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The main objectives of this work are the formulationplementation and applications of a
numerical algorithm to simulate turbulent, incomgsible, isothermal flows. The transient
three-dimensional flow is analyzed using an expliaiylor-Galerkin scheme and the finite
element method with hexahedrical eight-node elemBatbulence is simulated using
Large Eddy Simulation. For sub-grid scales two n@deere implemented, the classical
Smagorinsky’s model and the dynamic eddy viscosityel. For the second filtration,

which is necessary in the dynamic model, a new odetvas developed based on
independent finite elements that involve each nindiee original mesh. The implemented
scheme is efficient and good results with low aoldétl computational cost were obtained.
Results for two classical problems, the driven agind the backward facing step are
presented. Comments about the model applicabditfléws with high Reynolds numbers
are also presented.

Keywords. Turbulence, large Eddy simulation, dynamic modilite element method,
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Introduction

Flow analysis is an important subject for severajimeering
fields, as well as in other areas of science actirtology. Many
problems are characterized by turbulent flows amthlkle models
are necessary to represent the flow characteristics

High Reynolds numbers, a coherent behavior at lacgées of

same purpose of the conventional turbulence mobelsthey may
be simple because they consider only the effecénoéll scales.
Moreover, subgrid models have minor geometry depeoel
because the small scales are of more universatenttan the total
turbulence.
To overcome difficulties in the numerical analysif

incompressible flows it is necessary to adopt smuokeme to
stabilize the solution (Reddy and Gartling, 199¢Brnf€a and Frey,

movement and a random behavior at small scales llpsual992). The adopted alternative in present work He guasi-

characterize turbulent flows. They are also diffasi three-
dimensional and transient (Tenekes and Lumley, 197&nother
important characteristic of turbulent flows is tiatltiple scales are
involved (Silveira Neto, 2000), however even snmsdhles are
usually larger than the scales of molecular movérttdimze, 1975),
consequently turbulence may be described as a ncons
phenomenon.

Using the conservation equations of mass,
momentum, a complex system of partial differengglations is
obtained. Computational Fluid Dynamic is an impotrta
methodology to simulate complex flows governed bghssystems.
Different numerical methods are used in these sitiuris. The
Finite Element Method is an efficient technique floe analysis of
problems with complex geometry (Hughes, 1987; Reduohd
Gartling, 1994). This methodology was adopted sghesent work.

The conservation equations of fluid mechanics foan
mathematical model that is capable of describeutertt fluid flows.
However, the required discretization in space ame to simulate
all scales directly (Direct Simulation) does notrrp# the
application of this procedure for most practicabldems. This is a
consequence of the large number of equations snlved, leading
to excessive processing time, even for the mosarackd computers
(Kim and Menon, 1999). As a consequence of the gsibdity to
apply Direct Simulation for a large range of prabge it is
necessary to use alternative methodologies, suclthasclassic
models based on the solution of the Reynolds Aweiaguations
(Hinze, 1975) and the Large Eddy Simulation (Ferzid993,
Rogallo and Moin 1984, Lesieur et al, 1995).

In the Large Eddy Simulation technique, the corestiom
equations are solved for large flow scales and tsode used to
represent the effects of the subgrid scales. Thesagels have the
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incompressible formulation (Kawahara and Hirano83)9 The
usual formulation for incompressible flow is basenh the
assumption of a constant value for the density dnain this
hypothesis, it is derived that the speed of sounthé flow field is
infinite (Schlichting, 1968). However, in real flawthe propagation
of sound always occurs with a finite speed. Theatiqns for a
quasi-incompressible flow assume constant densiiengity

energy afiuctuations are considered negligible) and a dinialue for the

speed of sound. With this consideration the magsssawation
equation contains a time derivative of pressure.

This work presents the formulation, implementati@amd
application of a numerical algorithm for three-dimmnal,
turbulent flow analysis. The methodology is basedtloe Finite
Element Method and Large Eddy Simulation. A compaortel code
to simulate transient, quasi-incompressible, tldi@gensional
flows, was developed (Petry, 2002) using an explitaylor-
Galerkin scheme, with eight-node hexahedrical etégmdwo
different subgrid models were implemented: the Soriagky’s
model (Smagorinsky, 1963) and the dynamic modelrrfaao et
al., 1991; Lilly, 1992). The dynamic model implertagion implies
in a second filter operation. A new methodology waseloped for
this process, calle8econd Filter by Independent Finite Elements
Simulations of the backward-facing step and theedricavity flows
are presented in this work. These simulations contine validity of
the implemented scheme, however they also demoastreat
improvements are necessary to overcome difficulfiess large
computational problems.

