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Large Eddy Simulation of Three-
Dimensional Turbulent Flows by the 
Finite Element Method 
The main objectives of this work are the formulation, implementation and applications of a 
numerical algorithm to simulate turbulent, incompressible, isothermal flows. The transient 
three-dimensional flow is analyzed using an explicit Taylor-Galerkin scheme and the finite 
element method with hexahedrical eight-node element. Turbulence is simulated using 
Large Eddy Simulation. For sub-grid scales two models were implemented, the classical 
Smagorinsky´s model and the dynamic eddy viscosity model. For the second filtration, 
which is necessary in the dynamic model, a new method was developed based on 
independent finite elements that involve each node in the original mesh. The implemented 
scheme is efficient and good results with low additional computational cost were obtained. 
Results for two classical problems, the driven cavity and the backward facing step are 
presented. Comments about the model applicability for flows with high Reynolds numbers 
are also presented. 
Keywords: Turbulence, large Eddy simulation, dynamic model, finite element method, 
computational fluid dynamics 
 
 
 

Introduction 

Flow analysis is an important subject for several engineering 
fields, as well as  in other areas of science and technology. Many 
problems are characterized by turbulent flows and suitable models 
are necessary to represent the flow characteristics. 

High Reynolds numbers, a coherent behavior at large scales of 
movement and a random behavior at small scales usually 
characterize turbulent flows. They are also diffusive, three-
dimensional and transient (Tenekes and Lumley, 1972).  Another 
important characteristic of turbulent flows is that multiple scales are 
involved (Silveira Neto, 2000), however even small scales are 
usually larger than the scales of molecular movement (Hinze, 1975), 
consequently turbulence may be described as a continuous 
phenomenon. 1 

Using the conservation equations of mass, energy and 
momentum, a complex system of partial differential equations is 
obtained. Computational Fluid Dynamic is an important 
methodology to simulate complex flows governed by such systems. 
Different numerical methods are used in these simulations. The 
Finite Element Method is an efficient technique for the analysis of 
problems with complex geometry (Hughes, 1987; Reddy and 
Gartling, 1994). This methodology was adopted in the present work. 

The conservation equations of fluid mechanics form a 
mathematical model that is capable of describe turbulent fluid flows. 
However, the required discretization in space and time to simulate 
all scales directly (Direct Simulation) does not permit the 
application of this procedure for most practical problems. This is a 
consequence of the large number of equations to be solved, leading 
to excessive processing time, even for the most advanced computers 
(Kim and Menon, 1999). As a consequence of the impossibility to 
apply Direct Simulation for a large range of problems, it is 
necessary to use alternative methodologies, such as the classic 
models based on the solution of the Reynolds Average Equations 
(Hinze, 1975) and the Large Eddy Simulation (Ferziger 1993, 
Rogallo and Moin 1984, Lesieur et al, 1995). 

In the Large Eddy Simulation technique, the conservation 
equations are solved for large flow scales and models are used to 
represent the effects of the subgrid scales. These models have the 
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same purpose of the conventional turbulence models, but they may 
be simple because they consider only the effect of small scales. 
Moreover, subgrid models have minor geometry dependence 
because the small scales are of more universal nature than the total 
turbulence. 

To overcome difficulties in the numerical analysis of 
incompressible flows it is necessary to adopt some scheme to 
stabilize the solution (Reddy and Gartling, 1994, Franca and Frey, 
1992). The adopted alternative in present work is the quasi-
incompressible formulation (Kawahara and Hirano, 1983). The 
usual formulation for incompressible flow is based on the 
assumption of a constant value for the density and, from this 
hypothesis, it is derived that the speed of sound in the flow field is 
infinite (Schlichting, 1968). However, in real flows the propagation 
of sound always occurs with a finite speed. The equations for a 
quasi-incompressible flow assume constant density (density 
fluctuations are considered negligible) and a finite value for the 
speed of sound. With this consideration the mass conservation 
equation contains a time derivative of pressure. 

