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A Stochastic Model for Volumetric
Errors

The present work aims to determine mathematicahtiops that describe the behavior of
the components of the volumetric error in Three i@omtes Measuring Machines
(3CMM). A general methodology using techniques oltipte regressions is presented.
Such methodology, applied to a moving bridge typ®IBl, has made it possible to obtain,
in a simple way, three regression equations fromtadeollected through a direct
calibration procedure, more specifically, the spag& method. The proposed model was
statistically and experimentally evaluated. Thetistie evaluation covers the calculation
of the correlation coefficient of the samples, @idae analysis and the hypothesis
verification. The experimental evaluation was madeugh the comparison of results
expected by the model with the results obtained fitte measurements of a ball bar. From
these results, it is possible to verify that thedeios adequate and that it is good in
predicting volumetric errors in the machine.

Keywords. Space grid method, ball bar, multiple regressidkhbé offsets and least

squares

Introduction

The contemporary times, characterized by greatnsfiee
discoveries, an accelerated technological developraad global
economy, has also brought the evolution of prodecfirocesses.
The global character of the commercial relatiohg, ¢ompetition,
and the struggle for bigger slices of the marketieneompanies to
invest in the search of new technology with theeotiye of
increasing the productivity and the quality of pmots. As a
consequence, modern tooling equipment has beempiorated to
the industrialized world where the products are ufactured with
lower tolerances and in larger quantities. Theesfdr has become
necessary integrate to these systems with fasténmame precise,
more flexible and more reliable means of control.

The Three Coordinates Measuring Machines are apiharthe
devices that supply these needs, representing éntheo most
advanced equipment used in modern metrology. It beagaid that
these machines present simplicity of operatiorxilfiéty, accuracy
and also, it permits to take fast and precise nreasents of
complex structures as well as simultaneous contfolseveral
metrological characteristics of a piece (Kunzmann\aldele,
1988).

However, the performance of 3CMM is limited due tte
presence of Abbe offsets, the difficulty of asseémin three axes,
theoretically orthogonal, and also due to imperéest caused by
the tooling processes that take place in severahargcal elements
which compose the system. These factors act togetbmbining to
each other in a complex way all over the volumeéhaf machine,
contributing to the so called volumetric errorseBvreading, which
is a result of a measurement, will always be suégeto errors and
therefore it is necessary to develop methods sothiese errors are
minimized.

In this sense, the objective of this work is tonfafate the
components of the volumetric error of a 3CMM of aving bridge
type using techniques of multiple regression aintimg prediction
of the volumetric error in any given point of thenking volume of
the machine.

Nomenclature

Cgq = correction due to error of the mechanical square
L ypt = reading taken by LVDT.
R ypt = LVDT resolution.
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D = measured displacement.

D, andD, = diameters of balls 1 and 2, respectively.

Dgy = measured length of the bar.

DBy, DBy, andDBy, = projections of the length of the bar in
the preferential directions.

Dgp = standard length of the bar.

Dgr = nominal length of the bar.

Egw Egy and Eg, = projections of theEx, Ey and Ez in the
direction of the bar, respectively.

EPos= value indicated by laser.

Ev = volumetric error.

Ex, EyandEz = components of volumetric error.

M = value indicated by machine.

P = reference value (Laser).

Peg = projection of the volumetric error in the direct of the
bar.

r2 = correlation coefficient

aser = laser resolution

Rumsc = machine resolution

Vit = effective degree of freedom

X, YandZ = coordinates

Xg, Y, andZ, = coordinates of center of ball.

X?, Y2, Z2, XY, XZandYZ = variables of regression.

Greek Symbols

ap = coefficient of thermal expansion of the lasegirbe

ag = coefficient of thermal expansion of the scalegs).

asgq = coefficient of thermal expansion of the mechahic

square.

a, Bandy= angles which define the position of the bar \tlité
directionsOX, OYandOZ, respectively.

AT = difference between the room temperature and the
reference temperature

S = least squares estimators

Jr = difference between the scale temperature and the
reference temperature

ox(x), dyly) and odz(z) = positioning error at axi¥X, YandZz,
respectively.

ox(y) and dz(y) = straightness error of axédirectionX andz,
respectively.

ox(z) and dy(z) = straightness error of ax&directionX andY,
respectively.

dy(x) and oz(x) = straightness error of ax¥6directionY andz,
respectively.

dbx(x) and d8y(y) = angular error Roll to axiX and Y,
respectively
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96xo, dByo and d6zo = orthogonality errors.

oBy(x), Sbx(y) and dbx(z) = angular error Pitch to axiX, Y
andz, respectively.

