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Seeding of Görtler Vortices Through a 
Suction and Blowing Strip 
The resulting wavelength of Görtler vortices in boundary layers over concave surfaces is 
determined by the upstream history of the flow and by wall disturbances such as 
roughness, heating/cooling strips or suction and blowing. In isotropic disturbance 
conditions, the predominant spanwise wavelength corresponds to the strongest growing 
vortex mode predicted by the linear stability theory. If the disturbance environment is not 
isotropic, vortices with wavelength different from the one with the highest growth rate may 
emerge. The present investigation considers the wavelength selection when Görtler 
vortices are excited by a suction and blowing strip at the wall. The study is based on 
numerical simulations of the vorticity transport equations derived from the Navier-Stokes 
equations. They are solved using a compact high-order finite difference technique. The 
results show that, when the vortices are excited by suction and blowing at the wall, their 
spanwise wavelength does not necessarily correspond to the imposed wavelength. Curves 
of streamwise development of the disturbance energy for different harmonics are 
presented, showing the evolution of the dominant modes. Isolines of streamwise velocity in 
the spanwise plane are also presented, showing how the higher harmonics distort the 
characteristic mushroom structures. 
Keywords: Görtler vortices, spatial direct numerical simulation, hydrodynamic stability, 
high order compact finite difference scheme, transition to turbulence 

Introduction 

Turbulent flows are the most common in practical applications. 
Nevertheless, there are a large number of situations in which 
transition to turbulence is of significant importance. That is the case 
for the flow over low Reynolds number turbine blades and laminar 
flow airfoils. The understanding of how transition takes place can 
help in predicting and even controlling transition to turbulence. 
Over recent years the body of knowledge on laminar flow stability 
and transition has increased dramatically due to the development of 
new experimental and numerical techniques as well as due to 
advances in applied mathematical theories. However, there are many 
transition scenarios for which a physical explanation is still 
unknown, and predicting transition location remains a challenge in 
many engineering applications.1

The study of boundary-layer stability over concave surfaces, 
started by Görtler (1940), has attracted the attention of several 
scientists. The centrifugal instability mechanism is responsible for 
the development of counter-rotating vortices aligned in the 
streamwise direction, as shown in Fig. 1, known as Görtler Vortices 
(GV). These vortices pump low momentum fluid away from the 
wall and high momentum fluid toward the wall forming up-wash 
and down-wash regions respectively (Fig. 2). The result of this 
macroscopic redistribution of mass is the development of mushroom 
type structures with strong inflectional velocity profiles in the 
normal and spanwise directions. These inflectional velocity profiles 
are susceptible to high frequency secondary instability further 
downstream. Reviews on GV with detailed description and 
theoretical background, have been published by Hall (1990), 
Floryan (1991) and Saric (1994). 

Initially, Görtler vortices have a very weak growth rate and the 
resulting wavenumber is strongly dependent on the previous history 
of the flow. Therefore, it is easy to observe a flow structure with a 
wavelength different from the one corresponding to the fastest 
growing vortices predicted by Linear Stability Theory (LST). For 
the same reason, and as shown in the current paper, it may also be 
difficult to impose a desired wavelength. Several techniques can be 
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used to seed GV in the flow field in experimental facilities and 
numerical simulations. The wavelength can be set by the upstream 
flow  disturbance  environment, by  surface  roughness  or  by  other 
surface disturbances such as heating and cooling wires or suction 
and blowing strips. This paper is concerned with the selection of GV 
wavelength and the way to induce vortices with a desired 
wavelength using suction and blowing strips.  

Figure 1. Görtler vortices over a concave wall. 

Figure 2. Up-wash and down-wash regions. 
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Analysis of the resulting vortex wavelength is important for 
boundary layer control through suction and blowing. In principle, 
GV can be damped if suction and blowing are applied in the vortices 
up-wash and down-wash regions respectively (Myose and 
Blackwelder, 1995, Souza, 2001). An estimate of the vortex 
wavelength would help the control system designer, but the control 
system itself should not introduce other disturbances with a different 
wavelength in the flow. 