Nomenclature

C = sound propagation speed,(m/s)

Cs = Smagorinsky’s constant

h, H, B, D, w = &ngth dimensions of problems domains, (m)

n; = cosine of the angle between the normal vecidhé
boundary with axis;x
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p = large scale pressure component, (Pa)

Re = Reynolds number, dimensionless
t; = prescribed values of surface forces at the lataum
UV1, UV2 = dmensionless Reynolds stresses

Vi = large scale velocity component, (m/s)
v'; = subgrid scale velocity component,( r/s)

V; = prescribed values of velocity component at Heeindary,
(m/s)

V1 =dimensionless mean velocity

V1rms, V2rms =dimensionless forms of the root mean square

V2 =dimensionless mean velocity

V max= maximum value of the velocity profile, (m/s)

X = coordinates, i=1, 2, 3,(m)

Xr = reattachment length, m

Greek Symbols

g = Kroenecker delta

A = volumetric viscosity, kg/(m s)

M = dynamic viscosity, kg/(m s)

v = kinematic viscosity, ffs

p = density, kg/m

Y, = interpolation function of node

(E,r], Z) = natural coordinates

Q =volume domain
'v = boundary face with prescribed velocity
't = face with natural boundary condition

Mathematical and Numerical Aspects

Governing Equations

From the equations of conservation of mass, enegg
momentum for three-dimensional, transient, isotteérnguasi-
incompressible viscous flows of a Newtonian fluiWhite, 1974,
Kawahara and Hirano, 1983), the equations for LaFEgly
Simulation are derived (Petry, 2002).

In a Large Eddy Simulations (Findikakis and Stré882) each
field variable is decomposed into a large-scalld fi{edentified by
the over-bar) and a subgrid scale field (identifiky the
apostrophe):

Vi=v;+vi  p=p+p p=p+p N

Since density is constanfy'=0.
After the filtering process the governing equatians given by:

op, 2 0 (_
—+C“—|pv,)=0 2
ot ox i) @)
0 _ 0 (—-)\, 0p
— ) — Vi |[+——0; . —
at(pv') ax,-(pv'vl) ox;
0 0 , 0 , _ A 0, _
— v — (V) +——(PV;) |[+—| —— (V) |9;
0Xj{ [0Xi (pv;) X, (P ])] p(axk (P k)] |]}
0 = _
+ E{p(l_ij +Cjj +Viv j)}—fi =0
(i,j,k=123) inQ (3)

With the following boundary conditions:
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vi=V;  (i,jk=123) inTv 4)
— )\ a R

-p+———\pvy, ] 10

|: p b ox, (p k)} ij
n=t (i,,k=123)inlt (5)

aXi aXi !
and the corresponding initial conditions:

Vi =Vig (i,ik=123)in Q (6)
p=pp inQ )

Where:
Ly = ;I ;] -Vi W , Leonard’s terms

Cij = vjvj'+vi'vj, Crossed terms

vi'v;'= subgrid Reynolds stress components

The terms | and G can be neglected (Findikakis and Street,
1982). Previous studies (Petry and Awruch, 199Tfion that the
consideration of these terms had not significafiuémce and le to
an increase of about 20% in the processing time.

Equations (2) and (3), neglecting the Leonard’d amssed
terms, with the boundary and initial conditionsegivby Equations
(4), (5), (6) and (7), are the governing equatiohshe turbulent,
isothermal, quasi-incompressible flow of a Newtorflaid. Adding
the subgrid scale model equations, the system tcsdbeed is
obtained.

Subgrid Scale Models

The two-implemented models are based on the edshpsity
concept. Using the hypothesis of Bousinesq, thgriditiReynolds
stresses are given by:

—_ [ 0w, v
—Vi'Vi' =t —+——
i Vj t[axj aXi
wherev; is the eddy viscosity.

This is the original Bousssinesq's equation. Uguafbr
incompressible flows, Equation (8) is modified (k#n 1975) by the
introduction of a term with the subgrid kinetic emeto make the
model compatible with the usual mass conservatiguaton for
incompressible flows (divv=0). However, in this work the
continuity equation is the one modified for quasi@mpressible

flows (Equation 2). Therefore, Equation (8) is useithout any
additional term.

