior of the connections between beams and columns. 
The joint is considered either totally pinned (pinned-joint 
connection) or totally rigid (rigid-joint connection). However, the 
experimental investigations show that most connections present an 
intermediate behavior between these two extreme cases; due to this 
fact, they should, therefore, be classified as semi-rigid (Stelmack et 
al., 1986; Lee & Moon, 2002; Popov & Takhirov, 2002). The semi-
rigid connection is the one that has a capacity of moment 
transmission intermediate between the rigid and the pinned ones. It 
permits that, under the action of a load, the interconnected elements 
present a relative rotation and can transmit part of the active 
moment among them.1 

A connection beam-to-column of plane frame can be modeled 
considering three degrees of freedom. However, as the influence of 
the shear and axial deformations is, in general, small in relation to 
the rotational deformation (Jones et al., 1983), the behavior of the 
semi-rigid connection is described, in the present work, by the 
relation between the moment transmitted by it and the relative 
rotation between the two interconnected elements. 

In spite of the behavior of most connections is not linear along 
all the moment-rotation curve, the linear approach is, in general, 
enough for the analysis of frames submitted to service loads (Lui & 
Chen, 1987). Therefore, the moment-rotation relation of the 
connection is considered herein as being linear elastic. 

The behavior of the connection is an important factor to be 
considered in the analysis of frames submitted to dynamic loads 
(Osman et al., 1993). However, the literature on the dynamic 
analysis of semi-rigid structures is still very limited. Shi & Atluri 
(1989) and Chan & Ming Ho (1994) proposed methods for analysis 
of free vibrations of semi-rigid frames, without however coming up 
with the coefficients of the involved elementary matrices. The 
influence of the flexibility of the joints in the free vibrations of 
framed structures was studied by Soares Filho & Sahlit (1997a). 
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These authors analyzed the behavior of semi-rigid structures subject 
to dynamic excitation considering, initially, the moment-rotation 
relationship of the connection as being linear elastic (Sahlit & 
Soares Filho, 1997) and, soon afterwards, assuming that the semi-
rigid connections can be characterized by similar relations to the 
governing equations of an elastic, perfectly plastic material, using 
then the optimization methods of the mathematical programming 
(Soares Filho & Sahlit, 1997b). 

The present work is concerned with the dynamic elastic analysis 
of semi-rigid plane frames subjected to wind pressures. The frame is 
considered as a set of contiguous bar elements, connected to each 
other at the nodes, and the connections are modeled as zero-length 
rotational springs. A nodal description of the kinetic and kinematic 
laws is given under the restriction of small displacements. The 
behavior of the frame material and connections is described by 
linear elastic moment-rotation relationships, which are presented in 
the stiffness form. 

In order to take into account the effect of the semi-rigid behavior 
of beam-to-column connections, the mass and stiffness matrices are 
developed as the sum of the conventional finite element matrices 
and correction matrices that incorporate the flexibility of the end 
joints. 

The dynamic excitation induced by the wind is estimated by 
adopting the Monte Carlo simulation method. This technique 
consists basically in the simulation of wind fluctuating pressures 
that are obtained from a local wind spectrum. The fluctuating 
pressures are decomposed into a limited quantity of harmonic 
components which are then combined many times for a possible 
gust center. For each combination obtained, a value of a relevant 
response is registered. Taking a reasonable quantity of relevant 
response values into consideration, a characteristic value is obtained 
by means of a statistic analysis, in which a probability of 95% of 
occurrence is considered. The random combination of the harmonic 
components, corresponding to the response value which is the 
nearest to the characteristic value, furnishes the characteristic wind 
excitation which simulates the wind fluctuating behavior.  

