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A Brief Comment on the Dynamical 
Behavior of a Forced Nonlinear 
Slewing Beam: 1. Superharmonic 
Resonance 
This paper describes the dynamical behavior of a nonlinear flexible beam (cubic 
nonlinearities considered) connected to a dc motor (responsible for the slewing motion) 
when the angular displacement of the slewing axis and its derivatives are considered to be 
of a harmonic type and the system is excited near a resonance (present due to the 
nonlinear contribution). 
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Introduction 

The idea in this paper is to present some analytical results on the 
investigation about nonlinear mechanical systems composed by (or 
including) rotating flexible beam-like structures (lightweight robotic 
manipulators, satellite antennas, solar panels...) harmonically 
excited. A schematic of the slewing flexible structure studied here is 
shown in figure 1.1 

The dynamic analysis developed in this paper considers a 
nonlinear flexible beam-like structure clamped to an oscillating hub 
or actuator (harmonically driven), which represents the beam 
excitation.  

The governing equations of motion are presented in the 
perturbed form (Fenili, 2000); (Fenili 2004a); (Fenili, 2004b). In 
this case, all the nonlinearities plus the structural damping are 
considered as small perturbations around a known linear system.  

The amplitude and phase equations of the perturbed problem are 
derived and its steady state behavior investigated in the vicinity of a 
resonant cases (Hayashi, 1964; Schmidt and Tondl, 1986; 
Cunningham, 1958; Drazin, 1994). 

Governing Equations of Motion: N Modes 

Equations (1a), (1b) and (1c) are the nondimensional perturbed 
governing equations of motion for the nonlinear slewing flexible 
beam-like structure driven by a dc motor (Fenili, 2000). Equations 
(1a) and (1b) are the governing equations of the actuator (dc motor: 
Equation (1a) represents the governing equation for the electric 

                                                           
Paper accepted May, 2005. Technical Editor: Atila P. Silva Freire. 
 

current and Equation (1b) represents the governing equation for the 
angular displacement of the motor axis) and Equation (1c) is the 
governing equation of the time component, qi, of the transverse 
displacement of the flexible beam.  
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Figure 1. The slewing flexible beam (XY: inertial frame; xy rotating frame). 
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The boundary conditions are given 

by: 0)1(and0)1(,0)0(,0)0( =φ ′′′=φ′′=φ′=φ . 
In Equations (1a) and (1b), Ra represents the armature resistance, T 

represents the period of the first natural frequency of the beam, La 
represents the armature inductance, cv represents the motor internal 
damping, Ishaft represents the inertia of the connecting motor-beam 
shaft, Imotor represents the inertia of the motor, Kt represents the 
torque constant and Kb represents the back e.m.f. constant. In 
Equation (1c): 

 

( ) ( )∫ =ξξφ′ξφ′= x
jijiij 0 RdR  (1d) 

 

( )∫ ξξφ−= 1
x dV ii  (1e) 

 

( ) ( )[ ] η∫ ∫ ξξφ′ξφ′−= η ddS 1
0x jiij   (1f) 

 

( ) ( )∫ ξξφξφ′−= 1
xij dW ji  (1g) 

 

∫ φ=α 1
0 dxx  (1h) 
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  ( )∫ φφφ′−φφ ′′−φ=℘ 1
0 d2V2R2 xjijiijij  (1j) 
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( )∫ φφ′+φφ ′′=Λ 1
0 dRS xijkijkijk  (1l)   
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Where E represents the Young modulus, I represents the inertia 

of the beam cross section around the neutral axis, L represents the 
beam length, φ  represents each one of the flexural vibration modes 
of the beam and w  represents the frequencies associated to these 
modes. 

Governing Equations of Motion: 1 Mode 

Consider now that the behavior of the flexible structure can be 
represented by only one flexural mode (the first). The governing 
equations given by (1a) to (1c) are reduced to (Fenili et al, 2004a):  
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and the same boundary conditions as before.  

As can be seen again for the set of Equations (2a) to (2b), the 
governing equations for the dc motor does not depend on the 
equation for q1. In this sense, the behavior of the variable θ  (and its 
derivatives) is known beforehand.  

In this work, the prescribed angular displacement is considered a 
harmonic function, with frequency Ω , of the type: 

 

( )titi ee
i

CtC Ω−Ω −=Ω=θ
2
1)sin(  (3) 

 
where the amplitude of excitation, C, is considered equal to 1 (Fenili 
et al, 2003). 

Amplitude and Phase Modulation Equations 

Equation (2c) is a nonlinear perturbed governing equation of 
motion and its analytical solution can be found by using some 
perturbation technique such as the multiple scale method (Nayfeh 
and Mook, 1979; Nayfeh, 1981; Nayfeh, 1993).  

