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Sensitivity Analysis of Shallow Water 
Problems via Perturbative Methods 
We applied the perturbative theory to perform sensitivity analysis of the shallow water 
equations. The numerical solution of these equations was found via the mass lumping finite 
element technique. Then, the adjoint system of the shallow water equations was derived for 
the one-dimensional case and the expression of the sensitivity coefficient of a generic 
functional with respect to a generic parameter (Chézy resistance coefficient, solitary wave 
amplitude and bed channel slope) was obtained, using the differential formalism. The 
sensitivity of the mean functional, representing the first approximation of the velocity and 
the depth, was analyzed with regard to these parameters. Results of the sensitivity 
coefficients obtained via the perturbative methodology satisfactorily matched the values 
computed by the direct method, i.e., by means of the direct solution of the shallow water 
equations changing the values of input parameters for each case considered. 
Keywords: Sensitivity analysis, shallow water equations, perturbative methods, mass 
lumping technique 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 

The one-dimensional unsteady shallow water open channel flow 
is governed by the conservation-of-mass and conservation-of-
momentum Saint-Venant quasilinear hyperbolic partial differential 
equations; see for instance Stoker (1957). The numerical solution 
can be obtained, for instance, via the “mass lumping” finite element 
technique, see Kawahara et al. (1978), Kawahara and Yokoyama 
(1980), Kawahara et al. (1982). Now, one of the main problems 
when implementing a shallow water mathematical model is the 
calibration of its many parameters. An estimation of the sensitivity 
of the parameters allows the user to decide wich parameters are 
worth improving, and wich are too insensitive, therefore reducing 
considerably the amount of calibration runs.  The perturbation 
theory may be applied to perform sensitivity computations in many 
models, saving a lot of simulation work. The theory has been used 
mainly in nuclear reactor problems; in fact, an adjoint sensitivity 
analysis of the RELAP5/PANBOX2/COBRA3 (R/P/C) code 
comprising several tens of coupled partial differential equations, 
including phase change, is carefully described in Ionescu-Bujor and 
Cacuci (2000a),  Ionescu-Bujor and Cacuci (2000b), or in Cacuci 
(2000).  

This code is an impressive work that represents “a major and 
very useful development toward establishing a general-purpose code 
system for the analysis of postulated accident scenarios”, as Cacuci 
and Ionescu-Bujor say in their paper.1 

Other application may be mentioned, namely in Baliño et al. 
(2001) sensitivity analysis is applied to waterhammer problems in 
hydraulics networks. Besides, Burg (1999) uses discrete sensitivity 
analysis to optimize the design of supercritical channel contractions, 
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expansions, circular bends and bridge piers and to optimize the 
design of an airfoil. 

Our purpose is to apply this methodology (perturbative 
procedure) to other problems in fluid dynamics. In Fraidenraich et 
al. (2003a) we implemented an adjoint sensitivity analysis of the 
advection-diffusion-reaction linear equation of pollutant transport. 

The sensitivity analysis implementation was generalized to the 
nonlinear Burgers equation; see Fraidenraich et al. (2001). As far as 
we know, no references exist on perturbative methods applied to 
study shallow water parameters. We also applied the perturbative 
methodology to the viscous kinematic wave as can be seen in 
Fraidenraich et al. (2003b). 

The purpose of this paper is to study the behavior of the one-
dimensional shallow water open channel flow through prismatic 
channels with rectangular cross-sections when the source term and 
the initial condition are perturbed. We use the solitary wave 
propagation because it is possible to match it with the numerical 
solution given by Zienkiewicz et al. (1993). Then we apply the 
differential formalism to perform sensitivity analysis of the shallow 
water one-dimensional equations. 