One of the first investigations that addressed the problem of 
wavelength selection mechanism was due to Bippes (1978). He 
studied the flow over concave surfaces and presented results for 
three different upstream conditions: without any disturbance 
generator, with screens to produce isotropic disturbances and with 
surface mounted heated wires in order to have controlled 
disturbances. In all the experiments he found the characteristic 
counter-rotating vortices. When using screens, Bippes suggests that 
the selected wavelength follows the maximum amplification curve 
predicted by LST. 

A well documented article presenting experimental results was 
written by Swearingen and Blackwelder (1987). Their results are 
frequently used for validation by numerical experimentalists. They 
did not use any mechanism to generate disturbances and the 
resulting spanwise pattern was found to depend on the last screen 
chamber used to control the turbulence level. Myose and 
Blackwelder (1991) show results where the GV wavelength was 
modified by varying the amount of tunnel side wall boundary layer 
removal just upstream of the concave wall test section leading edge. 
They concluded that when the disturbance field is isotropic the 
wavenumber corresponding to the strongest amplification is the 
preferred one. 

The importance of the upstream history of the flow was 
acknowledged by Hall (1982), who proposed that the development 
of GV is governed by parabolic equations and discarded the normal 
mode formulation for the early stages of GV development. Further 
downstream the vortex structures tend to the eigenfunctions 
predicted by normal modes (Lee and Liu 1992). As a result of the 
GV parabolic nature, unlike Tollmien-Schlichting waves, it is not 
possible to define a critical Görtler number Go, where Go is the 
nondimensional parameter characteristic of boundary layer 
centrifugal instability. The vortex growth or decay for low values of 
Go depends on the pre-existing vortical structures in the flow (Hall 
1982, Botaro and Luchini, 1999). 

Guo and Finlay (1994) studied the wavenumber selection, 
splitting and merging of Dean and Görtler Vortices. They showed 
that when the energy level of GV is low, the spatial growth of the 
vortices is linear. At this stage, vortices with different wavelength 
can develop at the same time and show no significant interaction 
with each other. They also found that for large wavenumbers a new 
pair of vortices with different wavelength is likely to appear, 
causing a splitting of the original vortices. 

Bottaro and Zebib (1997) studied different wall roughness 
distributions and their influence in the GV formation. They found 
the preferable wavelength to be near the most amplified LST mode 
for different disturbance inducers. They also found that triangular 
riblets are the best GV promoters, but in this case the wavelength is 
set by the distance between the riblets and not by the mode with the 
largest amplification rate. They also found that, before the instability 
mechanism can start to amplify disturbances, there is a linear 
filtering region called receptivity region. 

Luchini and Bottaro (1998) studied the receptivity of GV to free 
stream disturbances and to wall disturbances. They used adjoint 
parabolic equations to integrate backward in space and achieve the 
perturbation sources that give birth to GV. They arrived at the 
Green’s functions that result in the most amplified GV when scaling 
external disturbances in a receptivity process. They investigated 

external disturbances coming from the free-stream or from the wall, 
and could identify the disturbance that is most effective in 
generating GV. 

As can be concluded from these investigations, several 
techniques can be used to ‘seed’ Görtler vortices in experimental 
facilities and numerical simulations. In this study perturbations are 
introduced by suction and blowing at the wall in a disturbance strip. 
The normal velocity component at the wall varies according to a 
cosine function in the spanwise direction. The results show that 
there is a receptivity region between the disturbance strip and the 
region where the disturbances propagate as classic GV. In this 
receptivity region the perturbations are filtered by the boundary 
layer and the resulting vortex wavelength is not necessarily the 
imposed wavelength at the disturbance strip. Tests were made in 
order to verify the behavior of the flow in the receptivity region and 
in the subsequent GV dominated region. The study is performed by 
using Spatial Direct Numerical Simulation (DNS). 

In the following sections first the governing equations and the 
numerical method are presented. Then verification and validation 
test cases are presented comparing the DNS results with results from 
other numerical models (Mendonça, 2000, Lee and Liu, 1992, Li 
and Malik, 1995) and with experimental results from Swearingen 
and Blackwelder (1987). Next the disturbance behavior in the 
receptivity region and the GV dominated region is analyzed for 
different spanwise wavenumbers. The last part presents the 
conclusions and final comments. 

Nomenclature 

Go = Görtler number. 
H = Curvilinear coordinate metric.  

Kc
 = Wall curvature. 

L = Reference length scale. 

P = Pressure. 