®)

Smagorinsky’s Model

The model of Smagorinsky (1963) has been traditiprused
to represent the effect of the subgrid scales imgéaEddy
Simulation (Findikakis and Street, 1982; Lesieualefl995). Itis an
eddy viscosity model in which the subgrid Reynokisesses is
given by Equation (8) and the eddy viscosity isrief as:

Vt:CSZAZ‘é‘ ©)
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where G is the Smagorinsky’s constant, with varying valives 0.1
to 0.22, and the other terms are given by:

|§‘ = ,lzéij §ij (10)
- v, OV
S =2 M (12)
2| 0x;  0X;
The characteristic Iengtk_k is calculated as:
— 3
A=31 A, (12)
i=1

Eddy Viscosity Dynamic Model
The dynamic model was first proposed by Germarad.e1991,

and modified by Lilly, 1992. The subgrid Reynoldesses are also

obtained with Equation (8), but the eddy viscostdefined as:

v=C(x 2’ [5] (13)
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known as Taylor-Galerkin, (Donea, 1984), and wasdudy
Azevedo, 1999, for the simulation of three-dimenalolaminar
flows with fluid-structure interaction. The scherngeexplicit and
conditionally stable and the integration time shes the following
restriction:

AX; (min
At< £ (min) 17)
C+V
whereAx; (min) is the minimum dimension of the mesh eleme@ts
is the speed of sound and V is the reference \gloci

The Second Filter: Proposed Methodology

Equation (14) defines the dynamic coefficientx,C{). This
coefficient depends on the use of two filters offfadent
characteristic lengths. The first filter, at the smelevel, has
characteristic length related to the element dinoensFor the
second filtering process (test filter) the chamastie length must be
greater than the length of the first filter.

For the second filtering process many proposalse Hagen
presented. Oshima, et al.,, 1996, formulate the rekditering
operation in a Finite Element code using expansiongaylor
series. Padilla and Silveira Neto, 2000, presend apmpare
different methodologies in the context of FinitelMoes.

The new methodology used in this work was preseintéetry,

The dynamic coefficient, @( t), is calculated as a function of 2002. The Second Filter by Independent Finite Elememntses
the local flow characteristics, using a doubleefitig process and it techniques common to finite elements, such as:dgfition of

is based on information of the small scales solligdthe mesh,
defined as:

c(x,t):_EM

(14)
2 Mjj Mjj

where |; e M; are given by:

=)o

<
S~
<

(15)
with

&)=1 aw) o)

(8]=2(5:)(s:)

<Z> is the characteristic length of the second filterger than the

(16)

characteristic length of the first fiIter<E> >A .

In the above equations, the bar indicates the filtsting process

(filter at mesh level) and the symbdl) indicates the second

filtering process (test filter).

For the solution of the system of equations, thet€&iElement
Method is employed. To get the system of algebegications, time
derivatives are expanded in Taylor series, inclgdihe second
order terms. For the space discretization the icl&alerkin method
is applied (Reddy and Gartling, 1994). To save @semg time,
analytical expressions for the hexaedrical isopatdm element
matrices are used (Burbridge and Awruch, 2000)s ®Btheme is
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elements by conectivities; the use of two systefmsoordinates
(global (%, X, X3) and natural(§, n, ¢)); the transformations of

coordinates and elements interpolation functionbe Tscheme
consists on generating one super-element arourtd rezde of the
mesh, then, with the usual finite element shapetfans, a linear
interpolation of the variables at the super-elemewides is
performed to get filtered values in the correspogdnternal node.
This procedure is organized in three stages.

The first stage is included in the pre-processihgse (mesh
generation), and consists of generating a listoofectivities of the
independent super-elements for each node. In tfisnge the test
filter dimension is not prescribed, but it is pb&sto include some
restriction with respect to such dimension. In Fga an example
of an independent super-element, with its corregpaninternal
node, is presented.

