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A Stochastic Model for Volumetric 
Errors 
The present work aims to determine mathematical equations that describe the behavior of 
the components of the volumetric error in Three Coordinates Measuring Machines 
(3CMM). A general methodology using techniques of multiple regressions is presented. 
Such methodology, applied to a moving bridge type 3CMM, has made it possible to obtain, 
in a simple way, three regression equations from data collected through a direct 
calibration procedure, more specifically, the space grid method. The proposed model was 
statistically and experimentally evaluated. The statistic evaluation covers the calculation 
of the correlation coefficient of the samples, a residue analysis and the hypothesis 
verification. The experimental evaluation was made through the comparison of results 
expected by the model with the results obtained from the measurements of a ball bar. From 
these results, it is possible to verify that the model is adequate and that it is good in 
predicting volumetric errors in the machine. 
Keywords: Space grid method, ball bar, multiple regression, Abbè offsets and least 
squares 
 
 
 

Introduction 

The contemporary times, characterized by great scientific 
discoveries, an accelerated technological development and global 
economy, has also brought the evolution of productive processes. 
The global character of the commercial relations, the competition, 
and the struggle for bigger slices of the market made companies to 
invest in the search of new technology with the objective of 
increasing the productivity and the quality of products. As a 
consequence, modern tooling equipment has been incorporated to 
the industrialized world where the products are manufactured with 
lower tolerances and in larger quantities. Therefore, it has become 
necessary integrate to these systems with faster and more precise, 
more flexible and more reliable means of control. 

The Three Coordinates Measuring Machines are apparently the 
devices that supply these needs, representing one of the most 
advanced equipment used in modern metrology. It may be said that 
these machines present simplicity of operation, flexibility, accuracy 
and also, it permits to take fast and precise measurements of 
complex structures as well as simultaneous control of several 
metrological characteristics of a piece (Kunzmann & Waldele, 
1988).1 

However, the performance of 3CMM is limited due to the 
presence of Abbè offsets, the difficulty of assembling in three axes, 
theoretically orthogonal, and also due to imperfections caused by 
the tooling processes that take place in several mechanical elements 
which compose the system. These factors act together, combining to 
each other in a complex way all over the volume of the machine, 
contributing to the so called volumetric errors. Every reading, which 
is a result of a measurement, will always be subjected to errors and 
therefore it is necessary to develop methods so that these errors are 
minimized. 

In this sense, the objective of this work is to formulate the 
components of the volumetric error of a 3CMM of a moving bridge 
type using techniques of multiple regression aiming the prediction 
of the volumetric error in any given point of the working volume of 
the machine. 

Nomenclature 

SqC  = correction due to error of the mechanical square. 

LVDTL  = reading taken by LVDT. 

LVDTR  = LVDT resolution. 
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D = measured displacement. 
D1 and D2 = diameters of balls 1 and 2, respectively. 
DBM = measured length of the bar. 
DBMx, DBMy and DBMz = projections of the length of the bar in 

the preferential directions. 
DBP = standard length of the bar. 
DBR = nominal length of the bar. 
EBx, EBy and EBz = projections of the Ex, Ey and Ez in the 

direction of the bar, respectively. 
EPos = value indicated by laser. 
Ev = volumetric error. 
Ex, Ey and Ez = components of volumetric error. 
M = value indicated by machine. 
P = reference value (Laser). 
PEB = projection of the volumetric error in the direction of the 

bar. 
r2 = correlation coefficient 
RLaser = laser resolution 
RMM3C = machine resolution 
veff = effective degree of freedom 
X, Y and Z = coordinates 
X0, Y0 and Z0 = coordinates of center of ball. 
X2, Y2, Z2, XY, XZ and YZ = variables of regression. 

Greek Symbols 

Pα  = coefficient of thermal expansion of the laser beam. 

Eα  = coefficient of thermal expansion of the scale (glass). 