Re = Reynolds number.  
Res = Residue for the multigrid procedure.  
t = Time. 

Uk, Vk, Wk
 = Streamwise, wall-normal and spanwise velocity 

component in the Fourier space. 

x, y,  z = Streamwise, wall-normal and spanwise coordinate 

directions. 

U∞ = Free-stream velocity. 

u, v, w = Streamwise, wall-normal and spanwise velocity 

components. 

Ek
 = Kinetic energy of Fourier mode K.  

f1, f2, f3  = Ramp functions for the buffer domain. 

Greek Symbols 

βk
  = Spanwise wavenumber.  

Λ = Spanwise wavelength parameter.  
ε = Independent variable in the ramp functions f

2, and  f3.

Λf = Spanwise wavelength parameter of the fundamental 
Fourier mode. 

Λz = Spanwise wavelength.  
ν = Kinematic viscosity.  

ωk, ωk, ωk
 = Streamwise, wall-normal and spanwise vorticity 

components. 

Ωxk, Ωyk, Ωzk
  = Streamwise, wall-normal and spanwise vorticity 

components in the Fourier space. 
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Formulation and Numerical Method 

Governing Equations 

The governing equations are the incompressible, unsteady 
Navier-Stokes equations with constant density and viscosity. That 
is, the momentum equations for the velocity components (u,v,w) in 
the streamwise direction (x), wall normal direction (y) and spanwise 
direction (z):  
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and the continuity equation:  
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where p is the pressure and ∇∇∇∇2  is:  
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The Görtler number is given by:  

( ) 21
ReKGo c= , (6) 

In these equations, the term (Go 2 u2) / [(Re)1/2  h] is the leading 
order curvature term, where h = 1 –  kc y and kc is the curvature of 
the wall. 

The variables used in the above equations are non-dimensional. 
They are related to the dimensional variables by:  
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where Re is the Reynolds number. The terms with an over-bar are 

dimensional terms, L  is the reference length, ∞U  is the free-

stream velocity, ν  is the kinematic viscosity and R  is the wall 
radius of curvature. 

The vorticity components, given by the negative curl of the 
velocity vector are:  
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Taking the curl of the momentum equations (1) to (3) and using 
the continuity equation (4), one can obtain the vorticity transport 
equations in each direction: 
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where a = vωx - vωy , b = uωz - wωy, and c = wωy - vωz, are the 
nonlinear terms resulting from convection, vortex stretching and 
vortex bending. 

Taking the definition of the vorticity and using the fact that both 
the velocity and vorticity vector fields are solenoidal, one can obtain 
a Poisson equation for each velocity component: 
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The flow is assumed to be periodic in the spanwise (z) direction 
and symmetric with respect to z = 0. Therefore, the flow field is 
expanded in real Fourier cosine and sine series with K spanwise 
Fourier modes:  
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where β kis the spanwise wavenumber given by β
k
 = 2 πk /λz, and λz  

is the spanwise wavelength of the fundamental spanwise Fourier 
mode. 

Substituting the cosine and sine transforms (Eq. 17 and 18) in 
the vorticity transport equations (11 to 13) and in the velocity 
Poisson equations (14 to 16) yields the governing equations in the 
Fourier space: 
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The Eqs. (19) to (24) were solved numerically in the domain 
shown schematically in Fig.3. An orthogonal, uniform grid, parallel 
to the wall was used. The fluid enters the computational domain at 
x=x0  and exits at the outflow boundary x=xmax. Disturbances were 
introduced into the flow field using a suction and blowing function 
at the wall in a disturbance strip, located between x1  and x2. 
Between x3 and x4 a buffer domain technique was implemented in 
order to avoid wave reflections at the outflow boundary. A Blasius 
boundary layer was used as the base flow. 

Figure 3. Integration domain. 

