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We applied the perturbative theory to perform s@rigi analysis of the shallow water

equations. The numerical solution of these equatieas found via the mass lumping finite
element technique. Then, the adjoint system cflthbow water equations was derived for
the one-dimensional case and the expression ofémsitivity coefficient of a generic

functional with respect to a generic parameter (8heesistance coefficient, solitary wave
amplitude and bed channel slope) was obtained,gutire differential formalism. The

sensitivity of the mean functional, representing finst approximation of the velocity and
the depth, was analyzed with regard to these patensie Results of the sensitivity
coefficients obtained via the perturbative methodwl satisfactorily matched the values
computed by the direct method, i.e., by meanseotiitect solution of the shallow water
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Introduction

The one-dimensional unsteady shallow water openraidiow
is governed by the conservation-of-mass and coasenvof-
momentum Saint-Venant quasilinear hyperbolic paditerential
equations; see for instance Stoker (1957). The noalesolution
can be obtained, for instance, via the “mass lugipiimite element

equations changing the values of input parametaredich case considered.
Keywords: Sensitivity analysis, shallow water equationsytyrative methods, mass

expansions, circular bends and bridge piers andptimize the
design of an airfoil.

Our purpose is to apply this methodology (pertuveat
procedure) to other problems in fluid dynamics Fhaidenraichet
al. (2003a) we implemented an adjoint sensitivity asialyof the
advection-diffusion-reaction linear equation oflptint transport.

The sensitivity analysis implementation was gernegdl to the
nonlinear Burgers equation; see Fraidenraichl (2001). As far as

technique, see Kawahas al (1978), Kawahara and Yokoyamawe know, no references exist on perturbative methagplied to
(1980), Kawaharaet al (1982). Now, one of the main problemsstudy shallow water parameters. We also appliedptreurbative

when implementing a shallow water mathematical rhaslethe
calibration of its many parameters. An estimatiérihe sensitivity
of the parameters allows the user to decide widtarpeters are
worth improving, and wich are too insensitive, tfere reducing
considerably the amount of calibration runs. Thertyrbation
theory may be applied to perform sensitivity conapions in many
models, saving a lot of simulation work. The thebas been used
mainly in nuclear reactor problems; in fact, anoawj sensitivity

methodology to the viscous kinematic wave as cansd&en in
Fraidenraictet al (2003b).

The purpose of this paper is to study the behavidhe one-
dimensional shallow water open channel flow throymgismatic
channels with rectangular cross-sections when thece term and
the initial condition are perturbed. We use theitagl wave
propagation because it is possible to match it i numerical
solution given by Zienkiewiczt al (1993). Then we apply the

analysis of the RELAP5/PANBOX2/COBRA3 (R/P/C) -codedifferential formalism to perform sensitivity anaiy of the shallow

comprising several tens of coupled partial difféi@@nequations,
including phase change, is carefully describedirescu-Bujor and
Cacuci (2000a), lonescu-Bujor and Cacuci (2000b)in Cacuci
(2000).

This code is an impressive work that representsnégor and
very useful development toward establishing a garmirpose code
system for the analysis of postulated accidentawesi’, as Cacuci
and lonescu-Bujor say in their paper.

Other application may be mentioned, namely in Rakfi al
(2001) sensitivity analysis is applied to waterhanmroblems in
hydraulics networks. Besides, Burg (1999) usesreliscsensitivity
analysis to optimize the design of supercriticarafel contractions,
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water one-dimensional equations.

To quantify the heighh and the velocityu, one functional is
considered, the mean value, in the time-space domab
implement the perturbative method, the adjoint afmes, the
adjoint equations with the general form of the ketany conditions,
and the general form of the bilinear concomitarg aalculated.
With these tools we analyze the variation of theambeight and
velocity with respect to the following paramete@hézy resistance
coefficient, solitary wave amplitude and bed chéasstape.