This work presents the formulation, implementation and 
application of a numerical algorithm for three-dimensional, 
turbulent flow analysis. The methodology is based on the Finite 
Element Method and Large Eddy Simulation. A computational code 
to simulate transient, quasi-incompressible, three-dimensional 
flows, was developed (Petry, 2002) using an explicit Taylor-
Galerkin scheme, with eight-node hexahedrical element. Two 
different subgrid models were implemented: the Smagorinsky´s 
model (Smagorinsky, 1963) and the dynamic model (Germano et 
al., 1991; Lilly, 1992). The dynamic model implementation implies 
in a second filter operation. A new methodology was developed for 
this process, called Second Filter by Independent Finite Elements. 
Simulations of the backward-facing step and the driven cavity flows 
are presented in this work. These simulations confirm the validity of 
the implemented scheme, however they also demonstrate that 
improvements are necessary to overcome difficulties for large 
computational problems.  

Nomenclature  

C = sound propagation speed,(m/s) 
CS   = Smagorinsky´s  constant 
h, H, B, D, w = length dimensions of problems domains, (m) 
nj  = cosine of the angle between the normal vector to the 

boundary with axis xj 
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p  = large scale pressure component, (Pa) 

Re = Reynolds number, dimensionless 
ti  = prescribed values of surface forces at the boundary 
UV1, UV2 = dimensionless Reynolds stresses 

vi  = large scale velocity component, (m/s)  

v i′  = subgrid scale velocity component,  xi,( m/s) 

iv̂  = prescribed values of velocity component at the  boundary, 

(m/s) 
V1 = dimensionless mean velocity 
V1rms, V2rms = dimensionless forms of the root mean square 
V2 = dimensionless mean velocity 
Vmax = maximum value of the velocity profile, (m/s) 
xi = coordinates, i=1, 2, 3,(m)  
Xr  = reattachment length, m  
Greek Symbols 
δij = Kroenecker delta  
λ  = volumetric viscosity, kg/(m s)  
µ = dynamic viscosity, kg/(m s) 
ν  = kinematic viscosity, m2/s 
ρ = density, kg/m3 

αψ  = interpolation function of   node α 

( )ζηξ ,,  = natural coordinates 

Ω =volume domain 
Γv = boundary face with prescribed velocity 
Γt = face with natural boundary condition 

Mathematical and Numerical Aspects 

Governing Equations  

From the equations of conservation of mass, energy and 
momentum for three-dimensional, transient, isothermal, quasi-
incompressible viscous flows of a Newtonian fluid (White, 1974, 
Kawahara and Hirano, 1983), the equations for Large Eddy 
Simulation are derived (Petry, 2002).  

In a Large Eddy Simulations (Findikakis and Street, 1982) each 
field variable is decomposed into a large-scale field (identified by 
the over-bar) and a subgrid scale field (identified by the 
apostrophe): 

 

iii v + v = v ′      p + p = p ′     ρ′ρρ  +  =  (1) 
 
Since density is constant,  ρ´=0.  
After the filtering process the governing equations are given by:  
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Ω= in)3,2,1k,j,i(  (3) 
 

With the following boundary conditions: 

ii v̂v =      vin)3,2,1k,j,i( Γ=  (4) 
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and the corresponding  initial conditions: 

 

0ii v̂v =     Ω= in)3,2,1k,j,i(  (6) 
 

0p̂p =     Ωni  (7) 
 

Where:  
 

jijiij vvv v=L − ,  Leonard´s terms 

v'v+'vv=Cij jiji ,  Crossed terms 

'v'v ji =  subgrid  Reynolds stress components 

 
The terms Lij and Cij can be neglected (Findikakis and Street, 

1982). Previous studies (Petry and Awruch, 1997) confirm that the 
consideration of these terms had not significant influence and le to 
an increase of about 20% in the processing time.  

Equations (2) and  (3), neglecting the Leonard´s and crossed 
terms, with the boundary and initial conditions given by Equations 
(4), (5), (6) and (7), are the governing equations of the turbulent, 
isothermal, quasi-incompressible flow of a Newtonian fluid. Adding 
the subgrid scale model equations, the system to be solved is 
obtained.  

Subgrid Scale Models 

The two-implemented models are based on the eddy viscosity 
concept. Using the hypothesis of Bousinesq, the subgrid Reynolds 
stresses are given by: 
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where νt is the eddy viscosity. 

This is the original Bousssinesq´s equation. Usually, for 
incompressible flows, Equation (8) is modified (Hinze, 1975) by the 
introduction of a term with the subgrid kinetic energy to make the 
model compatible with the usual mass conservation equation for 
incompressible flows (div v=0). However, in this work the 
continuity equation is the one modified for quasi-incompressible 
flows (Equation 2). Therefore, Equation (8) is used without any 
additional term.  