06z(x), d6z(y) and dBy(z) = angular error Yaw to axiX, Yand
Z, respectively.

ATg = difference between the mechanical square termpera

and the reference temperature.
& = residues of regression.

Subscriptsand Super scripts
i = points where volumetric error components wetkected.

Technical Characteristics of the M easurement System

The structure of the 3CMM serves as a support anaits the
movement of a sensor in three orthogonal ae¥ andZ of 457,
610, 381mm in length, respectively. These dimersiare
denominated work capacity.

The coordinates X, Y and Z determine the positibthe points
on the surface of the pieces in space. The 3CMM intastionally
designed to measure these values. However, it moseible to
obtain the true or real coordinates of the points th many factors
that interfere in the process of measurements.

In order to determine the relation input - outpfittee system
“measuring machine” it is necessary to define afabsify the
variables which are involved in the measuring psscand for that,
it is necessary to carry out a preliminary analg$ithese variables.

From this analysis it is noted that the coordinatiethe points
may be considered as the input to the system dinpmnary inputs.
Each one of these coordinates may be influenceidnyy of the 21
geometrical errors that affect the result of a meawment. These
geometrical errors constitute what may be calladriaring inputs
to the system. Also, it must be considered the fyingj inputs, in
this case, temperature, humidity and vibrations kept under
control and their influences were neglected.

The combination of the geometrical errors in a p@irspace in
each one of the preferential directions is nametdpmment of the
volumetric error. These three components are censiloutputs of
the system. It is then defined the inputs and dstpfithe measuring
machine system. Fig. 1.

XE)
YD)
Zr) o

Figure 1. Representation of the 3CMM measuring system.
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Note that for the determination of the relationutputput the
measuring machine system may be considered as lbieg
subsystems. Each one of them has three inputs,hwdiie the
coordinates of the measuring points X, Y and Z, anty one
output, which is the component of the correspondintumetric
errorEx, Eyor Ezaccording to the case.

Once defined the inputs and outputs of the systesmpossible
to classify it. According to the control theory peated in Ogata
(1982) and Harris (1996), the system 3CMM of MovBridge type
may be classified as:
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Invariable in time: The value of the volumetric @riin any
instant in time depends only on the values of therdinatesX, Y
andZ and not on the moment in time in which the cocatés are
measured.

According to the position: the volumetric errorascontinual
mathematical function of three variables, in thase; the
coordinatesX, Y andZ which define the position of the measured
points.

Quasi-static: the value of the volumetric erroraimy position
depends only of the current position and not on ghevious or
future positions. The thermal memory of the movimigige 3CMM
system can be considered null if temperature isrothed.

The system may be classified as MISO: the systessenits
multiple inputs and single output. According to thebove
classification, the relation between input and atutwf the
measuring machine system may be expressed
mathematical model which describes the componeritsthe
volumetric error as a function of the positi¥nY andz, represented
in the system of Eq. (1).

Ex=f,(X Y,Z)
Ey=f,(X Y.,Z) @
Ez=f,(X Y.,Z)

Mathematical Equation.

Regression techniques allow expressing the existelgtion
between a dependent or response variable and onencoe
independent or input variables (Box et al, 1978af@r & Smith,
1981 and Hoffmann & Vieira, 1973). Such technigu=s be
applied to sampled data in order to estimate thielevaf an
unknown variable from one or more variables whasae/is known
(Spiegel, 1974).

To determine the existing relation among the védeminvolved
in a measurement process was use the regresstoridees. Were,
the coordinates of the poin¥ Y andZ and the components of the
volumetric errorEx, Ey andEz represented the inputs and outputs
of the measuring machine system.

Was proposed a multiple linear regression equdtioreach of
the coordinated axis, for the aXsve have:

EXi :ﬂXO +ﬂX1Xi +ﬂX2Yi +ﬂX3Zi +£Xi (2)

Where E; represents the component of the volumetric error i

the directionX for the different positions;3, , By, . Bx, and B,

are the regression coefficients;, Y, andz, are the coordinates of
pointi; ani=1, 2, ...,n and ¢, are the residues of the regression of

the regression.