Sqα  = coefficient of thermal expansion of the mechanical 

square. 
α, β and γ = angles which define the position of the bar with the 

directions OX, OY and OZ, respectively. 
T∆  = difference between the room temperature and the 

reference temperature 
βi = least squares estimators 

Tδ  = difference between the scale temperature and the 
reference temperature 

δx(x),  δy(y) and δz(z) = positioning error at axis X, Y and Z, 
respectively. 

δx(y) and δz(y) = straightness error of axis Y direction X and Z, 
respectively. 

δx(z) and δy(z) = straightness error of axis Z direction X and Y, 
respectively. 

δy(x) and  δz(x) = straightness error of axis X direction Y and Z, 
respectively. 

δθx(x) and δθy(y) = angular error Roll to axis X and Y, 
respectively. 
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δθx0, δθy0 and δθz0 = orthogonality errors. 
δθy(x),  δθx(y) and δθx(z) = angular error Pitch to axis X, Y 

and Z, respectively. 
δθz(x), δθz(y) and δθy(z) = angular error Yaw to axis X, Y and 

Z, respectively. 

ET∆  = difference between the mechanical square temperature 

and the reference temperature. 
εi = residues of regression. 

Subscripts and Superscripts 
i = points where volumetric error components were collected. 

Technical Characteristics of the Measurement System 

The structure of the 3CMM serves as a support and permits the 
movement of a sensor in three orthogonal axes X, Y and Z of 457, 
610, 381mm in length, respectively. These dimensions are 
denominated work capacity. 

The coordinates X, Y and Z determine the position of the points 
on the surface of the pieces in space. The 3CMM was intentionally 
designed to measure these values. However, it is impossible to 
obtain the true or real coordinates of the points due to many factors 
that interfere in the process of measurements. 

In order to determine the relation input - output of the system 
“measuring machine” it is necessary to define and classify the 
variables which are involved in the measuring process, and for that, 
it is necessary to carry out a preliminary analysis of these variables. 

From this analysis it is noted that the coordinates of the points 
may be considered as the input to the system or preliminary inputs. 
Each one of these coordinates may be influenced by many of the 21 
geometrical errors that affect the result of a measurement. These 
geometrical errors constitute what may be called interfering inputs 
to the system. Also, it must be considered the modifying inputs, in 
this case, temperature, humidity and vibrations are kept under 
control and their influences were neglected. 

The combination of the geometrical errors in a point in space in 
each one of the preferential directions is named component of the 
volumetric error. These three components are considered outputs of 
the system. It is then defined the inputs and outputs of the measuring 
machine system. Fig. 1. 
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Figure 1. Representation of the 3CMM measuring system. 

 
Note that for the determination of the relation input-output the 

measuring machine system may be considered as being three 
subsystems. Each one of them has three inputs, which are the 
coordinates of the measuring points X, Y and Z, and only one 
output, which is the component of the corresponding volumetric 
error Ex, Ey or Ez according to the case. 

Once defined the inputs and outputs of the system it is possible 
to classify it. According to the control theory presented in Ogata 
(1982) and Harris (1996), the system 3CMM of Moving Bridge type 
may be classified as: 

Invariable in time: The value of the volumetric error in any 
instant in time depends only on the values of the coordinates X, Y 
and Z and not on the moment in time in which the coordinates are 
measured. 

According to the position: the volumetric error is a continual 
mathematical function of three variables, in that case, the 
coordinates X, Y and Z which define the position of the measured 
points. 

Quasi-static: the value of the volumetric error in any position 
depends only of the current position and not on the previous or 
future positions. The thermal memory of the moving bridge 3CMM 
system can be considered null if temperature is controlled. 

The system may be classified as MISO: the system presents 
multiple inputs and single output. According to the above 
classification, the relation between input and output of the 
measuring machine system may be expressed through a 
mathematical model which describes the components of the 
volumetric error as a function of the position X, Y and Z, represented 
in the system of Eq. (1). 
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Mathematical Equation. 

Regression techniques allow expressing the existing relation 
between a dependent or response variable and one or more 
independent or input variables (Box et al, 1978; Draper & Smith, 
1981 and Hoffmann & Vieira, 1973). Such techniques can be 
applied to sampled data in order to estimate the value of an 
unknown variable from one or more variables whose value is known 
(Spiegel, 1974). 