Smagorinsky´s Model 

The model of Smagorinsky (1963)  has been traditionally used 
to represent the effect of the subgrid scales in Large Eddy 
Simulation (Findikakis and Street, 1982; Lesieur et al, 1995). It is an 
eddy viscosity model in which the subgrid Reynolds stresses is 
given by Equation (8) and the eddy viscosity is defined as:  

 

S C=
22

St ∆ν  (9) 
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where CS is the Smagorinsky´s constant, with varying values from 0.1 
to 0.22, and the other terms are given by: 

 

ijij SS2=S  (10) 
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The characteristic length ∆  is calculated as: 
 

3 i
3

1i
x∆Π=∆

=
 (12) 

Eddy Viscosity Dynamic Model 

The dynamic model was first proposed by Germano et al., 1991, 
and modified by Lilly, 1992. The subgrid Reynolds stresses are also 
obtained with Equation (8), but the eddy viscosity is defined as:  

 

S )t,x(C=
2

t ∆ν  (13) 

 
The dynamic coefficient, C(x, t), is calculated as a function of 

the local flow characteristics, using a double filtering process and it 
is based on information of the small scales solved by the mesh, 
defined as: 
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∆  is the characteristic length of the second filter, larger than the 

characteristic length of the first filter  -∆ > ∆ . 

In the above equations, the bar indicates the first filtering process 
(filter at mesh level) and the symbol  indicates the second 

filtering process (test filter).  
For the solution of the system of equations, the Finite Element 

Method is employed. To get the system of algebraic equations, time 
derivatives are expanded in Taylor series, including the second 
order terms. For the space discretization the classic Galerkin method 
is applied (Reddy and Gartling, 1994). To save processing time, 
analytical expressions for the hexaedrical isoparametric element 
matrices are used (Burbridge and Awruch, 2000). This scheme is 

known as Taylor-Galerkin, (Donea, 1984), and was used by 
Azevedo, 1999, for the simulation of three-dimensional laminar 
flows with fluid-structure interaction. The scheme is explicit and 
conditionally stable and the integration time step has the following 
restriction:  

 

VC

(min)x
t i

+
∆

≤∆  (17) 

 
where ∆xi (min) is the minimum dimension of the mesh elements, C 
is the speed of sound and V is the reference velocity.  

The Second Filter: Proposed Methodology  

Equation (14) defines the dynamic coefficient, C(x, t). This 
coefficient depends on the use of two filters of different 
characteristic lengths. The first filter, at the mesh level, has 
characteristic length related to the element dimension. For the 
second filtering process (test filter) the characteristic length must be 
greater than the length of the first filter.  

For the second filtering process many proposals have been 
presented. Oshima, et al., 1996, formulate the second filtering 
operation in a Finite Element code using expansions in Taylor 
series. Padilla and Silveira Neto, 2000, present and compare 
different methodologies in the context of Finite Volumes.  

The new methodology used in this work was presented in Petry, 
2002. The Second Filter by Independent Finite Elements uses 
techniques common to finite elements, such as: the definition of 
elements by conectivities; the use of two systems of coordinates 
(global (x1, x2, x3) and natural ),,( ζηξ ); the transformations of 

coordinates and elements interpolation functions. The scheme 
consists on generating one super-element around each node of the 
mesh, then, with the usual finite element shape functions, a linear 
interpolation of the variables at the super-element nodes is 
performed to get filtered values in the corresponding internal node. 
This procedure is organized in three stages.  

The first stage is included in the pre-processing phase (mesh 
generation), and consists of generating a list of conectivities of the 
independent super-elements for each node. In this scheme the test 
filter dimension is not  prescribed, but it is possible to include some 
restriction with respect to such dimension. In Figure 1 an example 
of an independent super-element, with its corresponding internal 
node, is presented. 

The second stage, also included in the pre-processing phase to 
reduce additional computational cost, consists of the evaluation of 
the natural coordinates ( )III ,, ζηξ  of node I in the interior of its 

independent super-element. Global coordinates of a point I inside of 
an element can be calculated by the following transformation of 
coordinates:  

 
8

1

( ) ( , , )i I I I ix xα α
α

ξ η ζ
=

= Ψ∑  (18) 

 
This is the usual transformation used in finite elements, where 

( )Iix  is the coordinate of any point I inside an independent super-

element; αix is the coordinate of node α, (α =1, 2 , 3, 4, 5, 6, 7, 8), 

(i=1, 2, 3) and  ( )III ,, ζηξψ α  is the interpolation function of   node 

α, evaluated at point I, with natural coordinates ( )III ,, ζηξ . 
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Figure 1. Independent Super-Element created around a node, to be used 
in the second filtering process. 