Boundary Conditions: 

At the upper boundary (y=ymax) the flow was assumed to be 
irrotational. This is satisfied by setting all vorticity and their 
derivatives to zero. The velocity components are also set to zero.  
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At the wall (y=0), no-slip conditions are imposed for the 

streamwise (Uk) and the spanwise (Wk) velocity components (Eq. 
(27)). For the wall-normal velocity component (Vk) the non-
penetration condition is imposed for all points at the wall except 
between x1 and x2, where the disturbances are introduced as 
explained below. In addition, the condition ∂ Vk /∂ y = 0 is imposed 
to ensure conservation of mass.  
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The following equations are used for evaluating the vorticity 
components at the wall:  
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The introduction of the disturbances at the wall is done via a slot 
in the region (i1 ≤ i ≤ i2), where i1 and i2 are the first and the last 
point of the disturbance strip. The suction and blowing normal 
velocity variation along the streamwise direction is given by the 
function:  

( ) ( ) 21
3 forsin0 iii       At , ,iVk ≤≤∈=

and  

( ) 21 andfor  00 ii     ii t , ,xVk =  (31) 

where ε=π (i - i1) (i2 –  i1 ) and A is a real constant that can be chosen 
to adjust the amplitude of the disturbance. The chosen function 
(sin3) ensures that, at  i = i1 and i = i2, the normal velocity 
component, its first and second derivatives do not have a 
discontinuity going in and out of the disturbance strip region. The 
variable i indicates the grid point location xi in the streamwise 
direction, and points i1 and i2 correspond to x1 and x2 respectively. 

At the inflow boundary (x = x0), the velocity and vorticity 
components are specified based on the Blasius boundary layer 
solution. 
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At the outflow boundary (x = xmax), the second derivative of the 
velocity and vorticity components are set to zero: 

0
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∂
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A damping zone near the outflow boundary is defined in which 
all the disturbances are gradually damped down to zero. This 
technique is well documented in Kloker et al. (1993), where the 
advantages and requirements are discussed. Meitz and Fasel (2000) 
adopted a fifth order polynomium as damping function, and the 
same function is used in the present simulations. The basic idea is to 
multiply the vorticity components by a ramp function f2 (x) after 
each integration step. This technique is very efficient in avoiding 
reflections that could come from the outflow boundary conditions 
when simulating disturbed flows. Using this technique, the vorticity 
components result:  

( ) ( ) ( )t,y,xxfy,x kk Ω=Ω 2 , (35) 

where Ωk (x,y,z) is the disturbance vorticity component that comes 
out from the Runge-Kutta integration and f2 (x) is a ramp function 
that varies smoothly from 1 to 0. 
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The implemented function was:  

( ) ( ) 345
2 101561 ∈−∈+∈−=∈= fxf , (36) 

where  ε = (i –  i3) / (i4 –  i3)  for i3 ≤ i ≤ i4. The points i3 and i4
correspond to the positions x3 and x4 in the streamwise direction 
respectively. To ensure good numerical results a minimum distance 
between x3 and x4 and between x4 and the end of the domain—  x3 

and xmax should be warranted. In the present simulations these zones 
have 30 grid points each. 

Another buffer domain located near the inflow boundary is also 
implemented in the code. As pointed out by Meitz (1996), in 
simulations involving streamwise vortices reflections due to the 
vortices at the inflow can contaminate the computation. The 
function adopted here is similar to the one used for the outflow 
boundary:  

( ) ( ) 345
3 10156 ∈+∈−∈=∈= fxf , (37) 

where  is ε = (i –  1) / (i1 –  1) for the range 1 ≤ i ≤ i1. All the 
vorticity components are multiplied by this function in this region. 

Simulations with two different types of buffer domain close to 
the inlet boundary were carried out. In the first type, the function 
(37) was applied to all Fourier modes between x0 and x1. In the 
second type, the damping function was used only for the 
fundamental Fourier mode in the region between x0 and x1. For the 
other Fourier modes, all the vorticity components were set to zero 
between x0 and x2. In the second type of buffer domain, the damping 
function was also used between x2 and 2x2 for all modes but the 
fundamental. The reasons for using this technique is discussed in the 
presentation of results. 

Numerical Method 

The governing Eqs.(19) to (24) are solved using a compact high-
order finite difference technique. 