To quantify the height h and the velocity u, one functional is 
considered, the mean value, in the time-space domain. To 
implement the perturbative method, the adjoint operators, the 
adjoint equations with the general form of the boundary conditions, 
and the general form of the bilinear concomitant are calculated. 
With these tools we analyze the variation of the mean height and 
velocity with respect to the following parameters: Chézy resistance 
coefficient, solitary wave amplitude and bed channel slope. 

The variation of the functional (velocity and mean height) with 
respect to a reference solution can be quantified in two ways: a) 
directly, through a new solution of the shallow water equation and 
b) determining the so-called sensitivity coefficients. The last 
procedure is faster and more efficient, as the system of equations 
that describe the physical behavior of the problems is solved only 
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once. As a result, we obtain the first order sensitivity coefficients of 
the perturbative method. In the next section, we describe the 
mathematical model and the discretization procedure. In section 3 
we present the sensitivity analysis. Results obtained by the first 
order perturbative method are computed in section 4 and discussed. 
Finally, in section 5, conclusions are discussed.  

Nomenclature 

h(x,t) = height from the bed channel to the free surface, m    
Hb(x) = (fixed) bottom height, m    
S = constant free surface, m 
H(x) = height from the bottom to the constant free surface, m 
u(x,t) = longitudinal velocity, m/s η  (x,t) = fluctuation from a constant free surface S, m  
amp = soltary wave amplitude, m 
g = acceleration of gravity, m/s2 
c = Chézy coefficient, m½/s 
ip = bottom variation parameter φ

i = convenient boundary functions (i =1,…,4) 
e = lumping coefficient 
Ms = selective mass matrix 
Ml = lumping mass matrix 
MG = Galerkin mass matrix 
N = Galerkin linear shape function 
M1 = terms that incluyes the presion gradients 
M2 = represents the linear part of the tangential uniform stresses 
M3 = term that includes the resistance and convective effects 
ui

n  = discretized velocity evaluated at time tn and at point xi , 
m/s 

Un = unknown nodal vector evaluated at time tn φ 1
m = mean height values in the phase space φ 2
m= mean velocity values in the phase space 

H* = adjoint operator 
Lc = channel length, m 
CI = coefficient that takes into account the effect of variations of 

η  and topography H 

m = implicit equation 
pi = generic parameter 
P( φ *, φ

/I) = binlinear concomitant 
R = generic response functional 
H0 = nonlinear operator 
S+ = source term of the adjoint equation 
S(i) = source term of the derivative equation 
t = time, s 
T = total time simulation, s 
x = position, m 

Greek Symbols �
t = time step, s τ  = friction parameter φ * = adjoint function of  φ

m �
 = spatial domain, m2 

Subscripts 

i = spatial index 

Superscripts 

n = time index 

Methodology 

Now we study the solution of the coupled system of momentum 
and mass equations in a fluid medium that satisfies the 
incompressibility equation.  

Theoretical Model:   

The one-dimensional shallow water equations for unsteady flow 
over open prismatic channels with rectangular cross-sections can be 
written as 

 ∂
h/

∂
t + 

∂
(hu)/

∂
x = 0 ≡  m1, (1) 

 ∂
u/

∂
t + ½ 

∂
u2/

∂
x + 

∂
(h + Hb)/

∂
x + u  u/(c2h) = 0  ≡  m2, (2) 

 
where h = h(x,t) is the height from the bed channel to the free 
surface, u = u(x,t) is the longitudinal velocity, g is the acceleration 
of gravity, c is the Chézy resistance coefficient, x is the longitudinal 
coordinate and t is the time. If  Hb = Hb (x) is the (fixed) bottom 
height,  measured from a constant reference plane, and if we are 
interested in the fluctuation η = η (x,t) from a constant free surface 
S, we shall have Hb (x) + H(x) = S, where H(x) is the height from 
the bottom to the constant free surface, and  h(x,t) + η (x,t) = H(x); 
besides, amp will be the solitary wave amplitude; see  Fig.  

 

 
Figure 1. Longitudinal description of the channel. 