 
The interpolation functions for an isoparametric eight node 
hexahedrical element are given by: 
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It is necessary to solve the inverse problem represented by 

Equation (18), to obtain the natural coordinates of a point inside the 
element ( )III ,, ζηξ , from its global coordinates, (x1, x2, x3)I, and 

the global coordinates of the eight nodes of the super-element,  
(x1, x2, x3)α . In the analysis of this problem, a non-linear system 
with three equations is derived and an algorithm using an iterative 
process of solution was implemented to solve the system. Using the 
Newton iterative method, the following system is obtained: 
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and the jacobian matrix, J(Un ), is given by 
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The solution vector U, contains the natural coordinates of the point I 
, ( )III ,, ζηξ , at the interior of the super element. 

Only the last stage is computed in the main code. It consists of 
the evaluation of the second filtered values at each node, by a finite 
element interpolation function inside the independent super-
elements, calculated by the following expressions:  
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The characteristic dimension of the test filter is calculated in the 

same way as for the first filter, given by Equation (12), but 
considering the dimensions of the independent super-elements.  

As the eddy viscosity, given by Equation (13), is evaluated at 
the element level and the values of the dynamic coefficient, given 
by Equation (14), are calculated for each node of the mesh, the 
coefficient used for each element is the average of the nodal values 
of C(x, t). This procedure is in accordance with other authors 
(Oshima et al, 1996; Zang et al, 1993, Breuer and Rodi, 1994), that 
uses averages of C(x, t) to prevent abrupt variations in space and 
time, wich are sources of instabilities in the numerical solution. 
Another technique, cited by Lilly, 1992, consists of proceeding 
averages of the terms Mij and Lij (Equations 15) before the 
calculation of C(x, t), stabilizing the problem and preventing zeros 
in the denominator. 

In this work, a limit for negative values of the eddy viscosity 
was adopted, which is expressed in Equation (26). Zang et al, 1993, 
used the same limit.  

 
0t ≥ν+ν  (26) 

 
Another procedure adopted here is that if  Mij  is equal to zero, it 

is assumed  that C(x, t)=0,  in the corresponding node. 
The dynamic model increases the total processing time between 

9 and 18%, in comparison to the classical Smagorinsky´s model, for 
the problems analyzed in this work.  

Numerical Examples 

Backward-Facing Step 

Flow simulations of a two-dimensional backward-facing step 
with low Reynolds numbers, were initially performed in order to 
validate the code. The results were obtained using the 
Smagorinsky’s model and the dynamic model, and compared with 
experimental data (Armaly et al., 1983) and other numerical 
simulations (Silveira Neto et al., 1993; Kaiktsis et al, 1991).  

The problem domain is presented in Figure 2. For the two-
dimensional case, there is only one element in the z direction, and 
the components of the velocity in this direction are equal to zero 
(v3=0) over the whole flow field. The dimensions are similar to the 
experimental work presented by Armaly et al, 1983.  

For problems characterized by Reynolds number less than or  
equal to 1000, simulations are long enough to reach the stationary 
time average flow.  

As inflow boundary conditions, a completely developed 
parabolic velocity profile was used (v1=v(y), v2=0) at the entrance. 
The non-slip condition (v1=v2=v3=0) was prescribed at the uppe and 
lower walls. At the outflow, natural boundary conditions were 
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employed (t1=t2=t3=0) (Equation 5). Homogeneous initial conditions 
(v1=v2=v3=p=0) were used, in the first simulation, for Re=100. In 
the other simulations the last fields of pressures and velocities 
calculated for previous Reynolds number were used. 

The Reynolds number is defined in the same way that in the 
experiments of Armaly et al., 1983, with h=1.0 m.  

 

µ






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ρ
=

h23
V2

Re

max

 (27) 

 

The maximum velocity value at the entrance, Vmax  is of 75m/s. 
The dimensionless reattachment length is defined as Xr/H, where H 
is height of the step (0.94m).  