The variation of the functional (velocity and meagight) with
respect to a reference solution can be quantifietivo ways: a)
directly, through a new solution of the shallow gragquation and
b) determining the so-called sensitivity coeffiden The last
procedure is faster and more efficient, as theesystf equations
that describe the physical behavior of the problémsolved only

ABCM



Sensitivity Analysis of Shallow Water Problems via...

once. As a result, we obtain the first order saiisitcoefficients of
the perturbative method. In the next section, wescdiee the
mathematical model and the discretization proceduresection 3
we present the sensitivity analysis. Results obthiby the first

order perturbative method are computed in sectianditdiscussed.

Finally, in section 5, conclusions are discussed.

Nomenclature

h(x,t) = height from the bed channel to the free surface

Hy(X) = (fixed) bottom heightn

S= constant free surface,

H(x) = height from the bottom to the constant fredaae,m

u(x,t) = longitudinal velocitym's

n (xt) = fluctuation from a constant free surfagen

amp= soltary wave amplituden

g = acceleration of gravityy/s’

¢ = Chézy coefficientn”/s

ip = bottom variation parameter

@; = convenient boundary functions(1,...,4)

e = lumping coefficient

M= selective mass matrix

M, = lumping mass matrix

Mg = Galerkin mass matrix

N = Galerkin linear shape function

M = terms that incluyes the presion gradients

M, = represents the linear part of the tangentialannifstresses

M ;= term that includes the resistance and conveeffests

u" = discretized velocity evaluated at titi@nd at poink; ,
m's

U"= unknown nodal vector evaluated at tithe

0] 1 ,= mean height values in the phase space

@ %.= mean velocity values in the phase space

H" = adjoint operator

L.= channel lengthm

ClI = coefficient that takes into account the effdotariations of
/] and topographi

m = implicit equation

pi = generic parameter

P(¢", ) = binlinear concomitant

R = generic response functional

Ho = nonlinear operator

S" = source term of the adjoint equation

S(i) = source term of the derivative equation

t =time,s

T = total time simulations

X = positionm

Greek Symbols

At = time steps

7 = friction parameter

¢ = adjoint function ofg,,
Q = spatial domainy?

Subscripts

i = spatial index
Super scripts

n = time index

M ethodology

Now we study the solution of the coupled systermomentum
and mass equations in a fluid medium that satisfthe
incompressibility equation.

Theoretical Model:

The one-dimensional shallow water equations fotaaty flow
over open prismatic channels with rectangular esessions can be
written as

ah/at + a(hulox = 0= my, 1)

oulet + Yaoullox + a(h + Hp)lox + | u(ch) =0 =y, (2)

whereh = h(x,t) is the height from the bed channel to the free
surface,u = u(xt) is the longitudinal velocityg is the acceleration
of gravity, c is the Chézy resistance coefficienis the longitudinal
coordinate and is the time. If Hb = Hb (x) is the (fixed) bottom
height, measured from a constant reference plamné,if we are
interested in the fluctuation = 77 (x,t) from a constant free surface
S, we shall havedb (x) + H(X) = S, whereH(X) is the height from
the bottom to the constant free surface, digt) + 77 (x,t) = H(X);
besides, amp will be the solitary wave amplituées $ig.

-_/—f

Y
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h 4
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Figure 1. Longitudinal description of the channel.

We shall also take the spatial bottom variation as

H() =ip (1 + (}/Lo)?), ®)

wherel. is the length of the open channel apdis the bottom
variation parameter.
The initial and boundary conditions of the probleams

7% 0) =¢1(¥), 0<x<Le,

ux, 0) =¢g,(x), 0<x<lL, 4)
u0,t) = (), O<t<T,

n (cht) = @4 (t) ’ 0<t< Tv

where ¢1,¢,,03, and ¢, are convenient functions. In fact, we

have assumed known the velocity at the left boundard the
fluctuation at the right boundary, but of courskestcombinations
of boundary conditions are also possible, provithed — if the flow
is subcritical — one boundary condition is giveneath boundary
point.