The solution is marched in time according to the following 
steps: 

1. Impose initial conditions using a 2D solution for Uk, Vk and
Ωzk and set the other variables, Wk, Ωxk and Ωyk,  to zero;  

2. Introduce disturbances at the wall through the disturbance 
strip;  

3. Calculate the new vorticity distribution in the whole field, 
except at the wall, integrating Eq.(19) to (21);  

4. Taper the vorticity disturbance components to zero at the 
damping zones near the inflow boundary and near the 
outflow boundary;  

5. Calculate the wall normal velocity component (Vk) by 
solving the V-Poisson equation - Eq.(23);  

6. Calculate the streamwise velocity component (Uk) by using 
Eq.(4) for the 2D mode and the U-Poisson equation - 
Eq.(22) for the others modes;  

7. Calculate the spanwise velocity component (Wk) by using 
the W-Poisson equation - Eq.(24);  

8. Calculate the streamwise vorticity component at the wall by 
solving the Ωx-Poisson equation - Eq.(29);  

9. Calculate the spanwise vorticity component at the wall by 
solving the Ωx-Poisson equation - Eq.(30);  

10. Return to the second step until the desired integration time is 
reached.  

The time derivatives in the vorticity transport equations were 
discretized with a classical 4th order Runge-Kutta integration 
scheme (Ferziger and Peric, 1997). The steps 4 to 9 are carried out 
for each Runge-Kutta time step. 

The spatial derivatives were calculated using a centered, 6th

order compact finite difference scheme. For the boundary points one 
sided 5th order approximation were used, while near the boundaries, 
an asymmetric 6th order approximation was used (Souza et al. 
2002a, Souza et al. 2002b). The discretization stencils are: 
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For the first grid line next to the boundary (i=2):  
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For the interior points, a 6th order Padé approximation was 
used:  
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The second derivative, at the boundary (i=1), was discretized 
using a 5th order asymmetric approximation:  
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The first grid line near the boundary (i=2), a 6th order 
asymmetric approximation was used:  
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The interior points were calculated with a 6th order Padé 
approximation:  
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At the opposite boundaries, i = N and i = N - 1, approximations 
similar to the ones used for the grid lines i = 1 and  i = 2 were used. 

The V-Poisson equation (23) was solved using a Full 
Approximation Scheme (FAS) multigrid (Trottenberg and 
Hackbusch, 1986). A v-cycle working with 4 grids was 
implemented. The number of cycles used varied according to the 
convergence criteria. The adopted criteria requires that the residue 
be less than 10-9. The residue of the V-Poisson equation is: 

xkk
zk

k x
VsRe Ω+

∂
Ω∂

−−∇= β2 . (44) 

The average number of cycles in the simulations was 5. 



L. F. de Souza et al 

274 / Vol. XXVI, No. 3, July-September 2004 ABCM

Code Verification and Validation 

In order to test the accuracy and reliability of the mathematical 
model and numerical implementation, the experimental results of 
Swearingen and Blackwelder (1987) were compared to the 
numerical results. Results from the DNS model were also compared 
to the results obtained with other numerical models (Mendonça, 
2000, Lee and Liu, 1992) for the same experiment (Swearingen and 
Blackwelder, 1987). 

The experiment of Swearingen and Blackwelder (1987) 
considers a boundary layer on a concave plate with R=3.2 m with a 
free-stream velocity of U∞ = 5 m/s. The average spanwise 
wavelength observed in the experiment is λz, =1.8 cm, which 
corresponds to a non-dimensional wavenumber of β=34.90 and a 

wavelength parameter for the fundamental Fourier mode                 
Λf = (U∞ λz / ν) (λz /R)1/2 = 450. 

The reference length used was L=10 cm. The simulation started 
at x0 = 10 cm from the leading edge, which corresponds to a Görtler 
number Go = 2.39, and a Reynolds number Re = 33124.  

The number of grid points in the streamwise and wall-normal 
directions were 321 and 281 and respectively. The computational 
domain was 11.8 long and 0.231 tall. The disturbance-strip was 
located at 1.6 ≤ x ≤ 2.6. Seven Fourier modes were used in the 
simulation. Test runs with a smaller grid spacing and larger number 
of Fourier modes indicated that the solutions were grid independent. 

Figure 4 presents the streamwise development of the disturbance 
energy for each k Fourier mode. The disturbance energy is defined 
as:  

0k   i   dy  wvuE kkkk >




 ′+′+′= ∫

∞ f0
222 , (45) 

and  

0k      dy  wuE kkk >




 ′+′= ∫

∞ for
2

1
0

22 , (46) 

where u’, v’ and w’ are disturbance velocity components. 
The disturbance energy of the mean flow distortion did not take 

into account the disturbance velocity component normal to the 
wall—  v’0 to allow comparisons with the PSE model, where v’0 does 
not go to zero as y→ ∞.  