The Eq. (2) is called multiple linear regressioruaipn for
having multiple independent variables. The estimsatd minimum
square are determined in such a way that the sutmeasquares of
the residue are minimized, i.e.

d% i =B ~BaX LY ~Bes 2
_Es R

o) d98,.8050)
dx dx

in this case it is convenient to write the multipdgression in a
matrix form, Eq. (4).

Ex =HB+¢&, 4)
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where
1X Y z Exi Bo x1
T I I L I
: : ﬂxz
l Xn Yn Zn EXn Bxs £)<n

The estimates of the regression coefficient in(Bgmay be
determined using the least squares method. Foittisatecessary
that H'H) be an invertible matrix, Eq. (5).

Bx =(HTH)"H'E, (5)
Once the numerical values of the regression coeffiare
known, it is then possible to determine the pretictalues of the
component of the volumetric error in the directadrihe axisX and

the residue, using the Eq. (6) and (7), respegtivel

E, =HB, ®)

- H,éx

In a similar way, regression equations were progose
equation the components of the volumetric errghendirectionsy
andZ.

“Ex:Ex_Eszx (M

EXi :ﬂX0+ﬂXlXi +ﬂX2Yi +ﬂX3Zi +£Xi
EYi :ﬁYO +ﬁY1Xi +ﬁY2Yi +ﬁY3Zi +£Yi
B, = Boo + B X + B,Y, + oL + &5

®

Obtaining the Components of the Volumetric Error in the
3CMM

X axis Y axis
generator “a - V. generators
Z axis
=y 4 generators
Z
Y X

Figure 2. Volumetric calibration with space grid method.

Each component of volumetric error can be measiretivo
different planes, however in order to save timeytihave been
measured in one plane only. Therefore, the compeieqn Ey and
Ez have been obtained in the plan€g YZ and XY, respectively,
using a laser interferometric system of Hewlett Kkaedt, model
HP5528A. Some computational algorithms were empmloye
accomplish data acquisition and to establish conication among
a computer, the interferometric system and the madtales.

The position error is calculated as the differebeéween the
value indicated by the machine and the value itditay the laser,
Eq. (9).

E, = valueindicateby machine- valueindicatebylaser (9)

The readings were taken at every 25mm in the mgstange
of each axis of the machine. For each generatee domplete
measuring cycles were accomplished, each one towgsisf five
forward and five backward measurements. It is knoat due to
the influence of the errors in the shape and mosiéind in the lack
of orthogonality between axes, the value of therem the initial
point of the generator in a given direction is equal to zero. In
these points, the errors take the value zero dun timposition of
the test, once the interferometer must be reserdehe beginning
of each measurement procedure. Therefore, in dodebtain the

The direct calibration of the measuring machinegishe space real values of the errors it is necessary to makereection of the
grid method consists of the direct measurementoh &omponent initial points of each one of the generators. Foatta direct
Ex, Ey and Ez of the volumetric error. As shown in Fig. 2, themeasure of the correction factors for each meagupian was

machine volume is divided into small volumes or esibby the

generators or measurement lines, which are patalleach one of

the three preferential directions.

Position measurements are realized along the defiprerators
(Burdekin et al, 1984), whose results comply a dowtion of all
effects of Abbe offsets and all uncertainties thavte influence in
one given direction. From the results obtained dmesé
measurements, it is possible to calculate the vettion error
directly, without the need of modeling the machisgucture
(Martinez Orrego, 1999).

Initially, an analysis of the machine was carried im order to
define the point where the coordinated system eefsr would be
placed. The point (0, 0, -260mm) was chosen irticglao the zero
of the machine. The volume to be modeled was divige straight
lines parallel to each one of the axes of the nme;Horming a net
with a total of 147 generators. The measuring fmrstwere defined
as the intersection points of the generators.
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carried out. More information can be found in Vad£999).

During the measurement procedure a mechanical s@ligned
to the axis of the errors that are to be correatatione LVDT type
transducer placed on the test point was used 8fig.

Y
é |
- X

Figure3. Square standard and LVDT probe placement.

The correction values are the values taken in tiat pvhere the
generator goes through the square. These corredtators
constitute a sum of the straightness, angular atihdgonal errors.
Each measure was repeated five times, in ordebtairoa group of
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values that permit to correct the curves of theinmtric component
error EX). The correction factors of the zeros were measire
similar way and the curves of errdtg andEzwere corrected.