The second stage, also included in the pre-prauggshase to
reduce additional computational cost, consistshef évaluation of
the natural coordinateééI N, ,Z,) of node | in the interior of its

independent super-element. Global coordinatespafirat | inside of
an element can be calculated by the following fiamnsation of
coordinates:

()ﬁ)| :Zwa({l 1,7I VZ)XH (18)

This is the usual transformation used in finitensdats, where
(Xi )I is the coordinate of any point | inside an indejeat super-
element; X, is the coordinate of node, (a =1, 2, 3, 4,5, 6, 7, 8),
(i=1,2,3)andy,(¢,,n,,Z,) is the interpolation function of node
o, evaluated at point I, with natural coordinafgs n, ,Z, ).
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Figure 1. Independent Super-Element created around a node, to be used

in the second filtering process.

The interpolation functions for an isoparametricghti node
hexahedrical element are given by:

1-HA-mA-4)
+$HA-mA-4)
@+$HA+mA-4)
A-HA+mA-4)
A-HA-mA+{)
@+HA-m@A+{)
@+)A+mA+ )
@-OA+m@A+{)

(19)

It is necessary to solve the inverse problem reptesl by
Equation (18), to obtain the natural coordinatea pbint inside the

eIement(EI N, ,ZI), from its global coordinates, {(xx,, X3), and

the global coordinates of the eight nodes of thpeselement,
(X1, X2, X3)q - IN the analysis of this problem, a non-lineastemn
with three equations is derived and an algorithingian iterative
process of solution was implemented to solve tistesy. Using the
Newton iterative method, the following system isaded:

Un+1 :Un _J—l(Un)R (Un) (20)
where
8
RU)= 3 Wa(&rni.€i)xia ~(xi), (21)
and the jacobian matrid(U"), is given by
‘R R OR]
o on 07
Jo| R R OR 2
o on 07
R OR R
| o0& odn 9{ |

Only the last stage is computed in the main cadeorsists of
the evaluation of the second filtered values ahewe, by a finite
element interpolation function inside the independesuper-
elements, calculated by the following expressions:

8
(Vi) = ZWal&rni2i)Via (23)
8
<vivj>| = Z_lllJa(Elerle)WiVj)a (24)
—21—|_ _ 8 —2|_|—
<A ‘S‘Sij>l —g:llwa(ihrlel)(A |S‘Sijja (25)

The characteristic dimension of the test filtecadculated in the
same way as for the first filter, given by Equati¢t?), but
considering the dimensions of the independent selgenents.

As the eddy viscosity, given by Equation (13), valeated at
the element level and the values of the dynamidficamt, given
by Equation (14), are calculated for each nodehef mesh, the
coefficient used for each element is the averagbehodal values
of C(x, t). This procedure is in accordance with othethers
(Oshima et al, 1996; Zang et al, 1993, Breuer andi,R994), that
uses averages of XG(t) to prevent abrupt variations in space and
time, wich are sources of instabilities in the nuios solution.
Another technique, cited by Lilly, 1992, consists proceeding
averages of the terms jMand l; (Equations 15) before the
calculation of C(x, t), stabilizing the problem aprkventing zeros
in the denominator.

In this work, a limit for negative values of thedgdviscosity
was adopted, which is expressed in Equation (2&)gzt al, 1993,
used the same limit.

v+v, 20 (26)

Another procedure adopted here is that if M equal to zero, it
is assumed that &€(t)=0, in the corresponding node.

The dynamic model increases the total processing between
9 and 18%, in comparison to the classical Smagoyissmodel, for
the problems analyzed in this work.

Numerical Examples

Backward-Facing Step

Flow simulations of a two-dimensional backward-fecistep
with low Reynolds numbers, were initially performed order to
validate the code. The results were obtained usihg
Smagorinsky's model and the dynamic model, and esethwith
experimental data (Armaly et al., 1983) and othemerical
simulations (Silveira Neto et al., 1993; Kaiktsisak 1991).

The problem domain is presented in Figure 2. Fer tihio-
dimensional case, there is only one element irztdéection, and
the components of the velocity in this directior &aqual to zero
(vs=0) over the whole flow field. The dimensions aimikar to the
experimental work presented by Armaly et al, 1983.

For problems characterized by Reynolds number tlegs or
equal to 1000, simulations are long enough to reéhehstationary
time average flow.

As inflow boundary conditions, a completely devedp

The solution vectod, contains the natural coordinates of the point parabolic velocity profile was used;fw(y), v,=0) at the entrance.

, (EI N, ¢ ) at the interior of the super element.
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The non-slip condition ¢wv,=v;=0) was prescribed at the uppe and
lower walls. At the outflow, natural boundary cammhs were
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employed (=t,=t;=0) (Equation 5). Homogeneous initial conditions

(vi=vo=v3=p=0) were used, in the first simulation, for Re&lm
the other simulations the last fields of pressuaes velocities
calculated for previous Reynolds number were used.