Numerical Solution of the Direct Problem:

The standard Galerkin finite element method is eygd for the
spatial discretization, as we show in Eq. (6) aind &). To solve
this system of ordinary differential time equationgs necessary to
introduce a numerical integration scheme in tinges Kawaharat
al. (1982). The scheme employed in this paper is shlective
lumping two-steps explicit scheme. In order to #itabd the
numerical integration in time and to reduce théfieidl damping
effect we use the linear combination of mass medric
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Ms=eM,; + (1-eMg (5) Second Half Time Step of the Linear Solution:

where M, is the selective mass matri, is the lumping mass In this case, the discretization according to thedr part of Eq. (6)
matrix, Mg is the Galerkin mass matrix aralis the lumping renders the following equations:
coefficient. These matrices are presented in Kaveagtaal (1982)

for the shallow water problem. We have consider8delements uttt = (1~ QUi 1/6 + 2+ e)Ui:/3 +
with a spatial step equal tandand a time step of 0.85Kawahara +(1- G)E#i;l/ﬁ —/trgg; Yoy + YU i+1) -
et al (1978) created this explicit sequence in two tinteps ur (Ui 16 + U3 + Ui, /6) (12)

evolutions, based on the Lax- Wendroff technique. el N N
i n - (1_ e”ni+:1:l/'-‘- (2 tns/)”i /3 * n+Yz

+(1- 65" - p@uq" 7+ by"" " + dy 13

Spatial -Galerkin Numerical Solution: (1=8es - (@l ' b (13)

To obtain the integration of the shallow water peob we Wheresu = Atax.

started with the system of Eq. (1), and Eq. (29rider to apply the
Galerkin methodology but doing a splitting respéxtthe main First and Second Time Steps of the Nonlinear Part
operator: a linear and a nonlinear part remain; Bail and Rao gyg|ution:
(1997). In this systenH = h+ 7, so that ) ) ] o
In this part of the solution we show the followiraxplicit
A do /dt = (A, + A,) o + RU 6 solution for the nonlinear operator, frdg, through t,.3,, until t,.»
0% B 2@ L9 ©) with a time step equal tdt /2.
With
7 "= (1816 g (2 + €)/3 7" (1 - /6 s
M O 0 G, cl o - 12 (Pry 7™ Pr2 ™ P22 et )2 R (14)
Ag= A= A= (7

= 2=

0 M M1 My 0 Mg V, "2 = (1— 916 7" +(2 + €)/3 VM
+(1 = 8/6 Viy 1" 11/2 (o Vit pro VM Hpap Viat™ -
This system of ordinary differential equatiorspresents the - 2 (Myg Vi " mgp VT mg, Vi M) (15)
mass and the momentum nodal integrated equagion(y, u) ' is - - - -
the vector of the unknown functior®,= (R; ,R, ) is the source term ViTr=(1- e)/6Vi-1+3/;'(2 + e)ﬁ33\/£i +(1 —32/6\4,,1 -
which includes the gradient of the bottom variatiorthe nonlinear W2 (P11 Vi-1n+3/2+ P12 Vin+3/2+p22 Vier" +;)‘
part. The elements of the matridkes andA, are 42 (Mg Vit ™% myp V3 %4my, V) (16)
M=o NIN d2, C=-Jo NY(N)N d@ ,M;=-g [ NN, dQ (8) V" is an auxiliary variable to find the discrete dign at stem+2,

U" is the global unknown nodal vector evaluated,@nd  is the &, is a subindex that refers to the spatial poamdnl indicates a
spatial domain of integratiod,=Jo N, (Nr) Nu d2 represents the nonlinear discretization term.
linear part of the tangential uniform stressMsis a linear shape
function in the Galerkin method and 7 ™2 = (1 - e)6y." 2 + )35+ (1 — e)6yi ™
Cl=ly N (NfNU 2 - W2 P A" PP ) w2 RO (17)
—JQ X ’