Obtaining the M odel

Once all the results of the measurements of thepooents of
the volumetric error have been obtained, they watestituted in the
system of Eq. (8) and introduced in a computer aiogwith the

purpose of determining the coefficients of the esgion equations.

The three equations that were found had relatitagdip correlation
coefficients and the residue presented good behdvith in
temporal order and in relation to each one of thdependent
variables. However, the introduction of new indegent variables
may improve the obtained function. Hence, new iedejent terms
have been included as an attempt to improve theemdtus
creating a new equation. As may be noted the, Hj).i§ non linear
in the variables<?, ¥2, Z2, XY, XZandYZ Thus, it is important to
make a transformation in the independent variabléth the
objective of simplifying the calculation of the dfeients of
regression.

Ea=Bo+BuX +BN +BZ +BiX + BV +BZ + Bk +BeXZ +BNZ +£,(10)

In this case, it is recommended the substitutiothefvariables
as follows X=2Z;; Y=Z,, Z=Z5, X?=Z,, Y?=Zs, 7?=Zq XY=Z;
XZ=Z5; YZ=Z,. As a result of this transformation Eq. (1&hich is
a multiple linear regression equation, is obtained.

B =B+ BaZs +BiZy +BiZs + B + BisZe +BiZe + B X + BZa +BiZe +64(11)

Before realizing the calculation of the coefficignall their
coefficients have been tested. Only the coeffisemf the
independent variable that are highly correlatedh® answer or
dependent variables were calculated. The procedsed to select
the significant variables in the regression was tre called
“stepwise” (Draper & Smith, 1981). This way the hmnhatical
equations that describe input-output of the systeneasuring
machine” in the preferential directioXs YandZ respectively were
obtained (Eqg. 12).

Ex=0,0875Z -0,03428Y +0,00003X > +0,00006Z > +0,00031Y* —0,00015XZ
Ey=008204X —-070775Z +000011Y* +000010Z* -0,00005Y X (12)
Ez=010429Z —0,06738X +0,01186Y +0,00015Z* - 0,00008Y* - 0,00002ZX

With the objective of ensuring that in the poktY=2=0 the
volumetric error is zero the regression was mowdtié origin. As a
consequence, the values of the coefficiefifsin the regression
equations that described the components of themethic error are
equal to zero.

Evaluation of the Proposed M odel

The proposed model was statistically and experiatignt
evaluated. The statistic evaluation covers theutation of the
correlation coefficients of the sample, an analydighe residues
and the verification of the hypotheses. The expenital evaluation
was carried out through the comparison of the tequiedicted by
the model with the results obtained from the meament of a ball
bar in some positions and orientations in the wagkiolume of the
machine as requested by the standard ANSI/ASMEZB8%91995).

Statistic Evaluation of the M odel

In the statistic evaluation of the model the fstp consists in
the calculation of the correlation coefficientstoé samplerf) for
each obtained equation. The calculated correlatimificients were
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of 99.19, 99.93 and 98.15% for the equations thescidbed
components of the volumetric error in the directafrihe axes(, Y

andZz, respectively. This means that a good percenthgariability

of each one of the components of the volumetrioreg explained
by the obtained regression equations, which indgcahat the
proposed model is adequate to describe the anatiated

The statistic evaluation to the residue began thi¢hanalysis of
the values of the graph of the predicted componehtsolumetric
error in function to the regression residues (#)g.

The values of the residue dEx equation are randomly
distributed around zero for all cases. That showat tthe
specification is appropriate. It is also possildeobserve that the
residues are in the interval g#h, approximately.

Predicted vs. Residual Scores (Ex)

Residuals

-10 0 10 20 30 40 50 60
Predicted Values

Figure 4. Regression residues graph in function of expected values for Ex
equation.

It has been observed a good behavior of the residoeording
to time, i.e., they are randomly distributed aroaetb with no bias.
This shows that the experiments have been proparhed out, i.e.,
the components of the volumetric error have beemrectly
established. These results indicated that incorirettumentation
manipulation and great variability in the condisoof test have not
occurred.