The problem of forced vibrations is then solved by means of the 
numerical integration of the motion equations. Numerical results are 
presented and it is shown that the consideration of semi-rigid 
connections significantly alters the dynamic behavior of elastic 
framed structures subjected to wind loads. 
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Nomenclature 

Latin Letters 
L = lengh of element  

x b
i  = deformation of the bar (element) 

x c
i  = deformation of the connection 

xi = total deformation 
ki = stiffness connection 
Xi = bending moment 
qi(t) = cinematic nodal displacement 
t = time 
E = elasticity modulus 
I = identity matrix 
B = matrix of the effect of the flexibility of  semi-rigid 

connections 
M0 = conventional consistent-mass matrix 
M = modified consistent-mass matrix 
m = mass for unit of length 
Pi = fixity factor of semi-rigid connection 
Ri = stiffness index of semi-rigid connection 
WT = total potential energy 
EI = flexural stiffness 
u(t) = vector of the dynamic nodal displacements 

gM = global mass matrix 

gC = global damping matrix 

gK = global stiffness matrix 

ia = proportionality factors 
V0 = basic wind velocity 
VK = characteristic wind velocity 
S1 and S3 = statistical factors 
S2 = topografic factor 
q(z) = dynamic pressure at the heigth z 
Ca = drag coefficient 
Fa = wind drag force 
b, Fr and p = meteorological  factors 
Ae = frontal area of the structure 
p600 = mean pressure 
p3 = peak pressure 
f = frequency 
S(f) = power spectrum of wind velocity 

*u = friction velocity 
U0 = mean wind velocity at 10 m high 
Sp’(z,f) = power spectrum of fluctuating pressures 
car = aerodynamic coefficient 
Uz = mean velocity at the heigth z 
Uy1 = top displacement 
p’(t) = fluctuating pressures 
Greek Symbols 
w(y,t) = field of displacements 
Ψi (y) = form functions 
ξ = damping ratio 

)(tgλ  = vector of the applied nodal loads 

ωi = frequencies of  vibration 
φi = natural  vibration  modes 
ρ = air density 

)'(2 pσ = mean square value of p’(t) 
∆z0k = gust dimension 

Mass Matrix 

Consider the structural element, of length L, with semi-rigid 

connections shown in Fig. 1, where x b
i  is the deformation of the bar 

(element), x c
i  is the connection deformation and xi is the total 

deformation, that is, the relative rotation between the linked 
elements by the connection. 
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Figure 1. Deformed structural element with semi-rigid connections. 

 
From Fig. 1, the total deformation may be written as 
 

c
i

b
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where the connection deformation c

ix , introduced by its flexibility, 
depends on the rigidity of the connection ki and the bending moment 
Xi, being given by 
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For the dynamic analysis of a beam element, the field of the 

displacements w(y, t) can be defined in terms of four form functions 
)(yiΨ  and of the nodal displacements q1(t), x1

b(t), q2(t) and x2
b(t), 

in the instant of time t, as 
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Taking into account the additional rotation due to the 
connection, Eq. (2), the field of displacements, Eq. (3), for a beam 
element with semi-rigid joints becomes 
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Considering the form functions (4) and replacing (5) into 
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the following equations may be obtained 
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where Ri=Lki/EI=1/Wi represents the stiffness index of the 
connection at the end i (i=1, 2).  

Admitting that [ ]2121 4)41)(41( WWWW −++=∆ and after some 
algebraic manipulations, the Eq. (7) may be written as 
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Introducing Eq. (8) into Eq. (5) of the field of displacements, 

w(y, t), and considering that 
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the following relation is obtained 
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Finally, the field of the displacements w(y, t) can be expressed in 

terms of the nodal displacements q1(t) and q2(t) and of the end 
rotations x1(t) e x2(t) as 
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where the presence of the matrix B reflects the effect of the 
flexibility of the semi-rigid connections. It is important to note that, 
if the connections are rigid, all the terms in B will be zero and Eq. 
(12) will be reduced to the classic definition of the displacement 
field in terms of the nodal displacements. 

To obtain a consistent-mass matrix of a disconnected element 
with semi-rigid joints, it is used the expression of the kinetic energy 
T for a beam element with mass per unit of length m , which is 
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Evaluating the first time derivatives of the field of 

displacements, Eq. (12), and replacing the result in Eq. (13) one gets 
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The integral in Eq. (14) denotes the conventional consistent-

mass matrix M0. Hence, this equation can be rewritten as 
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The kinetic energy is then expressed as 
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where 
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represents the matrix of correction of the conventional consistent-
mass matrix so as to take into consideration the presence of semi-
rigid connections. The consistent-mass matrix M , modified by the 
inclusion of semi-rigid joints, is given therefore by the sum of the 
two matrices M0 and M1.  