Ma==-[o N{(No)Nu d2-Jo N' (Nu)N, d@, (9) The coefficientsm andp and the source terms are obtained by
numerical integration using the Gauss-Legendre oakth
whereM is the mass matrix systef@] takes into account the effect
of variations of/] and topographyd which influences the mass Sensitivity Analysis
equation and the momentum equatiods, includes the resistance

and convective effectd = |u| /(c®H) is the friction parameter ard Let us consider a functional response given by

is the Chézy resistance coefficient. R=<S",¢ > (18)
We implemented two temporal discrete evolution Titst one

is the solution of the linear part divided in twme steps; a similar \yhereR is the response functiona§ is the source term of the

approach was taken for the nonlinear part. adjoint differential equation, <, > is the innepguct in an adequate
functional space andp is the variable under study. The mean
First Half Time Step of theLinear Part: values of height and velocity in the phase spaee defined,
U = (LU, 16+ (2+)u"3+ respectively, by
+(1- U 1/6-ug (U 1+ ", 1)/ 2-
e A 6+ TB U 1 /6)/2, (10) gr=ULT [l h(x, t) dtdx ¢2= LLT [l u(x, ) dtdx  (19)
"= (1-e)"./6+ (2+€)y "3+ As we can see in Limet al (1998), Eq. (1) to Eq. (2) can be
+(1-)y" 1/6-u(@u’. 1 +bu"+d uis1)/2, (11)  written
where u™” and 4; " are the discretized velocity and height m=H,p =0, (20)
evaluated at" ** and at the spatial poin¢. For each node, the
coefficientsa, bandd are determined by the bottom variation. whereH is a nonlinear operator which applied¢oreproduces Eq.

(1) and Eq. (2). By differencing Eq. (1) and Eq.\{2th respect to a
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generic parametgy;, (see Oblow (1976), Cacuet al (1980), Lima
and Alvim (1986), we obtain

amy/p =a6(h/i)ot+((u h)fi)/éx
om2/p, = a(ufi)ot+6(0.56U%8x)16 p+
+g &((h=H)/i)lex+((2u/A)(uli)/h sgr(u)-
-((u/e*(hfiYh?sgr(u))

(. )i is the partial derivative of the function ( . )spect to the

(21)

independent paramet@r .

Adjoint Function:

The adjoint system is given by

¢, 101=-ud ¢, 10x-g g, 19 x—sgriu)ue, /(ch)>~ S (22)

06, 10t=-d §,10x U I, 10x+2 sgr(iud, [(h)-S  (23)

wheresgn(u) indicates the sign af, and the sources terms are

S=U(LT) (24)
whereL is the channel length aridis the total simulation time

The source terms of the adjoint equations (the nhegghts and
velocities) are the weight functions of Eq. (22)dakg. (23),
respectively. Then, the units of the the sourcensedepend on each
analyzed adjoint functional; the correspondentsupit ¢ will be
define to make the adjoint differential equatiod”¢'=S"
dimensionally right.

The initial and boundary conditions are given by

¢1*(Lc|t)=0| ¢2* (LCVt)=OV
¢l* (X,T):O, ¢2* (X,T):O,

The conditions for the solution of the adjoint efjpma are
chosen in order to cancel the unknown terms of bilmear
concomitantP between ¢/i and ¢ . The bilinear concomitant is

given by

o<td, (25)

0x<L,, (26)

P.=ly [h/i o }; dxtly [u/i q)*z}; dx+

+glt {(h—H)/Np*Z}I(} dt+ ¢ [h (p;- ufi To- dt, 27)

P=lr [u hii (pz }; dt+r [u ufi (p*2:|10— dxr |:(p*2 u/i}l(; dt, (28)
P=P;+ P.. (29)

We follow the procedure described in Bali@bal (2001). For
this particular cask is given by

P=J, q,; (x=0) In/dpi (t=0) dx -+ I (h-H)/F p (x=0) ,,,*2 (=0)dt. (30)

X is the one-dimensional spatial domain an is the origin.