We shall also take the spatial  bottom variation as 
 

H(x) = ip (1 + (x/Lc)
2), (3) 

 
where Lc  is the length of the open channel and ip is the bottom 
variation parameter. 

The initial and boundary conditions of the problems are  
 

 η (x, 0)  = φ
1(x),      0 < x < Lc , 

u(x, 0)  = φ
2 (x),     0 < x < Lc , (4) 

u(0, t)  =  φ
3 (t) ,     0 < t < T , η  (Lc,t) =  φ
4 (t) ,    0 < t < T, 

 
where 321  , , ϕϕϕ , and 4ϕ  are convenient functions. In fact, we 

have assumed known the velocity at the left boundary and the 
fluctuation at the right boundary, but of course other combinations 
of boundary conditions are also possible, provided that – if the flow 
is subcritical – one boundary condition is given at each boundary 
point.  

Numerical Solution of the Direct Problem:  

The standard Galerkin finite element method is employed for the 
spatial discretization, as we show in Eq. (6) and Eq. (7). To solve 
this system of ordinary differential time equations it is necessary to 
introduce a numerical integration scheme in time; see Kawahara et 
al. (1982). The scheme employed in this paper is the selective 
lumping two-steps explicit scheme. In order to stabilize the 
numerical integration in time and to reduce the artificial damping 
effect we use the linear combination of mass matrices 
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Ms = eMl + (1-e)MG (5) 
 

where Ms is the selective mass matrix, Ml is the lumping  mass 
matrix, MG is the Galerkin mass matrix and e is the lumping 
coefficient. These matrices are presented in Kawahara et al. (1982) 
for the shallow water problem. We have considered 40 elements 
with a spatial step equal to 4m, and a time step of 0.05s. Kawahara 
et al. (1978) created this explicit sequence in two time steps 
evolutions, based on the Lax- Wendroff technique. 

Spatial -Galerkin  Numerical  Solution:   

To obtain the integration of the shallow water problem we 
started with the system of Eq. (1), and Eq. (2) in order to apply the 
Galerkin methodology but doing a splitting respect to the main 
operator: a linear and a nonlinear part remain; see Patil and Rao 
(1997). In this system ηhH += , so that 

 
A0  d

φ  /dt = (A1 + A2) 
φ  + R(Un) (6) 

 
With 
 

A0 = 








M0

0M
 , A1 = 









21

2

MM

C0
 , A2 =  









3M0

0CI
 (7) 

 
This system of ordinary differential equations represents the 

mass and the momentum nodal integrated equation. φ  = (η , u) t  is 
the vector of the unknown functions, R = (R1 ,R2 ) is the source term 
which includes the gradient of the bottom variation in the nonlinear 
part. The elements of the matrices A 1 and A2 are 

 
M=

∫ �
 NtN d� , C2=-

∫ �
 Nt

x(Nh)N d�  ,M1=-g 
∫ �

 NtNx d�  (8) 
 

Un is the global unknown nodal vector evaluated at tn and �  is the 
spatial domain of integration. M2=

∫ �
 Nt (Nτ ) Nu d�   represents the 

linear part of the tangential uniform stresses, N is a linear shape 
function in the Galerkin method and   

 
CI=

∫ �
 Nt (Nxh)Nu d� ,  

M3==-
∫ �

 Nt(Nτ )Nu d� -
∫ �

 Nt (Nu)Nx d� ,  (9) 
 

where M is the mass matrix system, CI takes into account the effect 
of variations of η  and topography H which influences the mass 

equation and the momentum equations, M3 includes the resistance 
and convective effects, τ = u /(c2H) is the friction parameter and c 

is the Chézy resistance coefficient. 
We implemented two temporal discrete evolutions. The first one 

is the solution of the linear part divided in two time steps; a similar 
approach was taken for the nonlinear part. 