Standard residual vs. Variable Y
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o o 0 OO OTIO000D® O W o

0QO @D WOTHID O D 000 O O

-40
[ 00 OGO Ooo0To o™ © O (<] [

_,,//’/\

o o @ 00 O 000 COVO COO OOCDO

Variable Y

-220

O 00 00 0 0O CXDOED CO OPD o [}

O 000 0O ©OO GDOO 00 000 O 0O

-4 3 2 1 0 1 2 3 4
Standard residual

Figure 5. Residues of the regression equation for component Ex versus
variable Y.

It is observed in the graph several levels defibgdconstant
values of the variableX, Y andZ. These values represent each one
of the generators of the measure. In the specifisecof the
component of the volumetric errd@x it is obtained 13, 7 and 7
levels in the variableX, YandZ, respectively. The variablé takes
values in the interval 0 to 300 mm with spacingB36fmm. For the
variableY these values vary between 50 to 350mm with spaafing
50mm, whereas the values of the variablare between -35 and -
235 with spacing of 50mm (still the values -10mnd a260mm).
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In Fig. 5 it is possible to observe that the resdare randomly
distributed around zero for the independent vagiaBimilar results
have been observed for all the other variabless Tbinfirms that the
specification is appropriate. In the same way # been constructed
the graphs of the residue in function to the indejgat variables for
the regression equations of the compon&ytsndEz The results
were alike and therefore they are not here predente

Besides the analysis previously presented, nowyniagt for the
residues using the normal probability plots havenbdone. The
result of this test for the equation BX is presented in Fig. 6. It is
possible to observe that almost all the valuehefresidue are on a
theoretical straight line. This way, the hypothedithe normality of
distribution cannot be rejected. Similar resultgevebserved in the
analysis of residue graphs of the regression espuatfEy andEz.

Normal Probability Plot of Residuals (Ex)
35

25

15

0.5

-0.5

-1.5

-2.5

Expected Normal Value

-3.5

Residuals

Figure 6. Normal probability plot of residues.

It has also been constructed histograms for ea&h adnthe
groups of residues, confirming that they presemtetarly normal
distribution, with an average almost like zero fit cases and
standard deviation of 0.99; 1.73 and QT respectively. The
confidence interval used was of 95%.

In conclusion, the residues of the regression éougtwhich
describe the components of volumetric error, gaedran the work
volume of the machine in the preferential directiaf movement,
presented normal distribution of probabilities. éiting to what
was previously shown, the regression equations irsta are
considered adequate to describe the behavior ofdhgponents of
volumetric error of the Three Coordinate Measuriktachine
analyzed.

Verification of the Proposed Modd Through
M easurement of a Calibrated Ball Bar

Another verification of the proposed model was dtm®ugh
comparison of the results predicted by the model #re ones
obtained through the measurement of a ball baiffierent positions
taken from suggestion of the standard ANSI/ASME 8.48L
(1995). This standard recommends the measuremer& 0bn-
calibrated ball bar in 20 different positions amiewtations in the
working volume of the machine. It has been devisaase a ball bar
with known nominal length to raise the necessarta.dBor time
saving reasons, the measurement was carried oL iof the 20
positions recommended by the standard. The positainthe bar
were chosen in order for it to be parallel to tirection of the axes
X, YandZz, in the diagonal of the plan€Y, XZ andYZ and in the
volumetric diagonals.

The measurement of the ball bar consists in theraation of
the distance between the centers of the ballserbtr. For that it
was necessary to measure the diameter of the tmks|culate the
coordinates of their centers and the distance lestwihem. The
distance between the centers of the bar is cororealty called the
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length of the bar. For distinct positions, the alere measured five
times and the coordinatés Y andZ of the measuring points were
collected. It is an indispensable requisite thatséh points are
linearly independent.

From the collected coordinate points and the bagliagion, the
least squares method was applied. The coordinéte @wenters of
the balls and their respective averages in eachtiggoswere
calculated. After that, the length of the bar wakwated(Dgy). It
is known that for distinct points belonging to therking volume of
the machine the volumetric errors may present miffedirections
among them and different measuring directions oé thar.
Therefore, before calculating the real length o€ thar, the
volumetric errors must be projected in a directddrmeasurement,
i.e., in the direction of the bar. The real lengfithe bar(Dgg) is
calculated as the difference between the measarggh(Dgy,) and
the projection of the volumetric err@Pgg) in the direction of the
bar.