To determine the existing relation among the variables involved 
in a measurement process was use the regression techniques. Were, 
the coordinates of the points X, Y and Z and the components of the 
volumetric error Ex, Ey and Ez, represented the inputs and outputs 
of the measuring machine system. 

Was proposed a multiple linear regression equation for each of 
the coordinated axis, for the axis X we have: 

 

XiiXiXiXXXi ZYXE εββββ ++++= 3210  (2) 
 

Where XiE  represents the component of the volumetric error in 

the direction X for the different positions; 
3210

   , , XXXX andββββ  

are the regression coefficients; Xi, Yi and Zi are the coordinates of 
point i; an i=1, 2, …, n and Xiε  are the residues of the regression of 

the regression. 
The Eq. (2) is called multiple linear regression equation for 

having multiple independent variables. The estimators of minimum 
square are determined in such a way that the sum of the squares of 
the residue are minimized, i.e. 
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in this case it is convenient to write the multiple regression in a 

matrix form, Eq. (4). 
 

XX HE εβ +=   (4) 
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The estimates of the regression coefficient in Eq. (4) may be 

determined using the least squares method. For that it is necessary 
that (HTH) be an invertible matrix, Eq. (5). 
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Once the numerical values of the regression coefficient are 

known, it is then possible to determine the predicted values of the 
component of the volumetric error in the direction of the axis X and 
the residue, using the Eq. (6) and (7), respectively. 

 

XX HE β̂ˆ =  (6) 
 

XXXXX HEEE βε ˆˆˆ −=−=  (7) 
 
In a similar way, regression equations were proposed to 

equation the components of the volumetric error in the directions Y 
and Z. 

 

   XiiXiXiXXXi ZYXE εββββ ++++= 3210  

   YiiYiYiYYYi ZYXE εββββ ++++= 3210  (8) 

ZiiZiZiZZZi ZYXE εββββ ++++= 3210  

Obtaining the Components of the Volumetric Error in the 
3CMM 

The direct calibration of the measuring machine using the space 
grid method consists of the direct measurement of each component 
Ex, Ey and Ez of the volumetric error. As shown in Fig. 2, the 
machine volume is divided into small volumes or cubes, by the 
generators or measurement lines, which are parallel to each one of 
the three preferential directions. 

Position measurements are realized along the defined generators 
(Burdekin et al, 1984), whose results comply a combination of all 
effects of Abbè offsets and all uncertainties that have influence in 
one given direction. From the results obtained on these 
measurements, it is possible to calculate the volumetric error 
directly, without the need of modeling the machine structure 
(Martinez Orrego, 1999). 

Initially, an analysis of the machine was carried out in order to 
define the point where the coordinated system reference would be 
placed. The point (0, 0, -260mm) was chosen in relation to the zero 
of the machine. The volume to be modeled was divided by straight 
lines parallel to each one of the axes of the machine, forming a net 
with a total of 147 generators. The measuring positions were defined 
as the intersection points of the generators. 

 
 
 
 
 
 
 

Figure 2. Volumetric calibration with space grid method. 

 
Each component of volumetric error can be measured in two 

different planes, however in order to save time, they have been 
measured in one plane only. Therefore, the components Ex, Ey and 
Ez have been obtained in the planes XZ, YZ and XY, respectively, 
using a laser interferometric system of Hewlett Packard, model 
HP5528A. Some computational algorithms were employed to 
accomplish data acquisition and to establish communication among 
a computer, the interferometric system and the machine scales. 

The position error is calculated as the difference between the 
value indicated by the machine and the value indicated by the laser, 
Eq. (9). 

 
 laserbyindicatevaluemachinebyindicatevalueEii       −=  (9) 

 
The readings were taken at every 25mm in the measuring range 

of each axis of the machine. For each generator, five complete 
measuring cycles were accomplished, each one consisting of five 
forward and five backward measurements. It is known that due to 
the influence of the errors in the shape and position and in the lack 
of orthogonality between axes, the value of the error in the initial 
point of the generator in a given direction is not equal to zero. In 
these points, the errors take the value zero due to an imposition of 
the test, once the interferometer must be reset before the beginning 
of each measurement procedure. Therefore, in order to obtain the 
real values of the errors it is necessary to make a correction of the 
initial points of each one of the generators. For that, a direct 
measure of the correction factors for each measuring plan was 
carried out. More information can be found in Valdés (1999). 