To obtain the reattachment length it was investigated the first 
layer of nodes above the lower wall behind the step. The 
reattachment point is defined as the first node of the mesh, after the 
separation region (Figure 2), where the component v1 of the average 
velocity field assumes a positive value. The results for the relation 
Xr/H x Re that was obtained in the present work, together with the 
values presented in Armaly, et al., 1983,  are shown in Table 1.  

 
Figure 2. Domain and characteristics dimensions of the backward-facing step. 

 
The results for Re=100 and Re = 400 are close to those obtained 

experimentaly, for both models. For laminar flows no important 
differences between results were expected. The dynamic model for 
Re=100 presented 95% of the nodes with C(x, t) equal to zero, the 
flow with Re=400 presented 94% of the nodes with C(x,t) equal to 
zero and there were no elements with negative eddy viscosity. For 
the flow with Re=1000, 60% of the nodes presented dynamic 
coefficient equal to zero, while 0.09% of the elements had negative 
eddy viscosity, where Equation (26) was applied.  

 

Table 1. Reattachment length ,Xr/H, as a function o f the Reynolds number: 
present work x experimental values (Armaly et al, 1 995). 

Reattachment Length – X r/H 
Re Smagorinsky´s 

Model   
Dynamic 
Model 

Armaly  et al. 1983  

100 2.74 2.89 3.0 
400 7.60 7.90 8.0 
1000 11.09 11.25 16.0 
 
For Re=1000, the numerical value is far from the experimental 

results. This was an expected error, because in two-dimensional 
simulations of laminar flows, with Reynolds numbers larger than 
500, the reattachment length is underestimated. The error is due to 
three-dimensional effects, neglected in two-dimensional simulations 
(Silveira Neto et al, 1993, and Kaiktsis et al, 1991) and verified 
against the numerical experiments of Williams and Baker, 1997.  

To simulate a turbulent flow, Re=10,000 was used. At the time 
instant of 0.4 s, using the dynamic model, the dimensionless 
reattachment length was of 7.3, whereas experimental values vary 
between 6 and 8 (Kim et al, 1980). The number of elements where 
negative eddy viscosity values were found was less than 6%.  

Finally, three-dimensional flows over a backward facing step, 
without sidewalls, for Reynolds number 100 and 1,000, were 
simulated using the dynamic model. The problem domain is 
presented in Figure 2, where w=2m. The adopted mesh is similar to 
that employed for the previous two-dimensional simulations, but 
with eight elements in the Z direction. Boundary conditions are 
similar to those used in the two-dimensional case. In the first 
simulation (Re=100) homogeneous initial conditions were used and  
in the following simulation (Re=1,000) the last fields of pressures 

and velocities calculated for the Reynolds number 100 are used as 
initial conditions.  

As for the two-dimensional example with Re=100, the obtained 
reattachment length was equal to 2.88. For the flow with Re=1,000, 
instantaneous results can be observed in Figures 3 and 4. In the 
simulations of the backward facing step, spurious oscillations of 
pressure were observed and were controlled by reducing the time 
step, conducting to excessive processing time, than the statistical 
stationary state of this case was not performed.  

Despite the low resolution in the Z direction, where only eight 
elements were taken, the results are qualitatively coherent with the 
results found in other references (Silveira Neto et al., 1993; Lesieur, 
1999 and Williams and Baker, 1997). Figures 3 and 4 show that the 
flow is developed as expected.  

 

 
Figure 3. Detail of the velocity vectors field, in the mainstream direction at 
z=1.0m, for the three-dimensional case with the dyn amic model and 
Re=1,000. 

 

 
Figura 4. Vorticity field (w), for Re=1,000,  using  the dynamic model: ♦♦♦♦- 
w3=5.7x101, ♦♦♦♦-w1=4x10-4 e ♦♦♦♦ - w1= -4x10-4. 
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The Driven Cavity Flow 

This section presents results of  three-dimensional driven cavity 
flow simulations for Reynolds numbers of 3,200 and 10,000. This is 
an interesting flow, with a complex behavior in a simple geometry 
(Figure 5), and was investigated numerically (Denaro, 1996; Kim 
and Menon, 1999; Zang et al., 1993) and experimentally (Prasad and 
Koseff, 1989) by many researchers. The experimental results of 
Prasad and Koseff, 1989, were used to compare with the present 
numerical study. The obtained results are close to the experimental 
results and have comparable quality to the numerical analysis 
developed by of Zang, Street and Koseff, 1993, and Kim and 
Menon, 1999.  