Dgr = Dgy ~ P (13)

For that, the numerical values of the componentsthef
volumetric error were synthesized using the obthinegression
equations. After, the centers of the balls and rthespective
volumetric errors were calculated. Once these waliave been
acquired they are projected in the direction of sneament. In order
to do that, the director co-sine which define tmerdation of the
bar inside the working volume of the machine wesdlewdated.

The projections of the bar in the preferential cliens are
determined from the coordinates of the centerb@balls 1 and 2.

Dawx = X, =X,
DBMy = Yz _Y1 (14)
Dew. =2,-2,

The angles that define the position of the bar withdirections
OX, OYandOZ are designated hy, # andy. Therefore, the director
co-sines may be calculated as:

_D /
cosq = BMx
DBM
D
cosf = BV
'B DBM
_D /
cosy = ~BMz
y DBM

So, the projections of the components of the votumerror
Ex, EyandEz are calculated in the direction of the bar, demdig
Egx, Egy andEgz, using the Eq. (16).

(15)

E,, = E, cosa
E, = E, cosp
E,, = E, cosy

(16)

Therefore, the projection of the volumetric ernotthie direction
of the bar Egy) for the center points of the balls 1 and 2,
respectively, is given by Eq. (17).

EBl = EBxl + EBﬂ + EBﬂ.

B, =B, tEgy, TE

By2 Bz2

17

Whereas the measurement error is the differencethim

projections of the volumetric errors.
PEB = E51 - EBz (18)
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Eventually, the value of the calculated volumetioor Pgg) is
corrected from the measured length of the Bag, thus obtaining
the real lengthQgr).

Dgr = Dgy — P (19)

In order to evaluate the effectiveness of the psedamodel for
the prediction of volumetric error it is necesséoydetermine the
difference between the calculated length values thedstandard
length Dgp). The standard length of the ball bar may be datesd
through a calibration procedure. In order to da,titawas used a
universal measuring machine made by Societe GeisnvD'
Instruments de Physique (SIP), model 302 M, wheselution and

uncertainty are Oidm and + 0.iim, respectively. Both the distance

between the extremities of the balls and their étens were
measured nine times, since for this number of nreasents, the
standard deviation value becomes stable. The valu®e averages
and standard deviations were calculated and used tlie
determination of the standard length of the ball Ba a result it has
been found that the standard length or dimensiothefbar is of
197.486 £ 0.001mm, with 99.7% confidence. Oncerda length
and the standard length of the bar have been autainis possible
to determine the difference between these valuesigh Eq. (19).
This difference is denominated residual error.
Residualerror = Dy, — Dy, (20)
From the analyzes of Fig. 7 it is found that in gositions 1, 2,
3, 4 and 6 corresponding to diagonals in plAiYs XZandYZ the
values of the residual error are in the interv@ipm. These results
may be considered adequate. The positions 8, 9 &0d
corresponding to volumetric diagonals presentedesbf residual

errors of up to m in the position 8. These values are higher than E

the expected ones. In the positions 11, 16, 1718ncbrresponding
to preferential directions present adequate vadfiessidual errors,
except for the position 17, whose residual errafi8um.

0O Residual error
O Measuring errar

Volumetric errors vs. Residuals

80
70
60
50
40
30

20
10
oAV e e e e A A L)

1 2 . 4 6 8 9 10 11 16 17
Paosition in working volume

Error ¢:m)

Figure 7. Comparison results with the method of standard ANSI/ASME
B89.4.1 (1995).

The fact that the volumetric error in the directiointhe axisX
may reach values of up to 248, the value of @m in the position
17 may be considerer good, because it represen&30f the
maximum error in that direction. The same occutth he value of
7um in the position 8, which correspond to one of diegonals of
the volume with positive moving direction for theisa X and

negative for the axi¥ andZ. The fact that values of residual errors
outside the interval +n are obtained may be explained by th

absence of the probing system effect. During tHieaion of data
in order to obtain the proposed model, the erres feand using the
interferometric system. It is known that during theasurement of
the ball bar the probing system effect is included.