During the measurement procedure a mechanical square aligned 
to the axis of the errors that are to be corrected and one LVDT type 
transducer placed on the test point was used (Fig. 3). 

 

 
Figure3. Square standard and LVDT probe placement. 

 
The correction values are the values taken in the point where the 

generator goes through the square. These correction factors 
constitute a sum of the straightness, angular and orthogonal errors. 
Each measure was repeated five times, in order to obtain a group of 
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values that permit to correct the curves of the volumetric component 
error (Ex). The correction factors of the zeros were measured in a 
similar way and the curves of errors Ey and Ez were corrected. 

Obtaining the Model 

Once all the results of the measurements of the components of 
the volumetric error have been obtained, they were substituted in the 
system of Eq. (8) and introduced in a computer program with the 
purpose of determining the coefficients of the regression equations. 
The three equations that were found had relatively high correlation 
coefficients and the residue presented good behavior both in 
temporal order and in relation to each one of the independent 
variables. However, the introduction of new independent variables 
may improve the obtained function. Hence, new independent terms 
have been included as an attempt to improve the model, thus 
creating a new equation. As may be noted the, Eq. (10) is non linear 
in the variables X2, Y2, Z2, XY, XZ and YZ. Thus, it is important to 
make a transformation in the independent variables with the 
objective of simplifying the calculation of the coefficients of 
regression. 

 

XiiiXiiXiiXiXiXiXiXiXiXXXi ZYZXYXZYXZYXE εββββββββββ ++++++++++= 987
2

6
2

5
2

43210
(10) 

 
In this case, it is recommended the substitution of the variables 

as follows: X=Z1; Y=Z2; Z=Z3; X2=Z4; Y2=Z5; Z2=Z6; XY=Z7; 
XZ=Z8; YZ=Z9. As a result of this transformation Eq. (11), which is 
a multiple linear regression equation, is obtained. 

 

XiiXiXiXiXiXiXiXiXiXXXi ZZXZZZZZZE εββββββββββ ++++++++++= 9988776655443322110
(11) 

 
Before realizing the calculation of the coefficients, all their 

coefficients have been tested. Only the coefficients of the 
independent variable that are highly correlated to the answer or 
dependent variables were calculated. The procedure used to select 
the significant variables in the regression was the one called 
“stepwise” (Draper & Smith, 1981). This way the mathematical 
equations that describe input-output of the system “measuring 
machine” in the preferential directions X, Y and Z respectively were 
obtained (Eq. 12). 

 
XZYZXYZEx ⋅−⋅+⋅+⋅+⋅−⋅= 00015,000031,000006,000003,003428,00875,0 222  

YXZYZXEy ⋅−⋅+⋅+⋅−⋅= 00005,000011,000011,070775,008204,0 22  (12) 
ZXYZYXZEz ⋅−⋅−⋅+⋅+⋅−⋅= 00002,000008,000015,001186,006733,010429,0 22  

 
With the objective of ensuring that in the point X=Y=Z=0 the 

volumetric error is zero the regression was moved to the origin. As a 
consequence, the values of the coefficients β0 in the regression 
equations that described the components of the volumetric error are 
equal to zero. 

Evaluation of the Proposed Model 

The proposed model was statistically and experimentally 
evaluated. The statistic evaluation covers the calculation of the 
correlation coefficients of the sample, an analysis of the residues 
and the verification of the hypotheses. The experimental evaluation 
was carried out through the comparison of the results predicted by 
the model with the results obtained from the measurement of a ball 
bar in some positions and orientations in the working volume of the 
machine as requested by the standard ANSI/ASME B89.4.1 (1995). 