The presence of the semi-rigid joints does not affect the stiffness 
coefficients related to the axial effects. Therefore, the mass matrix 
of an element with semi-rigid joints is given by 
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where 
 

D = 4 - P1 P2 (19a) 
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f1(P1, P2) = (560 + 224P1 + 32P1
2 - 196P2 - 328P1P2 – 

55P1
2P2 + 32P2

2 + 50P1P2
2 + 32P1

2P2
2) (19b) 
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In Eqs. (19a-g), Pi(i=1, 2) is the fixity factor of semi-rigid 

connection at the end i, defined in relation to the stiffness index Ri 
as  
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Stiffness Matrix 

Considering the relation of the displacement field (12), the 
stiffness matrix of a disconnected element with semi-rigid joints 
may be obtained. For that, the expression of the total potential 
energy WT is used for a beam element, modifying the expression of 
the kinetic energy (13). This expression, for an element with 
flexural stiffness EI, is composed of two parts: one, due to the 
elastic deformation of the beam, which can be written as 
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and another, which is due to the rotational flexibility of the 
connection, given by 
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By replacing the second derivative of Eq. (12) in relation to y in 

Eq. (21), it follows that 
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Knowing that the integral in Eq. (23) denotes the conventional 

stiffness matrix K0, for instance (Paz, 1992), this relation may be 
rewritten as 
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Considering that 
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the potential energy due to the elastic deformation of the beam is 
then expressed as 
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On the other hand, it is known from Eq. (2) that 
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Introducing Eq. (27) into Eq. (22), it follows that 
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Calling 
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the expression of the total potential energy may be obtained as 
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where K1 and K2 represent the correction matrices of the 
conventional stiffness matrix so as to take the presence of semi-rigid 
connections into consideration. The stiffness matrix modified by the 
inclusion of semi-rigid joints is obtained therefore through the sum 
of three matrices 

 

210 KKKK ++=  (31) 
 
As for the mass matrix, the presence of semi-rigid joints does 

not affect the stiffness coefficients related to the axial effects. 
Therefore, the stiffness matrix of the element with semi-rigid joints 
is 
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Equations of Motion of the Dynamic System 

The equations of motion for the analysis of forced vibrations of 
a structure with semi-rigid connections may be expressed as 

 
)()()()( tttt gggg λ=++ uKuCuM  (34) 

 
where gM , 

gC  and gK , of order (n x n), are respectively the 

global mass, damping and  stiffness matrices of the structure, 
obtained from the matrices of the structural elements, properly 
modified by the presence of semi-rigid joints; u , u  and u , of 
order (n x 1), are respectively the nodal acceleration, velocity and 
displacement vectors of the structure; and λg(t) is the vector, of 
order (n x 1), of the applied nodal loads. The system (34) is solved, 
in the present work, by the numeric integration scheme of 
Newmark. 

For the forced vibration analysis, the typical expression for the 
damping matrix, called Rayleigh damping matrix, 

 

ggg aa KMC 10 +=  (35) 
 

is used, where 0a  and 1a  are proportionality factors that can be 
obtained by means of two natural frequencies of vibration and 
corresponding damping ratios ξ. 

When the applied forces in the structure are null, λg(t) = 0, the 
solution of Eq. (34) turns into an eigenvalue or characteristic value 
problem, given by 

 
( ) 02 =− φω gg MK  (36) 

 
whose solution provides the values of the natural frequencies of 
vibration ω i  and their corresponding natural vibration modes φ i  
(i=1, ..., n). In the present work, the Jacobi method is used for the 
calculation of the eigenvalues and corresponding eigenvectors or 
mode shapes. 

Characteristic Wind Excitation by the Simulation Method 
of Monte Carlo 

In the simulation method of Monte Carlo, the fluctuating 
pressures of the wind are generated starting from a given wind 
spectrum, where the fluctuating pressure is decomposed into a 
limited quantity of harmonic components. These are then combined 
many times for a possible gust center and, in each combination, a 
value of the relevant response of top displacement, in the present 
case, is registered. 