First Half Time Step of the Linear Part: 

ui
n +½=(1–e)un

i-1/6+(2+e)ui
n/3+ 

+(1–e)un
i+ 1/6–� g(-½un

i-1+½un
i+ 1)/2- 

  -� τ (un
i-1/6+ui

n/3+un
i+1/6)/2, (10) 

 η
i
n+½=(1–e)η n

i-1/6+(2+e)η
i
n/3+ 

+(1–e)η n
i+1/6–� (aun

i-1+bui
n+d ui+ 1)/2, (11) 

 
where ui

n+½ and η
i 

n+½ are the discretized velocity and height 
evaluated at tn +½  and at the spatial point xi. For each node, the 
coefficients a, b and d are determined by the bottom variation.  

 

Second Half Time Step of the Linear Solution: 

In this case, the discretization according to the linear part of Eq. (6) 
renders the following equations: 

 
ui

n + 1  = (1 – e)un
i+1/6 + (2 + e)ui

n/3 + 
+ (1 – e)un

i+1/6 – � g(- ½un
i-1 + ½un

i+1) - 
-� τ  (ui-1

n+½/6 + ui
n+½/3 + ui+ 1

n+½/6) (12) 
 η

i
n+1 = (1 – e)η n

i-1 + (2 + e)η
i
n/3 + 

+ (1 – e)η n
i+ 1 -  

� (aui-1
n+½ + bui

n+½ + dui+1
n+½) (13) 

 
where  �  = � t/� x . 

First and Second Time Steps of the Nonlinear Part 

Evolution: 

In this part of the solution we show the following explicit 
solution for the nonlinear operator, from tn+1 through  tn+3/2 until tn+2  
with a time step equal to � t /2. 

 η
i 

n+3/2 = (1 – e)/6 η
i-1

n+1+(2 + e)/3 η
i
n+1+ (1 – e)/6 η

i+ 1
n+1- 

- � /2 (p11 
η

i-1
n+1+  p12 

η
i
n+1+p22 

η
i+ 1

n+1)-� /2 R1
n (14) 

 
Vi 

n+3/2 = (1 – e)/6 η
i-1

n+1+(2 + e)/3 Vi
n+1+ 

+(1 – e)/6 Vi+ 1
n+1- � /2 (p11 Vi-1

n+1+ p12 Vi
n+1+p22 Vi+1

n+1)- 
- � /2 (m11 Vi-1

n+1+ m12 Vi
n+1+m22 Vi+ 1

n+1) (15) 
 

Vi 
n+2 = (1 – e)/6 Vi-1

n+1+(2 + e)/3 Vi
n+1+ (1 – e)/6 Vi+ 1

n+1- 
-	 /2 (p11 Vi-1

n+3/2+ p12 Vi
n+3/2+p22 Vi+1

n+3/2)- 
 -
 /2 (m11 Vi-1

n+3/2+ m12 Vi
n+3/2+m22 Vi+1

n+3/2) (16) 
 

nV  is an auxiliary variable to find the discrete solution at step n+2, 

ia  is a subindex  that refers to the spatial point i and nl  indicates a 

nonlinear discretization term. 
 η

i 
n+2 = (1 – e)/6 

η
i-1

n+1+(2 + e)/3 
η

i
n+1+ (1 – e)/6 

η
i+1

n+1- 
- 	 /2 (p11 

η
i-1

n+3/2+ p12 
η

i
n+3/2+p22 

η
i+ 1

n+3/2) -
 /2 R1
n

  

 (17) 
 
The coefficients m and p and the source terms are obtained by 

numerical integration using the Gauss-Legendre method. 

Sensitivity Analysis 

Let us consider a functional response given by 
 

R = <S+ , φ  > (18) 
 

where R is the response functional, S+ is the source term of the 
adjoint differential equation, <, > is the inner product in an adequate 
functional space and φ  is the variable under study. The mean 

values of height and velocity in the phase space are defined, 
respectively, by  

 
1
mϕ = 1/LT ∫ ∫ x,t h(x, t) dt dx , 2

mϕ = 1/LT ∫ ∫ x,t u(x, t) dt dx (19) 
 
As we can see in Lima et al. (1998), Eq. (1) to Eq. (2) can be 

written  
 

m = Ho φ  = 0, (20) 
 

where H0 is a nonlinear operator which applied to φ  reproduces Eq. 