Statistic Evaluation of the Model  

In the statistic evaluation of the model the first step consists in 
the calculation of the correlation coefficients of the sample (r2) for 
each obtained equation. The calculated correlation coefficients were 

of 99.19, 99.93 and 98.15% for the equations that described 
components of the volumetric error in the direction of the axes X, Y 
and Z, respectively. This means that a good percentage of variability 
of each one of the components of the volumetric error is explained 
by the obtained regression equations, which indicates that the 
proposed model is adequate to describe the analyzed data. 

The statistic evaluation to the residue began with the analysis of 
the values of the graph of the predicted components of volumetric 
error in function to the regression residues (Fig. 4). 

The values of the residue of Ex equation are randomly 
distributed around zero for all cases. That shows that the 
specification is appropriate. It is also possible to observe that the 
residues are in the interval ±4µm, approximately. 
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Figure 4. Regression residues graph in function of expected values for Ex 
equation. 

 
It has been observed a good behavior of the residues according 

to time, i.e., they are randomly distributed around zero with no bias. 
This shows that the experiments have been properly carried out, i.e., 
the components of the volumetric error have been correctly 
established. These results indicated that incorrect instrumentation 
manipulation and great variability in the conditions of test have not 
occurred. 
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Figure 5. Residues of the regression equation for component Ex versus 
variable Y. 

 
It is observed in the graph several levels defined by constant 

values of the variables X, Y and Z. These values represent each one 
of the generators of the measure. In the specific case of the 
component of the volumetric error Ex it is obtained 13, 7 and 7 
levels in the variables X, Y and Z, respectively. The variable X takes 
values in the interval 0 to 300 mm with spacing of 35mm. For the 
variable Y these values vary between 50 to 350mm with spacing of 
50mm, whereas the values of the variable Z are between -35 and -
235 with spacing of 50mm (still the values -10mm and -260mm). 
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In Fig. 5 it is possible to observe that the residues are randomly 
distributed around zero for the independent variable. Similar results 
have been observed for all the other variables. This confirms that the 
specification is appropriate. In the same way it has been constructed 
the graphs of the residue in function to the independent variables for 
the regression equations of the components Ey and Ez. The results 
were alike and therefore they are not here presented. 

Besides the analysis previously presented, normality test for the 
residues using the normal probability plots have been done. The 
result of this test for the equation of Ex is presented in Fig. 6. It is 
possible to observe that almost all the values of the residue are on a 
theoretical straight line. This way, the hypothesis of the normality of 
distribution cannot be rejected. Similar results were observed in the 
analysis of residue graphs of the regression equations of Ey and Ez. 
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Figure 6. Normal probability plot of residues. 

 
It has also been constructed histograms for each one of the 

groups of residues, confirming that they presented a nearly normal 
distribution, with an average almost like zero for all cases and 
standard deviation of 0.99; 1.73 and 0.76� m, respectively. The 
confidence interval used was of 95%. 

In conclusion, the residues of the regression equations which 
describe the components of volumetric error, generated in the work 
volume of the machine in the preferential directions of movement, 
presented normal distribution of probabilities. According to what 
was previously shown, the regression equations obtained are 
considered adequate to describe the behavior of the components of 
volumetric error of the Three Coordinate Measuring Machine 
analyzed. 

Verification of the Proposed Model Through 
Measurement of a Calibrated Ball Bar 

Another verification of the proposed model was done through 
comparison of the results predicted by the model and the ones 
obtained through the measurement of a ball bar in different positions 
taken from suggestion of the standard ANSI/ASME B 89.4.1 
(1995). This standard recommends the measurement of a non-
calibrated ball bar in 20 different positions and orientations in the 
working volume of the machine. It has been devised to use a ball bar 
with known nominal length to raise the necessary data. For time 
saving reasons, the measurement was carried out in 12 of the 20 
positions recommended by the standard. The positions of the bar 
were chosen in order for it to be parallel to the direction of the axes 
X, Y and Z, in the diagonal of the plans XY, XZ and YZ and in the 
volumetric diagonals. 