Thus, a considerable quantity of values of this response is at 
disposal, making a statistical analysis possible in order to obtain a 
characteristic value, corresponding to a probability of 5% of being 
exceeded. Defined this characteristic value, the random combination 
of the harmonic forces can be determined whose maximum response 
is the nearest to the characteristic one. Finally, the structure is again 
excited by this random combination and the characteristic values for 
all displacements and member forces are then obtained with good 
approximation (Franco, 1993; Guimarães, 2000). 

Aerodynamic Loads 

The aerodynamic loads are obtained, in the present work, from 
the continuous profile of the dynamic pressures, according to the 
procedure proposed by Blessmann (1988), considering the values of 
the basic wind velocity Vo, the topographical and statistical factors 
S1 and S3 respectively, the meteorological parameters b, Fr and p, 

and the drag coefficients Ca, all provided by the Brazilian Code 
NBR-6123 (1987) and taking into account, besides, the geometric 
parameters of the construction. 

The characteristic wind velocity, Vk, is obtained by the 
expression 

 
  321 SSSVV ok =  (37) 

 
being the factor S2, at the heigth z, given by 

 
p

r zFbS )10/(2 =  (38) 
 
The dynamic pressure can then be calclated as 
 

  
6.1

)(
2

kV
zq =  (39) 

 
where q(z) is given in N/m2 and Vk in m/s. 

The wind drag force, Fa, at each pavement level is given by 
 

AezqCaFa )(=  (40) 
 

where Ae is the frontal area of the structure exposed to the wind. 

Simulation of Monte Carlo 

The mean wind is conventionally measured in time intervals that 
vary from 10 minutes to 1 hour. Many codes, however, among 
which the Brazilian Code, define values for the peak velocity 
measured in very short time intervals (2 to 5 seconds) (Franco, 
1993). 

Starting from these values, which are practically instantaneous, 
it is possible to determine the mean velocity measured in a time 
interval of, say, 10 minutes. Thus, it is possible to obtain a ratio 
between the mean pressure and the fluctuating maximal pressure 
through the graph shown in Fig. 2. The ratio between the mean 
pressure, considered when t =600 s and the peak one, assuming t = 3 
s, will be given by 
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meaning that 48% of the total pressure is constant and 52% is due to 
the fluctuating pressures. 

 

 
Figure 2. Equivalence between hourly wind and average wind on t 
seconds. 

 
It is adopted, in this work, the spectrum of fluctuating velocities 

proposed by the National Building Code of Canada (1985), which 
consists of a variant of the expression introduced by Davenport 
(1963). Thus, the power spectrum is expressed as 
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where Uo is the mean wind velocity at 10 m high in an open terrain, 
u* is the friction velocity and f is the frequency in Hz. 

Assuming that the intensity of the turbulence is low, the spectral 
density function of the fluctuating pressures Sp’ (z, f) can be written 
as a function of the velocity spectrum as 

 

),()(),( 2
' fzSUcfzS zarp ρ=  (43) 

 
where ρ is the air density, car is the aerodynamic coefficient at the 
considered point and Uz is the mean velocity at the height z. 

With sufficient precision, the spectrum of fluctuating pressures 
can be considered as being proportional to the spectrum of velocities 
as 

 
2

' )()];,([),( zarp UcPfzSPfzS ρ==  (44) 
 
The fluctuating pressure p’(t) at all points of the structure 

corresponds to 52% of the total pressure p(t), constituting a random, 
stationary, ergodic and gaussian process. The pressure p’(t) may be 
represented through a Fourier integral as 
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where 
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The mean square value of )(' tp , supposedly defined over a 
sufficiently long time interval T, is given by 
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If T→∞, the following equation may be written 
 

∫
∞

=
0

2 df)f,z(S)'p( 'pσ  (51) 

where ),(' fzS p  is the spectral density function of p’(t) and 

),(' fzS p d(f) represents the elementary contribution, associated to 
the frequency interval df, to the mean square value. 