(1) and Eq. (2). By differencing Eq. (1) and Eq. (2) with respect to a 
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generic parameter pi, (see Oblow (1976), Cacuci et al. (1980), Lima 
and Alvim (1986), we obtain 

 ∂
m1/pi =

∂
(h/i)/

∂
t+

∂
((u h)/i)/

∂
x ∂

m2/pi =  

∂
(u/i)/

∂
t+

∂
(0.5 

∂
u2/

∂
x)/

∂
 pi+ 

+g 
∂

((h–H)/i)/
∂

x+((2u/c2)(u/i)/h sgn(u)– 
 -((u/c)2(h/i)/h2sgn(u)) (21) 

 
( . )/i is the partial derivative of the function ( . ) respect to the 

independent parameterip . 

Adjoint  Function:   

The adjoint system is given by  
 
 ∂ϕ1

*/∂ t=-u∂ ϕ1
*/∂ x-g ∂ϕ2

* /∂ x–sgn(u)u2ϕ2
*/(ch)2– S+ (22) 

 
 ∂ϕ2

*/∂ t=-h∂ ϕ1
*/∂ x u ∂ϕ2

* /∂ x+2 sgn(u)uϕ2
*/(c2h)–S+ (23) 

 
where sgn(u) indicates the sign of u, and the sources terms are 

 
S+=1/(LcT) (24) 

 
where Lc is the channel length and T is the total simulation time.  

The source terms of the adjoint equations (the mean heights and 
velocities) are the weight functions of Eq. (22) and Eq. (23), 
respectively. Then, the units of the the source terms depend on each 
analyzed adjoint functional; the correspondent units of ϕ*  will be 
define to make the adjoint differential equation H*ϕ*=S+ 
dimensionally right.  

The initial and boundary conditions are given by 
 

ϕ1
*(Lc,t)=0,    ϕ2

*(Lc,t)=0,        0< t <T , (25) 
 

ϕ1
*(x,T)=0,    ϕ2

*(x,T)=0,         0<x<Lc ,   (26) 
 
The conditions for the solution of the adjoint equation are 

chosen in order to cancel the unknown terms of the bilinear 
concomitant P between φ /i  and φ . The bilinear concomitant is 

given by 
 

P1=∫ x 

T
*φh/i

01 



 dx+∫ x 

T
*φu/i

02



 dx+ 

+ g∫ T ( ) L*φ/iHh
02




 − dt + ∫ T 
L

u/i*φh
01 



 dt, (27) 

 

  P2=∫ T 
T

*φh/iu
01 



 dt+∫ T 

T
*φu/iu

02 



 dx ∫ T 

L
u/i*φ

02 



 dt,  (28) 

 

P=P1 + P2. (29) 
 
We follow the procedure described in Baliño et al. (2001). For 

this particular case P is given by 
 

P=
∫
x

*φ
1

(x=0) ∂ h/∂ pi (t=0) dx -
∫
T ∂ (h-H)/∂ pi (x=0) *φ

2
(x=0) dt. (30) 

 

X is the one-dimensional spatial domain and x=0 is the origin. 