The Reynolds number is defined in the same way ithdhe
experiments of Armaly et al., 1983, with h=1.0 m.

u

Adriane P. Petry and Armando M. Awruch

The maximum velocity value at the entrancgg\is of 75m/s.
The dimensionless reattachment length is defined, /& where H
is height of the step (0.94m).

To obtain the reattachment length it was investigahe first
layer of nodes above the lower wall behind the .st&pe
reattachment point is defined as the first nodthefmesh, after the
separation region (Figure 2), where the compongof the average
velocity field assumes a positive value. The resfdt the relation
X/H x Re that was obtained in the present work, ttogrewith the
values presented in Armaly, et al., 1983, are shiowable 1.

Xr

X

>
< 1

Figure 2. Domain and characteristics dimensions of

The results for Re=100 and Re = 400 are closeosetiobtained
experimentaly, for both models. For laminar flows important
differences between results were expected. Thendignanodel for

the backward-facing step.

and velocities calculated for the Reynolds numig® are used as
initial conditions.
As for the two-dimensional example with Re=100, ¢téained

Re=100 presented 95% of the nodes witk, € equal to zero, the reattachment length was equal to 2.88. For the flithh Re=1,000,

flow with Re=400 presented 94% of the nodes witk,Lequal to

zero and there were no elements with negative edapsity. For

the flow with Re=1000, 60% of the nodes presentgdachic

coefficient equal to zero, while 0.09% of the elatsehad negative
eddy viscosity, where Equation (26) was applied.

Table 1. Reattachment length ,Xr/H, as a function o
present work x experimental values (Armaly et al, 1

f the Reynolds number:
995).

Reattachment Length — X /H

Re | Smagorinsky’s | Dynamic | Armaly et al. 1983
Model Model

100 2.74 2.89 3.0

400 7.60 7.90 8.0

1000 11.09 11.25 16.0

For Re=1000, the numerical value is far from thpesinental
results. This was an expected error, because indimensional
simulations of laminar flows, with Reynolds numbéasger than
500, the reattachment length is underestimated.€efie is due to
three-dimensional effects, neglected in two-dimemai simulations
(Silveira Neto et al, 1993, and Kaiktsis et al, 1p@and verified
against the numerical experiments of Williams aadtd, 1997.

To simulate a turbulent flow, Re=10,000 was usedth& time
instant of 0.4 s, using the dynamic model, the disienless
reattachment length was of 7.3, whereas experithgataes vary
between 6 and 8 (Kim et al, 1980). The number efneints where
negative eddy viscosity values were found wastless 6%.

Finally, three-dimensional flows over a backwardirg step,
without sidewalls, for Reynolds number 100 and Q@,0Qere
simulated using the dynamic model. The problem donia
presented in Figure 2, where w=2m. The adopted nsesimilar to
that employed for the previous two-dimensional datians, but
with eight elements in the Z direction. Boundarynditions are
similar to those used in the two-dimensional cdsethe first
simulation (Re=100) homogeneous initial conditisrese used and
in the following simulation (Re=1,000) the lastldie of pressures

228 / Vol. XXVIIl, No. 2, April-June 2006

instantaneous results can be observed in Figurasd34. In the
simulations of the backward facing step, spuriossillations of
pressure were observed and were controlled by ieglube time
step, conducting to excessive processing time, thanstatistical
stationary state of this case was not performed.

Despite the low resolution in the Z direction, whenly eight
elements were taken, the results are qualitatigeherent with the
results found in other references (Silveira Netalgt1993; Lesieur,
1999 and Williams and Baker, 1997). Figures 3 astiéw that the
flow is developed as expected.

Figure 3. Detail of the velocity vectors field, in the mainstream direction at
z=1.0m, for the three-dimensional case with the dyn amic model and
Re=1,000.