The main idea here is to eliminate all the possible conditions 
under which the desired analytic solution of Equation (2c) is 
unbounded in time.  

The amplitude of vibration increases in time as a direct 
consequence of the presence of secular and small divisor terms in 
this solution. Several different cases can be found associated with 
this unbounded condition of the system solution (in other words, the 
system resonance’s).  

There is a pair of modulation equations (amplitude and phase) 
for each one of the critical cases and they can be studied separately.  

Only the particular case 1w
3
1Ω ≈  is studied here. 

 The fixed-point (steady state) solutions are the wanted ones and 
the focus in this kind of analysis. The original governing equations 
(2c) are reduced to the ones that represent the system in this desired 
condition.  

After applying the multiple scale methods to Equation (2c) and 
separating the resulting equation in orders of the small parameter ∈ , 
the elimination of terms, which yields unbounded solution, is 
accomplished (Fenili et al, 2003). Thus, taking the O (0) solution 
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and substituting in the O ( 2∈ ) equation and to bounded solution one 
has: 
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where: 
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Writing A in Equation (4) in the polar form given by 
 

iβae
2
1A =  (5) 

 
and separating the new equation in real and imaginary part, 
amplitude (a) and phase (β ) modulation equations of the system 

response for the case 1w
3
1Ω ≈   (superharmonic resonance) has the 

form shown in Equations (6). 
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or, in autonomous form: 
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where 

 
β−σ=γ 1T  (8) 

 

Frequency Response Function 

Squaring both sides of Equations (9a) and (9b) and adding them 
one obtains:  
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which represents the damped frequency response function for the 

case 1w
3
1Ω ≈ . The parameter a in equation (10) represents the 

steady state amplitudes of the system response. 

Some Numerical Results in the Resonant Region Around 

1w
3
1  

Figures 2 to 4 illustrate the steady state vibration amplitudes for 
different values of the excitation frequency (Ω ) in the 

neighborhood of 1w
3
1 .  

In these figures, the broken lines represent unstable solutions 
and the full line represents stable steady state solutions. The stable 
solutions are the ones the real system will realize (maintain).  

The values of the parameters used in the numerical simulations 
are given in Table 1.  

In Figure 2, the length of the beam is varied and the frequency 
response curve is plotted for each one of the cases.  

Figure 3 shows the influence of the beam structural 
damping,µ , over the amplitude of vibration of the beam in steady 
state.  

The higher the value of this parameter the closer the behavior of 
the frequency response curve for the perturbed system is to the 
linear frequency response curve obtained by doing 0∈= . It is 
evident that the damping can act in the sense of killing all the 
nonlinear effects on the system.  

Figure 4 shows the upward jump, obtained by increasing the 
frequency of excitation, and the backward jump, obtained by 
decreasing the frequency of excitation.  

The type of jump that will occur depends on the direction one 
goes over the curve. This jump phenomenon is an as signature of a 
nonlinear system. 

 

Table 1. Parameter values used in the simulations( young Modulus( 
aluminum-beam) and density( aluminium): beam. 

 

Parameter 
 

Value 
 

Unit 
 

Beam length  
 

1.0  
 

m 
 

Beam cross section  
 

0.0008 X 0.0100  
 

m (X m) 
 

Young modulus 
 

0.7  1011 
 

N/m 
 

Density:   beam 
 

2700 
 

kg/m3 

 

Small parameter: ∈  
 

2.3704  10-8     - 
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Figure 2. Frequency response curves for different values of the beam 
length, L. (dimensional 0.0010µ = Kg/s). 
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Figure 3. Frequency response curves for 1w
3
1Ω ≈ and L=1.0 m. The 

values of µ considered here are. 
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Figure 4. Backward jump (A →  B) and forward jump (C →  D) for          
µ = 0.00010 Kg/s. 

Conclusions 

The numerical simulations presented in this work discuss the 
dynamical behavior of a nonlinear flexible beam when clamped to 
the axis of a dc motor and excited near a superharmonic resonance 
by a prescribed harmonic angular displacement θ .  

The influence of the structural damping of the beam over the 
frequency response curves is also investigated.  

By increasing the value of this parameter one brings the peak of 
the frequency response curves to the origin of the adopted reference 
frame and the shape of the curve approximates the one for linear 
case. It was also verified that the same behavior obtained with the 
increasing of µ  could be verified for increasing values of L, the 
beam length. In future works we will discuss another resonance’s. 
This is the first work of a series of them.  

An extension to another rsonances will be done in next future. 
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