Sensitivity Coefficient:  

The general sensitivity coefficient is given by 
 

Si = < ϕϕϕϕ* , S(i) > = ϕ1
* S1(i) + ϕ2

* S2(i) + P (ϕ /i, ϕϕϕϕ) . 
 

where φ *=( φ 1
*, φ 2

*) is the adjoint functional vector. The first 
coordinate is associated to heights and the second to velocities. S1(i) 
and S2(i) are the source terms corresponding to Eq. (22) and  Eq. 
(23). The sensitivity coefficients are taken with respect to the 
analyzed parameters, namely the Chézy resistance coefficient (c), 
the bottom parameter (ip) and the solitary wave amplitude 
coefficient (amp) which are given, respectively, by 

 
S1 = < ( *φ

1
, *φ

2
), (0,-2u3/c3h sign(u))>+P( φ /i, φ ) = 

= 
∫ ∫

x,t 
*φ
2  -2 u2/c3h sign(u) dx dt+P( φ /i, φ ) (31) 

 

S2 =< ( *φ
1

, *φ
2

), (0,-g)>+P( φ /i, φ )= 

  = 
∫ ∫

x,t 
*φ
2

 -g 2 x/Lc
2 dx dt+P( φ /i, φ ) (32) 

 

S3= - 
∫
x

*φ
1

(x=0) ∂ h/∂ pi(t=0) dx + 

 + 
∫
T - ∂ (h-H)/ ∂ pi(x=0) *φ

2 (x=0) dt (33) 

Results and discussion 

Direct Computation:   

To evaluate the direct solution given in Fig. 2 we have 
considered the entrance of the solitary wave to a 160m long channel. 
This problem was solved by Zienkiewicz et al. (1993), Zienkiewicz 
and Ortiz (1995) and Kawahara et al. (1978, 1982). In spite of the 
channel length, the characteristics of the bottom resistance and the 
topography are very different, but the qualitative form of the solitary 
wave propagation results similar. Another alternative is to obtain the 
solution by a splitting method as in Patil and Rao (1997). We can 
solve the linear part by the “mass lumping” methodology which is 
an initial condition to the second half time step that we can solve by 
the same methodology, as we showed before. The friction (in the 
initial times) softens the solitary wave more than is shown in the 
results found by Kawahara et al. (1978), Kawahara and Yokoyama 
(1980), Kawahara et al. (1982), Zienkiewicz et al. (1993) and 
Zienkiewicz and Ortiz (1995). These effects are due to the large 
channel length, four times larger than that used by Zienkiewicz and 
his colleagues. These differences are also influenced by the 
concavity of the quadratic bottom variation. Besides this fact, we 
have taken, as initial velocities, a quiet lake condition different from 
what we found in the previous literature. As velocities are not 
significant we may neglect them, as we can see in the previously 
mentioned works by Zienkiewicz and his colleagues. We have 
preferred to maintain the open channel length equal to 160m at the 
opposite direction of the flow. The bottom variation adopted 
corresponds to Eq. (3). The system considered is given by Eq. (1) 
and Eq. (2) with all the nonlinear terms. The initial and boundary 
conditions are given by  

 η
(x,0)=a sec h2 (3½ a/2(x–1/α )),      0<x<160m, 

 u(0,t)=0 ,                                          0<t<T, 
 u(x,0)=0 ,                                         0<x<160m , η
(160,t)=0 ,                                       0<t<T. (34) 
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Figure 2. Direct solution. 

 
Table 1 shows the physical and geometrical parameters which are being used int the direct and adjoint numerical computation. 
 

Table 1.  Physical and Geometrical parameters. 

Total time simulation                   T=35.0s 
Channel length                             Lc=160.0m 
Chézy resistance coefficient        c=60.0m1/2s-1 

Solitary wave amplitude              amp=0.1m 
Elemental length                         ∆x=4.0m 
Time step                                     ∆t=0.05 s 
Coefficient of bottom variation    ip=1.0 
Gravity acceleration                    g=9.81m/s2 

Stabilization factor                       e=0.675 
 
Figure 3 shows the mean functional variation of the height 

function versus the initial amplitude of the solitary wave. We can 
observe small divergences between the calculated values through 
the direct and perturbative methodologies. We can also observe a 
functional increment with this parameter and an asymmetry between 

these differences in both curves. To the left region with respect to 
the reference point (around 0.1m), these differences are more 
significant. This asymmetry shows a selected region near the 
reference point to calculate the sensitivity coefficient 

 

0,019

0,0195

0,02

0,0205

0,021

0,0215

0,09 0,095 0,1 0,105 0,11

am [m]

Direct

Perturbat ive

 
Figure. 3.  Mean height functional corresponding to the solitary wave amplitude. 