The measurement of the ball bar consists in the determination of 
the distance between the centers of the balls in the bar. For that it 
was necessary to measure the diameter of the balls, to calculate the 
coordinates of their centers and the distance between them. The 
distance between the centers of the bar is conventionally called the 

length of the bar. For distinct positions, the balls were measured five 
times and the coordinates X, Y and Z of the measuring points were 
collected. It is an indispensable requisite that these points are 
linearly independent.  

From the collected coordinate points and the ball equation, the 
least squares method was applied. The coordinates of the centers of 
the balls and their respective averages in each position were 
calculated. After that, the length of the bar was calculated (DBM). It 
is known that for distinct points belonging to the working volume of 
the machine the volumetric errors may present different directions 
among them and different measuring directions of the bar. 
Therefore, before calculating the real length of the bar, the 
volumetric errors must be projected in a direction of measurement, 
i.e., in the direction of the bar. The real length of the bar (DBR) is 
calculated as the difference between the measured length (DBM) and 
the projection of the volumetric error (PEB) in the direction of the 
bar. 

 
  EBBMBR PDD −=  (13) 

 
For that, the numerical values of the components of the 

volumetric error were synthesized using the obtained regression 
equations. After, the centers of the balls and their respective 
volumetric errors were calculated. Once these values have been 
acquired they are projected in the direction of measurement. In order 
to do that, the director co-sine which define the orientation of the 
bar inside the working volume of the machine were calculated. 

The projections of the bar in the preferential directions are 
determined from the coordinates of the centers of the balls 1 and 2. 
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The angles that define the position of the bar with the directions 

OX, OY and OZ are designated by α , β  and γ . Therefore, the director 
co-sines may be calculated as:  
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So, the projections of the components of the volumetric error 

Ex, Ey and Ez are calculated in the direction of the bar, denoted by 
EBX, EBY and EBZ, using the Eq. (16). 
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Therefore, the projection of the volumetric error in the direction 

of the bar (EBN) for the center points of the balls 1 and 2, 
respectively, is given by Eq. (17). 
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Whereas the measurement error is the difference in the 

projections of the volumetric errors. 
 

 21 BBEB EEP −=  (18) 
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Eventually, the value of the calculated volumetric error (PEB) is 
corrected from the measured length of the bar (DBM), thus obtaining 
the real length (DBR). 

 
  EBBMBR PDD −=  (19) 

 
In order to evaluate the effectiveness of the proposed model for 

the prediction of volumetric error it is necessary to determine the 
difference between the calculated length values and the standard 
length (DBP). The standard length of the ball bar may be determined 
through a calibration procedure. In order to do that, it was used a 
universal measuring machine made by Societe Geneovoise D' 
Instruments de Physique (SIP), model 302 M, whose resolution and 
uncertainty are 0.1� m and ± 0.1� m, respectively. Both the distance 
between the extremities of the balls and their diameters were 
measured nine times, since for this number of measurements, the 
standard deviation value becomes stable. The values of the averages 
and standard deviations were calculated and used for the 
determination of the standard length of the ball bar. As a result it has 
been found that the standard length or dimension of the bar is of 
197.486 ± 0.001mm, with 99.7% confidence. Once the real length 
and the standard length of the bar have been obtained, it is possible 
to determine the difference between these values through Eq. (19). 
This difference is denominated residual error. 

 

BPBR DDerrorsidual −= Re  (20) 
 
From the analyzes of Fig. 7 it is found that in the positions 1, 2, 

3, 4 and 6 corresponding to diagonals in plans XY, XZ and YZ, the 
values of the residual error are in the interval ± 5� m. These results 
may be considered adequate. The positions 8, 9 and 10 
corresponding to volumetric diagonals presented values of residual 
errors of up to 7� m in the position 8. These values are higher than 
the expected ones. In the positions 11, 16, 17 and 18 corresponding 
to preferential directions present adequate values of residual errors, 
except for the position 17, whose residual error is of 9� m. 

 

 
Figure 7. Comparison results with the method of standard ANSI/ASME 
B89.4.1 (1995). 