Instead of an infinite number of functions, p’(t) may be 
represented in an approximate way by a finite number m of 
harmonical functions, conveniently chosen in such a way that their 
periods span uniformly over the time interval of interest, which goes 
from 600 to 0.5 seconds. Franco (1993) proposes the use of, at least, 

eleven harmonical functions (m≥11), having the period of one of 
them coinciding with the fundamental period of the structure and the 
other periods taken as multiple of the fundamental period. 

The Equation (45) now becomes 
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where the coefficients Ck and rk are given by 
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being r the index of the resonant component and rk the index of the 
other components. 

The maximal amplitude of the fluctuating pressure is 
p’(t)=0.52p. Now the amplitudes for the m harmonic components of 
p’(t) are given by 
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The random nature of the process is characterized by the random 

combination of the phase angles of the m harmonical functions. 
To obtain the spatial correlation between velocities and 

fluctuating pressures, the concept of gust dimension is used. Thus, 
the height ∆zok of the equivalent gust can be given by 
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Figure 3. Equivalent gusts (a) and reduction coefficients of fluctuating 
pressures (b). 

 
The gust of frequency fk, whose correlation coefficients are 

represented by double exponential curves, may be approximated by 
the perfectly correlated gust of height ∆zok=Uo/7fk, or, as it is used in 
the present work, by the gust defined by two triangles which implies 
in a decaying linear correlation from 1 to 0 in an area with total 
length of 2∆zok=2Uo/7fk, according to Fig. 3-a. 

The smaller the frequency fk of the considered fluctuating 
component, the greater the height of its area of aerodynamic 
influence will be. 
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In the present work, the gust center is adopted as located at 85% 
of the structure height. Thus, the fluctuating pressures should be 
multiplied by the linear decaying coefficient, as in Fig. 3-b, whose 
value varies from 1 to 0. 

Once chosen a relevant generalized coordinate, which in the 
present case is the top displacement, the structure was 
simultaneously excited by the m functions, with random phase 
angles θk. For each combination of θk values, an analysis in the time 
domain, corresponding to the duration of the gust - which is 
supposed to be nearly 600 seconds - is taken place and the maximal 
value of the relevant coordinate is determined. 

With the several values of top displacement Uy1, the 
characteristic value of the associated response to this coordinate will 
be evaluated by means of a statistical analysis assuming type I 
extremes distribution (Gumbel), with 5% of probability of being 
exceeded. In the present work, twenty analyses in the time domain 
have been done, which corresponds to twenty sets of random phase 
angles for each type of structural connection considered. 

It is now necessary to determine the characteristic values of all 
the displacements and of the member forces in the structure. To 
achieve this purpose it suffices to select, among the random loading 
combination, one whose response is the nearest to the characteristic 
value of top displacement. By exciting the structure with this 
characteristic load, the characteristic values of response for the 
whole structure are found, and so is the dynamic analysis 
completed. 

To obtain the final response, the combined analysis has been 
done considering 48% of the value of the response given by the 
static analysis, plus the characteristic value obtained from the Monte 
Carlo simulation. 

Numerical Results 

The dynamic analysis of a twenty floors steel frame with semi-
rigid connections, subjected to wind pressures, is presented. The 
frame dimensions, in meters, are specified in Fig. 4. The semi-rigid 
connections are only considered in the connections of the beams 
with the columns, being assumed that they behave elastically and 
being taken into account two fixation factors: Pi = 0.5 (semi-rigid 
joints) and Pi = 1.0 (rigid joints). 

The characteristics of the metallic profiles are shown in Table 1. 
It is used steel ASTM A-36, with modulus of elasticity E = 210.00 x 
106 KN/m2 and density ρ = 78.255 KN/m3.  

 

Table 1. Data of the metallic profiles used in the steel frame. 