166 / Vol. XXVIIl, No. 2, April-June 2006

e

Rosenda V. Arencibia et al

A normality test was applied to the numerical valu# the
residual error and shown in a graph of normal poditg The
normality test has shown values of residual errath vemall
deviations in relation to the theoretical straigihe, however, the
hypothesis of normality of the residues may be piEze It has also
been calculated some statistics in order to cheniaet this
distribution such as the average, the standardatieni and the
coefficients kurtosis and skewness, whose values af
respectively:-0.94, 4.12, 0.75 and Quéi

Estimation of Uncertainty Associated of Volumetric
Error Components

Finally, estimation of the measurement uncerta@isiyociated to
the components of volumetric error was performed.otder to
accomplish the task, the law of uncertainty profiagavas applied
to equations that described these components, dingoto the
Guide to the expression of uncertainty in measuneri&O TAG,
1993).

Eq. (21) allows the determination of the values toke
component of volumetric errogx.

E, =Positionirg error+ correctionFactor (21)

The Eq. (22) allows the determination of the uraisty
associated to the positioning errors measuremeris. dquation is
based on the fact of that the values of the commtsnef volumetric
error was defined as being the difference betwkerreéading value
of the machine and the value indicated by the la®ee can still
incorporate to the model all the influence variabland the
correction factors (Valdés, et al. 2005).

=M +R,,, +R_+Thermaleffect (22)

Pos

According to ISO/TR 16015 (2003) the uncertaintycasated to
the measurements of lengths due to thermal effectst consider
the uncertainty associated to differential expamsietween the
measurand and the standard, the uncertainty atetcta the
measurement of temperature and the uncertaintyciassd to the
variation of room temperature compared to the esfee
temperature.

Adding the terms related the thermal effects anplyapg the
law of propagation of uncertainties in Eq. (22)eaan rewrite it as
Eqg. (23), which allows estimating the uncertaintgaciated to the
positioning error.

2 2 2
) =( S5 o 2 o + 22 )
2 2 2
(o[-
2

5 )

where: EPosis the positioning errorM is the value indicated by
machine;P is the reference value (Lasedy is the coefficient of

thermal expansion of the scale (glass), is the coefficient of
thermal expansion of the laser beafiT,, is the difference between
the room temperature and the reference temperatifg; is the
difference between the scale temperature and tHererze

(23)

temperature;R .., is the resolution of the laser arid.,,, is the

resolution of the machine.
Table 1 presents the data regarding the calculatibrthe
uncertainty of theX-axis positioning errors.
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Table 1. Positioning error measurement uncertainty analysis PosX100.

Source of Uncertainty | Probability | Sensitivity Degrees o} Standard
uncertainty | type distribution | coefficient freedom. | uncertainty
M A Normal 1um 4 0.487
Rwvmac B Rectangular| 1 pm 00 1.15E-6
Riaser B Rectangular] 1 pum o 0.0058
e B Rectangular| 0.012 (i@ 0 1.11 E-29
Claser B Rectangular| 0.012 |’@ 00 7.76 E-23
oT B Rectangular| -8.34 E-24u% | o -1.07 E-8
AT B Rectangular| 1.69 E-21pt@ | 6,67 E-23
Combined standard uncertainty)(in pm 0.487
Effective degrees of freedom.§) 4.00
Coverage factongs, 95 %) ~ k=2.78
Expanded uncertginty (95 %) in um 1.354

Combined standard uncertainty of positioning efnoposition

of thermal expansion of the mechanical square {geand AT, is

X=100mm was 0.48¥n, whereas expanded uncertainty Wasnhe difference between the mechanical square temperand the

1.3541m. Uncertainty values for all positions in the wiagkvolume
of the machinevary between 0.27 e 0.a8. The presence of
differences can be attributed to the variability rebults. Similar
results of the uncertainty associated to the pwsitg errors were
obtained for all axes and for any position.

The correction factor was obtained by adding twapldicements
using the mechanical square standard and LVDT thgmesducer.

Eqg. (24) allows the estimating of the uncertainggaxiated to
the displacemerid;.

Dl = I_LVDT + CSq + RLVDT + L qu II-I—E (24)

where:D, is the measured displacemeng;, 4y is the reading taken

reference temperature.
By applying the law of propagation of uncertaintiesthe Eq.
(24), one can write:
aD,

2 2
L I

(2 2 )

Table 2 presents the data regarding the calculatibrthe
uncertainty of the displacemeb;.

oD,

UQ(Dl):[ ]Z(Urewm )2’“ (25)

oD,
dag,

aD,
T,

by LVDT; Cg, is the correction due to error of the mechanical

square;R vpr is the resolution of the LVDTp,is the coefficient

Table 2. Displacement, D1, measurement uncertainty analysis.