The aspect ratio of the cavity flow characterized by Re=3,200 is 
1 (1:1:1) while the cavity flow characterized by Re = 10,000 has 
aspect ratio of 0.5 (1:1:0.5). The Reynolds number is calculated 
based on the velocity of the upper wall UB (Figure 5), which moves 
and induces the flow. All others walls are fixed, with non-slip 
boundary condition.  

Numerical simulations for the complete and the half domain 
considering symmetry were developed for Re=3,200, with 
Smagorinsky´s model (Petry, 2002). Results obtained for average 
velocity profiles, as well as the statistics of turbulence, were very 
similar for both cases, so, to reduce processing time, it is considered 
that the flow has a symmetry plane in H/2 (Figure 5) for simulations 
presented here. 

 

 
Figure 5. Geometry of the driven cavity flow, simil ar of that used by 
Prasad and Koseff, 1989. 

Three-Dimensional Cavity Flow: Re=3200 

This section presents results for three-dimensional cavity flow 
characterized by Re=3200 and an aspect ratio equal to 1 
(B=1:D=1:H=1), assuming a symmetry plane (Figure 5). The 
velocity UB is equal to 100 m/s, the sound speed, C, is equal to  
340 m/s and the time step is ∆t = 1.5 x 10-5s.  A three-dimensional 
view of the mesh is presented in Figure 6. The mesh has 32x32 
elements in x and a y direction, refined near the walls, and has 16 
elements in the z direction. The dimension of the smallest element 
edge is of the order of 1x10-2.   

 

 
Figure 6. Finite element mesh for the 3D cavity flo w,  Re=3200. 

 
Data for the statistical analysis of turbulence were obtained 

storing all variables along the centerlines at horizontal and vertical 
directions at the symmetry plane, for each time interval. The flow 
was analyzed until 0.795s, but for the statistical analysis it was 
considered the final 0.24s period. The experimental values presented 
were taken from the figures published by Prasad and Koseff, 1989.  

The dimensionless mean velocities presented in Figures 7 and 
11 are defined as:  
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where the double bar indicates time average. Dimensionless forms 
of the root mean square, V1rms and V2rms and for Reynolds 
stresses UV1 and UV2 are defined in the same way as published by 
other authors (Zang et al., 1993 and Prasad and Koseff, 1989):  
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where: 

 

111 vv´´v −=     222 vv´´v −=  (31) 

 
Three simulations were developed for this Reynolds number the 

first one using a no model code – Laminar - and the others using the 
the two subgrid models codes – Smagorinsky and Dynamic.  
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Results for the mean velocity components are coincident for the 
three simulations developed for this Reynolds number and have 
good agreement with the experimental data, as it is possible to 
observe in Figure 7. Figures 7, 8 and 9 show results obtained in the 
present work as compared with the published experimental results of 
Prasad and Koseff, 1989.     

The distributions of the correlations of the velocity fluctuations, 
presented in Figures 8 and 9, are very close to results of Prasad and 
Koseff, 1989. The peak of the Reynolds stresses (UV1) near the 
bottom wall is more accurately captured by the dynamic model as 
can be verified in Figure 9. The obtained profiles clearly contain 
three-dimensional effects, in view of differences observed in 2D and 
3D cavity flows, as presented by Prasad and Koseff, 1989. 

 

 
Figure 7. Dimensionless mean velocity components (E q 28)  profiles at 
center lines  at the symmetry plane, Re=3200: + - e xperimental results 
[Prasad e Koseff, 1989]; - - - Smagorinsky;  . . . .Laminar and ____ 
Dynamic models. 

 

 
Figure 9. Dimensionless Reynolds Stresses (Eq 30)  profiles at center 
lines at the symmetry plane, Re=3200: + - experimen tal results [Prasad e 
Koseff, 1989];--- Smagorinsky; . . . . . Laminar an d  ____ Dynamic models. 

 

 
Figure 8. Dimensionless velocity root mean square c omponents (Eq. 29)  
profiles at center lines at the symmetry plane, Re= 3200: + - experimental 
results [Prasad e Koseff, 1989]; - - - Smagorinsky;  . . . .Laminar and ____ 
Dynamic models. 