Element Cross section 
(m2) 

Moment of 
inertia (m4) 

Columns (1st to 4th floors) 0.08650 0.00300520 
Columns (5th  to 8th floors) 0.06520 0.00204370 
Columns (9th  to 14th floors) 0.05010 0.00146930 
Columns (15th to 20th floors) 0.04010 0.00111134 
Beams (all) 0.01826 0.00087410 

 
It is aimed to study the influence of the semi-rigidity of the 

connections in the dynamic response of the structure, with regard to 
the values of the natural frequencies of vibration and corresponding 
modal forms, as well as the maximum displacements and 
distribution of structural internal forces produced by the wind 
action. The technique used to evaluate the active load at the 
structure in the direction of the wind is based on the method of 
simulation of Monte Carlo, as described in item 5. It is considered 
that the structure presents a damping ratio ξ = 0.05. The time of 
analysis for each combination of the harmonic components of the 
wind is of 10 minutes, having been used a total of 85650 time steps 
with value ∆t= 0.007 s. 
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Figure 4. Steel frame of 20 floors under the action of the static wind load. 

 
The static analysis of the structure was done by using a program 

of linear static analysis of plane frames with semi-rigid connections, 
developed by Soares Filho (1997). In this analysis, the static load of 
the wind was determined according to a procedure described in the 
Brazilian Code NBR-6123 (1987). Table 2 presents the values of the 
static horizontal displacements at the top frame, for the cases of 
rigid and semi-rigid joints. 

 

Table 2. Static horizontal displacements of the node 21. 

Connection Displacement (m) 
Rigid (Pj=1.0) 0.11969 

Semi-rigid (Pj=0.5) 0.256043 
 

Table 3 indicates the values of the first six natural frequencies of 
vibration for the frame, taking into consideration that the 
connections are rigid and, alternatively, being assumed that the 
connections beam-to-column are semi-rigid. As it can be observed, 
the flexibility of the connections alters significantly the values of the 
natural frequencies (Soares Filho, 1997). 
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Table 3. Frequencies considering the two types of connections. 

Connection Frequencies 
(rad/s) Rigid  (Pj = 1.0) Semi-rigid (Pj = 0.5) 
ω1 4.850 3.350 
ω2 15.439 10.152 
ω3 25.102 17.307 
ω4 35.691 25.257 
ω5 47.010 34.826 
ω6 59.674 45.998 

 
Figures 5 and 6 show the modal displacements of the left 

column of the frame, allowing the analysis the variations suffered by 
the first and second vibration modes, when the flexibility of the 
connections is taken into consideration. 

 

0

4

8

12

16

20

0 0,04 0,08 0,12

le
ve

l

rígid

semi-rígid

 
Figure 5. Variation in the first natural vibration mode. 
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Figure 6. Variation in the second natural vibration mode. 

 
In Table 4, the maximum responses of the top displacement are 

presented, one for each combination of the 20 blocks of random 
numbers (phase angles of the harmonic components), obtained from 
the analysis in the time domain for the rigid and semi-rigid 
structural models. 

By using the values of the maximal displacements listed in 
Table 4, a probabilistic analysis is carried out (Gumbel - Type I): 
one for the rigid structure and another for the semi-rigid one, in 
which the characteristic values are determined, with a probability of 
95% of occurrence. The results of the analysis can be seen in Table 
5, where µ is the mean, σ is the standard deviation; p is the 
probability of occurrence of the characteristic value; ϖ, α and xb are 
parameters of Gumbel for extreme values; and Xc is the 
characteristic value of Gumbel corresponding to the probability p. In 
Table 5, it is also indicated the excitation block whose maximum is 
the nearest to the characteristic value Xc, which is considered as the 
block of the characteristic excitation. 

Table 4. Maximum horizontal displacements of the node 21. 

Rigid 
(14 harmonics) 

Semi-rigid 
(15 harmonics) 

C
om

bi
na

tio
n 

B
lo

ck
 

 
Max. Disp. 

(m) 

 
Time 
Step 

 
Max. Disp. 