Figura 4. Vorticity field (w), for Re=1,000,
W3=5.7x10", ¢ -w,=4x10" e ¢ - wy= -4x10™.

using

the dynamic model: -

ABCM
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The Driven Cavity Flow
This section presents results of three-dimensidrigén cavity

flow simulations for Reynolds numbers of 3,200 40¢D00. This is
an interesting flow, with a complex behavior inimgle geometry i =
(Figure 5), and was investigated numerically (Dend996; Kim iy = \\,,,,,‘34,%,%2’5’,; /
and Menon, 1999; Zang et al., 1993) and experirtigr{rasad and ‘l‘llﬂl §§§§§§§‘§;§%&"z§§;§,ﬁggg’,ﬂﬁ,
Koseff, 1989) by many researchers. The experimemsilits of !:iﬂil HEHEHESEE ’fjg’lﬁif‘i{’;‘,ﬂfif
Prasad and Koseff, 1989, were used to compare théhpresent l||||i HQH. f;f;}t,‘,’l”,’fl
numerical study. The obtained results are closthecexperimental W\ll“ .H. ,’fi"’,‘l”,”l";’
results and have comparable quality to the numercelysis ﬂ“ll H.H. ’j”’l‘,’ﬂ’”]l
developed by of Zang, Street and Koseff, 1993, Himd and lﬁ“}“ .=.= i | W
Menon, 1999. ik il

The aspect ratio of the cavity flow characterizgdRe=3,200 is I sHEHH.,,#,,WW’
1 (1:1:1) while the cavity flow characterized by Rel0,000 has gﬁ.g.}lllnlllﬂ,'ﬂ,’ﬂ,’,lfig,’;;,{;
aspect ratio of 0.5 (1:1:0.5). The Reynolds numbecalculated Qg&g&gﬂygﬂ"l’l‘”gf!}%{ffg
based on the velocity of the upper walf Bigure 5), which moves %§§§5§§Hggﬂw’,’fffﬁg’f,’;’,’é’!ﬁf
and induces the flow. All others walls are fixedithwnon-slip \§§'§§5§5§5§'{!{f,"%§?’

hssl : &

boundary condition.

Numerical simulations for the complete and the Hdfnain
considering symmetry were developed for Re=3,200th w
Smagorinsky’s model (Petry, 2002). Results obtaiioedaverage
velocity profiles, as well as the statistics ofbwience, were very
similar for both cases, so, to reduce processing,tit is considered Data for the statistical analysis of turbulence evebtained
that the flow has a symmetry plane in H/2 (Figuréob simulations  storing all variables along the centerlines at zmmtal and vertical
presented here. directions at the symmetry plane, for each timeriral. The flow
was analyzed until 0.795s, but for the statistigahlysis it was

Figure 6. Finite element mesh for the 3D cavity flo  w, Re=3200.

Pl s /'5 considered the final 0.24s period. The experimerghles presented
eiiggrié a were taken from the figures published by Prasadkarsff, 1989.
L / B o The dimensionless mean velocities presented inr€syid and
: 7 1S 11 are defined as:
/ i //?
' Y =
/ v Vvi=_L
57 :/// : Ug
| =
: v2=_Y2 28)
. Ug
E' where the double bar indicates time average. Diioetess forms
of the root mean square, Virms and V2rms and foynBlds
" stresses UV1 and UV2 are defined in the same waubkshed by
other authors (Zang et al., 1993 and Prasad andf{d989):
: "2
] Vl
ViIrms=1 —2
Ug
H 2
Figure 5. Geometry of the driven cavity flow, simil  ar of that used by _ Vo
Prasad and Koseff, 1989. V2rms=1 _U% (29)
Three-Dimensional Cavity Flow: Re=3200 v
— =goouL V2
This section presents results for three-dimensioaalty flow UV1=UvV2=50 U2 (30)
B

characterized by Re=3200 and an aspect ratio edoall

(B=1:D=1:H=1), assuming a symmetry plane (Figure Bhe

velocity Us is equal to 100 m/s, the sound speed, C, is equal Y§ere:

340 m/s and the time stepAs = 1.5 x 1®s. A three-dimensional — —

view of the mesh is presented in Figure 6. The mesh 32x32 Vi'=vy -V V=V, -V (31)
elements in x and a y direction, refined near tladlsyand has 16

elements in the direction. The dimension of the smallest element Three simulations were developed for this Reynaldsber the
edge is of the order of 1xF0 first one using a no model code — Laminar - andothers using the

the two subgrid models codes — Smagorinsky and Dina

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyri  ght O 2006 by ABCM April-June 2006, Vol. XXVIIIl, No. 2/229



Results for the mean velocity components are coémtifor the
three simulations developed for this Reynolds numdred have
good agreement with the experimental data, as jpossible to
observe in Figure 7. Figures 7, 8 and 9 show resldtained in the
present work as compared with the published expsriat results of
Prasad and Koseff, 1989.