 
Figure 4 shows the mean height function corresponding to the 

quadratic bottom variation and is given by the already proposed 
equation H(x) = ip(1+(x/Lc)

2). Both methodologies (differential and 
direct) are similar and the results are coincident in ip=1. The 
monotonic decay characteristically happens when the flow direction 
is opposite to positive bottom slope. According to the calculated 
values and the height curvature indices of the bottom function (near 

ip=1.1) it produces a minimum point that means a modified 
hydrodynamics regime.  

For values of ip higher than 1.1, there is a good matching 
between the results given by the direct and perturbative 
methodologies. The velocities decrease rapidly to zero. We have a 
stagnation point with very small associated height.  
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Figure 4. Mean height functional corresponding to the quadratic bottom variation. 

 
Table 2 shows the errors in the sensitivity coefficients 

corresponding to both parameters in study. As these coefficients 
have been calculated normalizing them so that they are 
dimensionless, the errors can be compared. The error in the 

computation of the solitary wave amplitude sensitivity coefficient is 
very small; both parameters are important to be considered for 
sensitivity studies. The signs of the sensitivity coefficients show 
concordance with the physical meaning. 

 

Table 2. Sensitivity coefficients. 

Funcionales Parámetros ∆  p (φm)dir (φm)dif (CS)dir (CS)dif Errores% 

amp 5% 0.020617 0.0206167 0.088000 0.087950 0.053 (φm)ref= 0.020177 

ip 5% 0.019695 0.0197071 -0.009140 -0.009364 2.440 

Conclusions 

We applied the “mass lumping” methodology to solve the 
solitary wave propagation (direct method). The problems considered 
are: simplified model with horizontal and quadratic bottom variation 
and model with all nonlinear terms and linear and quadratic bottom 
variation. All of these cases constitute a direct validation. These 
results were compared with results in other papers (Zienkiewicz et 
al. (1993), Zienkiewicz and Ortiz (1995), Bemansour and Wrobel 
(1997), Patil and Rao (1997)) and the comparison was satisfactory. 
Particularly we see that the bottom and its concavity have a great 
influence in the open surface distribution. Also, the independence of 
this mean functional respect to the Chézy resistance coefficient was 
observed. For this reason we do not present a sensitivity analysis 
respect to this parameter. The methodology described in this paper 
for the sensitivity analysis allows us to obtain sensitivity coefficients 
respect to the mean height without building a response surface used 
in the direct methodology. So, we solve only one time the problem 
of the one-dimensional shallow water equation. We conclude that 
the mean height functional is more sensitive respect to the initial 
solitary wave amplitude than to the bottom parameter distribution. 
Also, the mean height functional is not affected by the velocity 
variations and, then, this problem is not good enough to study the 
variation of the functional respect to the resistance parameter. On 
the other hand, to continue studying the sensitivity of the mean 
height functional we prefer to choose the entrance of the tidal wave 
to the open channel with a quadratic bottom distribution. Finally, it 
is important to emphasize that the perturbation method may be 
applied to sensitivity studies in more complex situations. Some 
works (Ionescu-Bujor and Cacuci (2000a), Ionescu-Bujor and 
Cacuci (2000b), Cacuci (2000)) are examples of an application to a 
very sophisticated case. Our aim is to continue this approach to 
eventually apply the method to the complete shallow water equation 
and so to substantially improve the efficiency of model calibration,  

 
 

 
always a difficult inverse problem in fluvial and maritime 
hydraulics. 
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