(m) 

 
Time 
Step 

1 -0.0213338 7349 -0.0482124 5346 
2 -0.0252731 30988 0.0578833 131 
3 -0.0286867 12410 0.0547532 56544 
4 0.0223641 42257 -0.0530501 138 
5 -0.0256064 44293 -0.0508842 70425 
6 0.0344699 461 -0.0633749 35024 
7 0.0248601 25985 -0.0587732 13399 
8 -0.0257005 71775 0.0570578 22580 
9 -0.0255608 34042 0.0491359 23323 

10 0.0275380 46095 0.0591847 46044 
11 0.0248512 79584 -0.0490518 28854 
12 -0.0232195 55771 0.0635466 48180 
13 -0.0249795 45838 0.0555469 128 
14 0.0360649 90 -0.0639735 54273 
15 -0.0293146 37492 0.0627561 78725 
16 0.0280908 13982 0.0572637 76542 
17 0.0250417 21853 0.0543053 52487 
18 0.0293981 5461 -0.0507082 62164 
19 0.0246079 78601 0.0556747 65913 
20 -0.0273830 66197 -0.0637699 67028 

 

Table 5. Analysis of extremes (Gumbel). 

Structure Parameters Rigid Semi-rigid 
µ (cm) 2.672 5.645 
σ (cm) 0.355 0.512 

p 95.0% 95.0% 
ϖ 2.970 2.970 
α 3.618 2.504 
xb 2.512 5.414 
Xc 3.333 6.600 

Block 6 (3.447 cm) 14 (6.397 cm) 
 
In Table 6 the results of the combined analysis (CA) are 

indicated. They were obtained through the sum of 48% of the values 
given by the static analysis (SA) with the values resulting from the 
analysis for Monte Carlo simulation (MCS), respectively. The 
parameters used for the sake of comparison have benn the top 
displacement of the frame (DT), the support reaction (compression 
force) in the base, that is at the leeward end (RA), and the member 
force (traction force) in the amount of the windward base (AE). 

 

Table 6. Table of combined analysis. 

Structure Parameters SA MCS 
CA 

(48% SA + MCS) 
 

DT (cm) 11.9610 3.4470 9.1880 
RA (KN) 5.6413 1.6313 4.3391 Rigid  

(Bl. 6) 
AE (KN) 5.6423 1.6315 4.3398 
DT (cm) 25.6040 6.3970 18.6870 
RA (KN) 5.2820 1.3248 3.8602 

Semi – 
Rigid 

(Bl. 14) AE (KN) 5.2825 1.3249 3.8605 
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The analysis of Table 6 shows that, considering the dynamic 
effects of the wind, one obtains smaller values of top displacement 
than those obtained statistically according to the Brazilian Code 
NBR-6123 (1987). The same occurs with the extremity actions and 
foundation reactions. 

Comparing the analysis of the frames with rigid connections and 
with semi-rigid connections, one notices from the values presented 
in Table 4 and 6 that the top displacements of the frame with semi-
rigid joints are approximately two times larger than those obtained 
for the rigid frame. In the case of the member forces and support 
reactions, the values obtained considering the semi-rigid joints are 
slightly smaller than those obtained for the rigid frame. 

For the present example, the consideration of the dynamic 
effects of the wind may lead to a more economic dimensioning of 
the structure. Moreover, the semi-rigidity consideration may 
demand caution in respect to the conditions of limit state of service.  

The evolutions of the top displacements (node 21) of the frame 
with rigid connections and with semi-rigid ones are shown in Fig. 7 
and Fig. 8, respectively. Through the analysis of these figures it is 
noticed that the amplitude of vibration of the semi-rigid frame is 
greater than the one of the rigid frame. 

 

 
Figure 7. Evolution of the horizontal displacement of the node 21 (rigid 
frame). 

 

 
Figure 8. Evolution of the horizontal displacement of the node 21 (semi-
rigid frame). 

Conclusions 

It was verified, at the present work, that the semi-rigidity of the 
connections can alter significantly the natural frequencies, the 
correspondent vibration modes and the maximum displacements of 
the structural frame. 

Taking into consideration the specific case of wind loading, the 
variation of rigidity at the joints may displace the resonant 
component of the structure, regarding the wind spectrum 
considered, which alters the distribution and magnitude of the 
decomposed harmonical components, and, consequently, the entire 
structural response. The studied example at the present work shows 
that the combined analysis, in which part of the loading is static and 
the other part is fluctuating, offers smaller structural responses than 
the corresponding responses obtained from the respective static 
analysis. 
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