 
The fact that the volumetric error in the direction of the axis X 

may reach values of up to 240� m, the value of 9� m in the position 
17 may be considerer good, because it represents 3.75% of the 
maximum error in that direction. The same occurs with the value of 
7� m in the position 8, which correspond to one of the diagonals of 
the volume with positive moving direction for the axis X and 
negative for the axis Y and Z. The fact that values of residual errors 
outside the interval ± 6� m are obtained may be explained by the 
absence of the probing system effect. During the collection of data 
in order to obtain the proposed model, the error was found using the 
interferometric system. It is known that during the measurement of 
the ball bar the probing system effect is included. 

A normality test was applied to the numerical values of the 
residual error and shown in a graph of normal probability. The 
normality test has shown values of residual error with small 
deviations in relation to the theoretical straight line, however, the 
hypothesis of normality of the residues may be accepted. It has also 
been calculated some statistics in order to characterize this 
distribution such as the average, the standard deviation and the 
coefficients kurtosis and skewness, whose values are of 
respectively:-0.94, 4.12, 0.75 and 0.01� m. 

Estimation of Uncertainty Associated of Volumetric 
Error Components 

Finally, estimation of the measurement uncertainty associated to 
the components of volumetric error was performed. In order to 
accomplish the task, the law of uncertainty propagation was applied 
to equations that described these components, according to the 
Guide to the expression of uncertainty in measurement (ISO TAG, 
1993). 

Eq. (21) allows the determination of the values of the 
component of volumetric error, Ex. 

 
FactorectionEx  corr error gPositionin +=  (21) 

 
The Eq. (22) allows the determination of the uncertainty 

associated to the positioning errors measurement. This equation is 
based on the fact of that the values of the components of volumetric 
error was defined as being the difference between the reading value 
of the machine and the value indicated by the laser. One can still 
incorporate to the model all the influence variables and the 
correction factors (Valdés, et al. 2005). 

 
 effectThermalRRME LCMMPos  +++=  (22) 

 
According to ISO/TR 16015 (2003) the uncertainty associated to 

the measurements of lengths due to thermal effects must consider 
the uncertainty associated to differential expansion between the 
measurand and the standard, the uncertainty associated to the 
measurement of temperature and the uncertainty associated to the 
variation of room temperature compared to the reference 
temperature. 

Adding the terms related the thermal effects and applying the 
law of propagation of uncertainties in Eq. (22), one can rewrite it as 
Eq. (23), which allows estimating the uncertainty associated to the 
positioning error. 
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where: EPos is the positioning error; M is the value indicated by 
machine; P is the reference value (Laser); Eα  is the coefficient of 

thermal expansion of the scale (glass); Pα  is the coefficient of 

thermal expansion of the laser beam; PT∆  is the difference between 

the room temperature and the reference temperature; ET∆  is the 

difference between the scale temperature and the reference 
temperature; LaserR  is the resolution of the laser and CMMR  is the 

resolution of the machine. 
Table 1 presents the data regarding the calculation of the 

uncertainty of the X-axis positioning errors. 
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Table 1. Positioning error measurement uncertainty analysis PosX100. 

Source of 
uncertainty 

Uncertainty 
type 

Probability 
distribution 

Sensitivity  
coefficient 

Degrees of 
freedom. 

Standard 
uncertainty 

M  A Normal 1 µm 4 0.487 
RMM3c B Rectangular 1 µm ∞ 1.15 E-6 
Rlaser B Rectangular 1 µm ∞ 0.0058 

αE B Rectangular 0.012 µm0C ∞ 1.11 E-29 

Claser B Rectangular 0.012 µm0C ∞ 7.76 E-23 

δT B Rectangular -8.34 E-24µm/0C ∞ -1.07 E-8 

∆T B Rectangular 1.69 E-21µm/0C ∞ 6,67 E-23 
Combined standard uncertainty (uc) in µm 0.487 
Effective degrees of freedom (veff) 4.00 
Coverage factor (veff, 95 %) k=2.78 
Expanded uncertainty (95 %) in µm 1.354 

 
Combined standard uncertainty of positioning error in position 

X=100mm was 0.487µm, whereas expanded uncertainty was 
1.354µm. Uncertainty values for all positions in the working volume 
of the machine vary between 0.27 e 0.58µm. The presence of 
differences can be attributed to the variability of results. Similar 
results of the uncertainty associated to the positioning errors were 
obtained for all axes and for any position. 