Degrees of

Source of Uncertainty | Probability | Sensitivity Standard
uncertainty | type distribution | coefficient | freedom. | uncertainty
Livor A Normal 1 10 0.05 um
Csq B Rectangular| 1 o0 6.99*E-6 um
Rivor B Rectangular| 1 o 4.08*E-5 um
Combined standard uncertainty)(in um 0.05
Effective degrees of freedom.) 4.00
Coverage factony, 95 %) k=2.78
Expanded uncertainty in um 0.139
Combined standard uncertainty of orthogonal erras @.0pm,
whereas expanded uncertainty was Ot89The results obtained at conclusions

the different positions vary between 0.050 and Qui& The
observed differences can be credited to the opendtois in charge
of the carriage movement, because the evaluatelingis manual.
If the operator is not well trained and extremedyetul, he/she may
produce strengths in the direction of the measdigglacement, and
this may consequently alter the measurement results

Next, uncertainties associated to the componentsthef

The main results obtained in the development & Work may
be summarized and presented as the conclusions.belo

The regression equations which describe the conmisraé the
volumetric error in the directionX, Y and Z present relation
coefficients of 99.19, 99.93 and 98,15%, respelstive

The numerical values of the residue for each onethef

volumetric errorEx, Eyand Ezwere calculated. Uncertainty values €quations of the proposed model are of +4, +4 ahdnt for each

indicate that at any point in the working volumetloé 3CMM, the

volumetric error components present standard exgzhndcertainty

values close to 0.525, 0.447 and O0T®7 respectively. These
results may be considered adequate and that maggriimited to the

measurement of the volumetric error componentsgutlie space
grid method.
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one of the preferential directioixs YandZ, respectively. Therefore,
in case a new compensation system is implemended this model,

no matter the position of measurement, the volumetror made

after the compensation will not be over gné.

The variableZ, which in this case represents the coordiZabé
the measured point, is the one that influencesbst the numerical
values of the volumetric error in the three direct. The proposed
method may be extended to all Three Coordinate Maas
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Machines, although its application is more adeqémte¢he 3SCMM Burdekin, M.S., Di Giacomo, B. Xijing, Z., 1984. &@bration software
with higher degree of automation. Therefore, thpeeinentation and application to Coordinate Measuring MachineBepartament of

ime r ir for th f th rid metioaly Mechanical Engineering. UMIST, Manchester, UK, gp07.
tconesidg?;bls(:edzcetde use of the space grid met be Draper, N.R., Smith, H., 1981, “Applied regress#ralysis”, In charter

10: An introduction to Nonlinear Estimation, pp84529.

. When co_mpare(_i to the Synt_hesizing method, t_he |3_Elbmode| ISO TAG 4/WG 3, 1993, “Guide to the expression atertainty in
is mathematically simpler and it does not needctibration of the  measurement”, Geneva Switzerland.
twenty one geometric errors. ISO/TR 16015, 2003, “Geometrical product specifwst (GPS) —

The procedures described in ISO TAG (1993) haven beeSystematic errors and contributions to measuremenértainty of length
efficient to determine the uncertainty associatesl domponents of measurement due to thermal influences”. Technegzdit.

the volumetric error collected through a direcilmaltion procedure Harris, C.M., 1996, “Shock and vibration HandbooRyarta edicéo,
(space grid method). MCGRAW-Hill, New York, pp. 21.8; 21.21; 22.9; 2327.8.

The standard expanded uncertainty values associated |, Hoffmann, R. & Vieira, S. 1973. "Analise de regi@ss (In
. ortuguese). Editora HUCITEC, S&o Paulo. SP. Brazil
volumetric error componentsx, EyandEz were 0.525, 0.447, and Kunzmann. H. & Waldele E.. 1988 “Performance &iMIs”. Annals
0.727 um, respectively. These results may be ceraidsmall and of the CIRP, Vol. 39, No. 2, pp. 633-640. '
that may be attributed to the measurement of tHenwetric error Ogata, K., 1982, “Engenharia de controle moderrn”Rortuguese).
components using the space grid method. Capitulo 4, Modelos mateméticos de sistemas fidcitera Prentice Hall
do Brazil, Rio de Janeiro. Brazil.
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