The comparison shows very good agreement between the DNS 
results and the PSE results for all Fourier modes. The difference 
observed in the region between the suction and blowing strip and   x 
= 40 cm, corresponds to a receptivity region, where the wall 
disturbance slowly evolves to Görtler vortices. 

Figure 4. Streamwise development of the disturbance energy of each 
Fourier mode. Comparison between PSE (squares) and DNS results (solid 
lines). Fourier modes 0 to 6. 

Figures 5 and 6 show contours of the streamwise velocity 
component in the ( y, z ) plane. The numerical study from Lee and 
Liu (1992) and the measurements from Swearingen and 
Blackwelder (1987) are presented for the same streamwise 
positions. For the two different streamwise positions given, the 
results show a very good agreement for the development of the 
mushroom type structures. The experimental results at x = 110 cm 
indicate that the mushroom structures are already dissipating due to 
secondary instability effects. In the numerical simulation this effect 
was not present. Secondary instability only develops if a high 
frequency signal is also introduced in the flow field. In the absence 
of secondary instability the amplification of the vortices saturates as 
shown in Figure 4 after x = 90  cm. The numerical results from Lee 
and Liu (1992) are based on a 2nd -order model, being slightly more 
dissipative than the current one. 

Figure 5. Contour lines of streamwise velocity u/U∞∞∞∞ from 0.1 to 0.9 in 
increments of 0.1. DNS results-first figure, numerical results (Lee and Liu, 
1992) -middle and experimental results (Swearingen and Blackwelder, 
1987) -bottom. Streamwise position x = 100 cm. 
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Figure 6. Same as Fig 5 for streamwise position x = 110 cm. 

Results 

In this section the boundary layer response to disturbances 
introduced in the flow field through a suction and blowing strip is 
investigated using direct numerical simulation. The study considers 
the relationship between the imposed wavelength in the suction and 
blowing strip and the resulting vortex wavelength. The initial 
development of the disturbances are studied in the receptivity region 
just after the disturbance strip. Only the primary instability 
mechanism is considered, therefore, high frequency disturbance 
signals to generate secondary instability were not introduced. 

The boundary layer response to four different disturbance 
wavelength imposed in the suction and blowing strip was 
investigated. They correspond to wavelength parameters Λ of 56.25, 
159.1, 450.0 and 692.6. The fastest growing mode has Λ=210 
according to the LST. 

Figure 7 shows the mean flow distortion and other four Fourier 
modes kinetic energy variation along the streamwise direction of a 
disturbance introduced through the suction and blowing strip. The 
imposed wavelength corresponds to Λ=56.25. After an initial 

receptivity region located between x = 18 cm and x = 24 cm, the 
disturbance propagates as centrifugal instability Görtler vortices. 
Although only a single Fourier mode was imposed in the suction 
and blowing strip, higher harmonic Fourier modes are excited in the 
receptivity region. The growth rate of the fundamental mode is 
small and the higher harmonic modes are stable according to linear 
stability theory. After the receptivity region, the growth of all 
Fourier harmonics are due to the growth of the fundamental mode in 
a non-linear process. 

Figure 7. Streamwise development of the disturbance energy for ΛΛΛΛf=56.25. 
Fourier modes 0 to 4. 

Similar results are obtained by changing the spanwise 
wavelength imposed at the disturbance strip to Λ = 159.1. The 
energy variation in the streamwise direction for different Fourier 
modes is shown in Fig. 8. Again, after an initial receptivity region 
the disturbance evolves to Görtler vortices further downstream. The 
typical GV mushroom structure at the streamwise position x = 100
cm is shown in Fig. 9. 