Three-Dimensional Cavity Flow:  Re=10,000 

Results for a three-dimensional cavity flow characterized by 
Re=10,000 and an aspect ratio equal to 0.5 (B=1:D=1:H=0.5), 
assuming a symmetry plane (Figure 5), are presented in this section. 
The velocity UB  is equal to 100 m/s, the sound speed, C, is equal to 
340 m/s and  time is ∆t = 0.75 x 10-5s. The three-dimensional image 
of the mesh is presented in Figure 10. The mesh is uniform in the z 
direction and it is refined near walls in the x and y directions. The 
dimension of the x and y edge of the smallest element is of the order 
of 5x10-3s.  

Two simulations were developed for this Reynolds number, 
using the two subgrid models codes – Smagorinsky and Dynamic. 
No simulation was developed with the Laminar (no model) code, 
due to the high Reynolds value. 

Data for the statistical analysis of turbulence were obtained 
storing the values of all variables corresponding to the centerlines in 
the horizontal and vertical directions at the symmetry plane, for each 
time interval. The flow was analysed until 1.095s but for the 
statistical analysis it was considered the final 0.6265s period. Figure 
11 present dimensionless average velocity components (V1 and V2) 
as defined in Equation (28) at the centerlines of the symmetry plane. 
Figures 12 and 13 present the dimensionless mean square root 
values (V1rms, V2rms), defined in Equations (29), and the 
dimensionless Reynolds Stresses (UV1 and UV2), defined in the 
Equation (30). 

The results of the present work are compared with experimental 
values published by Prasad and Koseff, 1989. The mean velocity 
results for this Reynolds number are very close to experimental 
results, as shown in Figure 11, for both models. In the correlations 
of turbulence there are differences, favorable to the dynamic model, 
as for example the inferior peaks, near the bottom wall of Reynolds 
stresses, UV1, (Figure13) and mean root square, V1rms (Figure 12).  
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Figure 10. Finite element mesh for 3D cavity flow w ith Re=10,000. 

 

 
Figure 12 – Dimensionless velocity root mean square  (Eq. 29) of 
components profiles at center lines at the symmetry  plane, Re=10,000: + - 
experimental results [Prasad e Koseff, 1989]; - - -  Smagorinsky; and  ____ 
Dynamic models. 

 
Other experiments are necessary to investigate the differences 

between the models. The numerical results are comparable with 
other numerical simulations published by Zang, et al, 1993,  and  
confirms the good quality of present results. 

 

 
Figure 11. Dimensionless mean velocity components ( Eq. 28) profiles at 
center lines at the symmetry plane, Re=10,000: + - experimental results 
[Prasad e Koseff, 1989]; - - - Smagorinsky; and  __ __ Dynamic models. 

 

 
Figure 13. Dimensionless Reynolds Stresses (Eq. 30)  profiles at center 
lines at the symmetry plane, Re=10,000: + - experim ental results [Prasad e 
Koseff, 1989]; - - - Smagorinsky and  ____ Dynamic models.   

Conclusions  

The three dimensional classical problems of backward facing 
step and driven cavity flows were simulated with a Finite Element 
Large Eddy Simulation methodology presented in this work. Two 
subgrid scale models were implemented, the Smagorinsky’s and the 
eddy viscosity dynamic model. The results of both models are 
coherent with experimental and numerical data from other authors. 
In the simulations of the backward facing step, spurious oscillations 
of pressure were observed and were controlled by reducing the time 
step, this procedure results in additional processing time that is 
critical in Large Eddy Simulations. For the cavity flow problem, 
statistical analysis of turbulence were included and the obtained 
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values were close to other published results, not requiring any 
reduction in the time step for simulation.  

A new scheme for the second filtering operation in the dynamic 
model was presented and applied.  The scheme consists of defining 
super-elements around each node of the original mesh and applying 
the finite element interpolation functions to obtain the filtered 
quantities for the nodes. Most of this filtering operation is developed 
in the pre-processing, resulting in a dynamic model with total 
additional cost in processing time between 9 and 18%, when 
compared to the implemented Smagorinsky´s model. This additional 
time is in the same order of the best results reported by other 
authors. 

Analysis of the problems presented here demonstrated the 
capability of this methodology to simulate complex turbulent flows, 
without restrictions about memory allocation. The long time of 
processing, resulting mostly from the time interval restriction of this 
explicit scheme, indicates the relevance to improve the code before 
continuing the simulation of other problems in view of extended 
analysis of different models behavior. Researches on these aspects 
are in progress. 
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