The correction factor was obtained by adding two displacements 
using the mechanical square standard and LVDT type transducer. 

Eq. (24) allows the estimating of the uncertainty associated to 
the displacement D1. 

 

ESqLVDTSqLVDT TLRCLD ∆⋅⋅+++= α1  (24) 

 
where: D1 is the measured displacement; LLVDT  is the reading taken 
by LVDT; SqC  is the correction due to error of the mechanical 

square; RLVDT
LVDTR

 is the resolution of the LVDT; Sqα is the coefficient 

of thermal expansion of the mechanical square (granite) and ET∆  is 

the difference between the mechanical square temperature and the 
reference temperature. 

By applying the law of propagation of uncertainties in the Eq. 
(24), one can write: 
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Table 2 presents the data regarding the calculation of the 

uncertainty of the displacement D1. 

 

Table 2. Displacement, D1, measurement uncertainty analysis. 

Source of 
uncertainty 

Uncertainty 
type 

Probability 
distribution 

Sensitivity 
coefficient 

Degrees of 
freedom. 

Standard 
uncertainty  

LLVDT A Normal 1 10 0.05 µm 
CSq B Rectangular 1 ∞ 6.99*E-6 µm 
RLVDT B Rectangular 1 ∞ 4.08*E-5 µm 
Combined standard uncertainty (uc) in µm 0.05 
Effective degrees of freedom (veff) 4.00 
Coverage factor (veff, 95 %) k=2.78 
Expanded uncertainty in µm 0.139 

 
Combined standard uncertainty of orthogonal error was 0.05µm, 

whereas expanded uncertainty was 0.139µm. The results obtained at 
the different positions vary between 0.050 and 0.467µm. The 
observed differences can be credited to the operator who is in charge 
of the carriage movement, because the evaluated machine is manual. 
If the operator is not well trained and extremely careful, he/she may 
produce strengths in the direction of the measured displacement, and 
this may consequently alter the measurement results. 

Next, uncertainties associated to the components of the 
volumetric error Ex, Ey and Ez were calculated. Uncertainty values 
indicate that at any point in the working volume of the 3CMM, the 
volumetric error components present standard expanded uncertainty 
values close to 0.525, 0.447 and 0.727µm, respectively. These 
results may be considered adequate and that may be attributed to the 
measurement of the volumetric error components using the space 
grid method. 

Conclusions 

The main results obtained in the development of this work may 
be summarized and presented as the conclusions below. 

The regression equations which describe the components of the 
volumetric error in the directions X, Y and Z present relation 
coefficients of 99.19, 99.93 and 98,15%, respectively. 

The numerical values of the residue for each one of the 
equations of the proposed model are of ±4, ±4 and ±2� m, for each 
one of the preferential directions X, Y and Z, respectively. Therefore, 
in case a new compensation system is implemented from this model, 
no matter the position of measurement, the volumetric error made 
after the compensation will not be over ± 6� m. 

The variable Z, which in this case represents the coordinate Z of 
the measured point, is the one that influences the most the numerical 
values of the volumetric error in the three directions. The proposed 
method may be extended to all Three Coordinate Measuring 
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Machines, although its application is more adequate for the 3CMM 
with higher degree of automation. Therefore, the experimentation 
time required for the use of the space grid method may be 
considerably reduced. 

When compared to the synthesizing method, the proposed model 
is mathematically simpler and it does not need the calibration of the 
twenty one geometric errors. 

The procedures described in ISO TAG (1993) have been 
efficient to determine the uncertainty associated the components of 
the volumetric error collected through a direct calibration procedure 
(space grid method). 

The standard expanded uncertainty values associated to 
volumetric error components Ex, Ey and Ez were 0.525, 0.447, and 
0.727 µm, respectively. These results may be considered small and 
that may be attributed to the measurement of the volumetric error 
components using the space grid method. 
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