The distributions of the correlations of the vetpdluctuations,
presented in Figures 8 and 9, are very close tdtsesf Prasad and
Koseff, 1989. The peak of the Reynolds stressesljlhéar the
bottom wall is more accurately captured by the dyicamodel as
can be verified in Figure 9. The obtained profitdgsarly contain
three-dimensional effects, in view of differencéserved in 2D and
3D cavity flows, as presented by Prasad and Ko$@§9.
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Figure 7. Dimensionless mean velocity components (E
center lines at the symmetry plane, Re=3200: + - e
[Prasad e Koseff, 1989]; - - - Smagorinsky;
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Three-Dimensional Cavity Flow: Re=10,000

Results for a three-dimensional cavity flow chasdeed by
Re=10,000 and an aspect ratio equal to 0.5 (B=1i{9=05),
assuming a symmetry plane (Figure 5), are presenttds section.
The velocity § isequal to 100 m/s, the sound speed, C, is equal to
340 m/s and time iat = 0.75 x 10 The three-dimensional image
of the mesh is presented in Figure 10. The mesinifsrm in the z
direction and it igefined near walls in the x anddyrections. The
dimension of the x and y edge of the smallest ettriseof the order
of 5x10%s.

Two simulations were developed for this Reynoldsnber,
using the two subgrid models codes — Smagorinskly ynamic.
No simulation was developed with the Laminar (nodeip code,
due to the high Reynolds value.

Data for the statistical analysis of turbulence evebtained
storing the values of all variables correspondmthe centerlines in
the horizontal and vertical directions at the syrmnplane, for each
time interval. The flow was analysed until 1.095st Bor the
statistical analysis it was considered the fin@R85s period. Figure
11 present dimensionless average velocity compsr{(®iit and V2)
as defined in Equation (28) at the centerlinedhiefdaymmetry plane.
Figures 12 and 13 present the dimensionless meaaresqoot
values (V1rms, V2rms), defined in Equations (29hd athe
dimensionless Reynolds Stresses (UV1 and UV2)nddfiin the
Equation (30).

The results of the present work are compared wigfeemental
values published by Prasad and Koseff, 1989. Thaenmelocity
results for this Reynolds number are very closeestperimental
results, as shown in Figure 11, for both modelshin correlations
of turbulence there are differences, favorabldhtodynamic model,
as for example the inferior peaks, near the botu@t of Reynolds
stresses, UV1, (Figurel3) and mean root squaren¥ {Figure 12).
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Figure 10. Finite element mesh for 3D cavity flow w
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Conclusions

Other experiments are necessary to investigatalifferences
between the models. The numerical results are ocabfea with
other numerical simulations published by Zang, let1893,

confirms the good quality of present results.

The three dimensional classical problems of bactiwacing

and step and driven cavity flows were simulated witkinite Element

Large Eddy Simulation methodology presented in thisk. Two
subgrid scale models were implemented, the Smaglgrimand the

The results of botbdeis are

coherent with experimental and numerical data father authors.

eddy viscosity dynamic model.

riEus oscillations

In the simulations of the backward facing step
of pressure were observed and were controlled dycieg the time

step, this procedure results in additional processime that is
critical in Large Eddy Simulations. For the cavitgw problem,

statistical analysis of turbulence were included! dne obtained
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values were close to other published results, eguiring any
reduction in the time step for simulation.

A new scheme for the second filtering operatiothie dynamic
model was presented and applied. The scheme toos$idefining
super-elements around each node of the originahraed applying
the finite element interpolation functions to ohtahe filtered
quantities for the nodes. Most of this filteringeogtion is developed
in the pre-processing, resulting in a dynamic modéh total
additional cost in processing time between 9 an&b6,18hen
compared to the implemented Smagorinsky’s modés. ddiditional
time is in the same order of the best results tedoby other
authors.

Analysis of the problems presented here demonsdtréte
capability of this methodology to simulate comptarbulent flows,
without restrictions about memory allocation. Thang time of
processing, resulting mostly from the time intemesdtriction of this
explicit scheme, indicates the relevance to imprtneecode before
continuing the simulation of other problems in viei extended
analysis of different models behavior. Researcheshese aspects
are in progress.
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