In the receptivity region different Fourier modes are excited. 
Despite the fact that this modes are strongly amplified initially, they 
adjust to GV harmonics further downstream. This adjustment is 
confirmed by a simple numerical experiment, where only the 
fundamental mode is allowed to grow in the receptivity region. All 
other harmonics are artificially damped in this region, but allowed to 
grow further downstream. The initial growth of the fundamental 
mode results in the development of GV without the influence of 
nonlinear effects until the other harmonics are turned on. Comparing 
the energy evolution of each Fourier mode for this numerical 
experiment as presented in Fig. 10 with the corresponding variation 
presented in Fig. 8 one can see that, after the receptivity region, the 
growth of the harmonics are equivalent. That is also confirmed by 
the resulting mushroom structure at x = 100 cm presented in Fig. 11. 
The initial strong amplification of different harmonics in the 
receptivity region does not change the final evolution of the GV. 
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Figure 8. Streamwise development of the disturbance energy for ΛΛΛΛf=159.1. 
Fourier modes 0 to 7. 

Figure 9. Contour lines of streamwise velocity u/U∞∞∞∞  from 0.1 to 0.9 in 
increments of 0.1. Streamwise position x = 100 cm. 

According to linear stability theory, GV with wavelength 
parameter greater then Λ = 56.25 have a weak amplification. The 
predominant forcing for this mode is the nonlinear GV with 
wavelength parameter Λ =159.1. That is the reason why GV with 
different wavelengths are not observed in the flow field, despite the 
strong initial amplification of the higher harmonics. 

The third numerical simulation presented considers an imposed 
disturbance at the suction and blowing strip with a wavelength 
parameter Λf = 450. The flow parameters are those from the 
Swearingen and Blackwelder (1987) experiment and the excited 
wavelength correspond to the experimentally observed wavelength.  

The energy variation in the streamwise direction for different 
Fourier modes is presented in Fig. 12. The development of these 
modes are compared to the corresponding modes of a numerical 
experiment where the higher harmonics are suppressed in the 
receptivity region, as shown in Fig. 13. The main difference is in the 
development of the first harmonic, Λ=159.1. If this mode is not 
suppressed, it grows strongly beyond the receptivity region. 
According to LST this mode is unstable and both the fundamental 
mode and this mode are amplified by the centrifugal instability 
mechanism. 

Figure 10. Streamwise development of the disturbance energy for ΛΛΛΛf=159.1 
with higher harmonics suppression in the receptivity region. Fourier 
modes 0 to 7. 

Figure 11. Contour lines of streamwise velocity u/U∞∞∞∞  from 0.1 to 0.9 in 
increments of 0.1 with higher harmonics suppression in the receptivity 
region. Streamwise position x = 100 cm. 

To suppress the higher harmonics in the receptivity region 
corresponds to excite a single mode that will give rise to a GV with 
a desired wavelength. As seen in Fig. 14 for x = 100 cm, the 
resulting disturbance structure, in this case, corresponds to the 
Swearingen and Blackwelder experimentally observed structure. If 
the higher harmonics are not suppressed their growth distort the 
classic GV mushroom structure as shown in Fig. 15. The down-
wash region has weaker velocity gradients near the wall and the 
mushroom stem is narrower. This may have implications for 
secondary instability. Because the disturbance saturates around x = 
90 cm and the first harmonic does not have enough energy to 
change the spanwise pattern, the resulting spanwise wavelength 
does not change. 
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Figure 12. Streamwise development of the disturbance energy for ΛΛΛΛf=450. 
Fourier modes 0 to 7. 

Figure 13. Streamwise development of the disturbance energy for ΛΛΛΛf=450 
with higher harmonic suppression in the receptivity region. Fourier modes 
0 to 7. 

Figure 16 corresponds to a numerical simulation for a suction 
and blowing disturbance with Λ = 692.6. The receptivity region 
goes from x = 18 cm to x = 40 cm. Again, the suction and blowing 
strip generates a range of Fourier modes. According to LST, the 
mode with Λ = 244.9  has a growth rate higher than that of the 
excited mode Λ = 692.6. After x = 50 cm, these modes have about 
the same energy level. 

Since both modes are unstable according to LST, the centrifugal 
instability amplify both modes simultaneously. Consequently, the 
mushroom structure is strongly distorted when compared to the 
classic GV mushroom structure generated from a single mode. The 
resulting distorted mushroom structure can be observed in Fig. 17. 
The simultaneous growth of a mode with a spanwise wavelength 
that is half the imposed wavelength reinforces the up-wash region 
and creates two smaller up-wash regions on both sides of the 
original mushroom. This structure will probably have a completely 
different secondary stability characteristics. 

Figure 14. Contour lines of streamwise velocity u/U∞∞∞∞  from 0.1 to 0.9 in 
increments of 0.1. ΛΛΛΛf=450 with higher harmonic suppression in the 
receptivity region. Streamwise position x = 110 cm. 

Figure 15. Contour lines of streamwise velocity u/U∞∞∞∞ from 0.1 to 0.9 in 
increments of 0.1. ΛΛΛΛf=450. Streamwise position x=110 cm. 

Numerically suppressing the growth of other harmonics in the 
receptivity region allows a single mode to grow as shown in Fig. 18. 
This mode will cascade energy to higher harmonics further 
downstream an produce the classic GV mushroom structure as seen 
in Fig. 19. 

Figure 16. Streamwise development of the disturbance energy for 
ΛΛΛΛf=692.6. Fourier modes 0 to 4. 
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Figure 17. Contour lines of streamwise velocity u/U∞∞∞∞  from 0.1 to 0.9 in 
increments of 0.1. ΛΛΛΛf =692.6. Streamwise position x = 100  cm. 

Figure 18. Streamwise development of the disturbance energy for 
ΛΛΛΛf=692.6. Higher harmonics suppressed. Fourier modes 0 to 4. 

Figure 19. Contour lines of streamwise velocity u/U∞∞∞∞ from 0.1 to 0.9 in 
increments of 0.1. ΛΛΛΛf=692.6. Streamwise position x = 100 cm. 

A last simulation was done with three different disturbance 
wavelength imposed in the suction and blowing strip, Λ=450, 
Λ=159 and Λ=56.25, all with identical initial amplitudes. The 
spanwise variation of the normal velocity component at the wall is 
given by cos(βκz)+cos(2βκz)+cos(3βκz). The resulting streamwise 
development of the disturbance energy is plotted in Fig.20. It can be 
observed that both the fundamental mode (mode 1) Λf = 450 and the 
first harmonic (mode 2) Λ = 159.1, have a strong growth, and when 
mode 2 saturates, mode 1 continues to grow. It can also be observed 
that the Fourier mode 2 grows stronger than mode 1 in the region 

between the streamwise positions x = 40 cm and x = 70 cm. In Figs. 
21 and 22 the mushroom structure is plotted at two streamwise 
positions, x = 70 cm and x = 110 cm. At the streamwise position 
x=70 cm, where mode 2 dominates, three mushroom structures are 
observed. At the streamwise position of x = 110 cm, the modulated 
pattern is strongly pronounced. The structure is very different from 
the typical GV. In this case also, the GV will probably have a 
different secondary instability response. 

Conclusions 

The paper presents a numerical model based on a high-order 
compact finite difference scheme to solve the complete Navier-
Stokes equations. This model is used in a direct numerical 
simulation of flows over concave surfaces. The model was verified 
by comparing results with three different numerical models 
(Mendonça, 2000, Li and Malik, 1995, Lee and Liu, 1992). The 
validation was done by comparing the results with experimental 
results from Swearingen and Blackwelder (1987). 

Görtler vortices generated by disturbances introduced at the wall 
by suction and blowing in a disturbance strip may have a different 
structure from the one observed according to weakly nonlinear 
theory. This behavior is observed because the suction and blowing 
region excites different Fourier modes which may be unstable 
according to LST. This modes may have a growth rate higher than 
the growth rate of the fundamental imposed mode. The 
simultaneous growth of the different modes modifies the resulting 
mushroom pattern. This may have significant consequences to 
secondary instability, which is strongly dependent on the velocity 
profiles formed by the vortices. 

In order to use the DNS model to study the weakly nonlinear 
development of Görtler vortices of a specified wavenumber, it was 
necessary in some cases to eliminate the undesired Fourier modes 
generated by suction and blowing. Future studies will be conducted 
in order to evaluate the secondary instability of the modified 
mushroom structures. 

Figure 20. Streamwise development of the disturbance energy for ΛΛΛΛf=50. 
Fourier modes 0 to 4. 
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Figure 21. Contour lines of streamwise velocity u/U∞∞∞∞  from 0.1 to 0.9 in 
increments of 0.1. Streamwise position x=70 cm. 

Figure 22. Contour lines of streamwise velocity u/U∞∞∞∞  from 0.1 to 0.9 in 
increments of 0.1. Streamwise position x = 110 cm. 
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