Sensitivity Coefficient:

The general sensitivity coefficient is given by

J. of the Braz. Soc. of Mech. Sci. & Eng.
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§=<¢,9)>=¢ S)+ ¢, S)+P (/i ¢).

where ¢ =(p1, ¢,) is the adjoint functional vector. The first
coordinate is associated to heights and the setwonelocities.S,(i)
and Sy(i) are the source terms corresponding to Eq. (2d) &v.
(23). The sensitivity coefficients are taken witbspect to the
analyzed parameters, namely the Chézy resistanefticoent (c),
the bottom parameterip) and the solitary wave amplitude
coefficient @mp which are given, respectively, by

1= <o) 10y ) O-27Ch SiGrWU)>+P(p i, ) =
*

=[x ?9 -2 u?cch signu) dx d&P(g /i, ) (31)
S$=<(p] 195 ) 0-0>+P(pfi,¢)=
=[l P2 -g2xIL2 dx d#P(p /i, ¢) (32)
S= -y ¢1 (x=0) Ih/Jp(t=0) dx +
+ [1- d(h-H)/ I pi(x=0) 40*2 (x=0) dt (33)

Results and discussion

Direct Computation:

To evaluate the direct solution given in Fig. 2 \wave
considered the entrance of the solitary wave t6Gmlong channel.
This problem was solveldy Zienkiewiczet al (1993), Zienkiewicz
and Ortiz (1995) and Kawahaed al (1978, 1982). In spite of the
channel length, the characteristics of the bottesistance and the
topography are very different, but the qualitafiosnm of the solitary
wave propagation results similar. Another alter&ts to obtain the
solution by a splitting method as in Patil and R&897). We can
solve the linear part by the “mass lumping” metHodg which is
an initial condition to the second half time stkpttwe can solve by
the same methodology, as we showed before. Thiofri¢in the
initial times) softens the solitary wave more thanshown in the
results found by Kawahaet al (1978), Kawahara and Yokoyama
(1980), Kawaharaet al (1982), Zienkiewiczet al (1993) and
Zienkiewicz and Ortiz (1995). These effects are tluehe large
channel length, four times larger than that usediepnkiewicz and
his colleagues. These differences are also infegnby the
concavity of the quadratic bottom variation. Besidkis fact, we
have taken, as initial velocities, a quiet lakeditian different from
what we found in the previous literature. As velies are not
significant we may neglect them, as we can sedénpreviously
mentioned works by Zienkiewicz and his colleagudge have
preferred to maintain the open channel length egualbn at the
opposite direction of the flow. The bottom variatiadopted
corresponds to Eq. (3The system considered is given by Eq. (1)
and Eq. (2) with all the nonlinear terms. The alitand boundary
conditions are given by

n(x,0)=a set? (3% a/2(1l)), Ox<160m,

u(0H)=0, 187,

u(x,0)=0, <x160m,
7(1601)=0 , ®4. (34)
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Figure 2. Direct solution.

Table 1 shows the physical and geometrical parasetieich are being used int the direct and adjoimherical computation.

Table 1. Physical and Geometrical parameters.

Totaltime simulation T=35.68
Channel length Lc=160.0m
Chézy resistance coefficient c=60.0m%s?
Solitary wave amplitude amp=0.1m
Elemental length Ax=4.0m
Time step At=0.05 s
Coefficient of bottom variation ip=1.0
Gravity acceleration 9=9.81/s>
Stabilization factor e=0.675

Figure 3 shows the mean functional variation of tieght these differences in both curves. To the left negidgth respect to
function versus the initial amplitude of the saljtavave. We can the reference point (around @) these differences are more
observe small divergences between the calculatetewvehrough significant. This asymmetry shows a selected regmmar the
the direct and perturbative methodologies. We dan abserve a reference point to calculate the sensitivity caééfit
functional increment with this parameter and amasgtry between

0,0215
0,021+ /
0,0205 Direct
0,02 //
0,01957/
0,019
0,09 0,095 0.1 0,105 0,11

am [m]

Perturbative

Figure. 3. Mean height functional corresponding to the solitary wave amplitude.

Figure 4 shows the mean height function correspuntlh the ip=1.1) it produces a minimum point that means a fiedli
quadratic bottom variation and is given by the adse proposed hydrodynamics regime.
equationH(x) = ip(1+(x/Ly)?). Both methodologies (differential and For values ofip higher than 1.1, there is a good matching
direct) are similar and the results are coincidentip=1. The between the results given by the direct and peativbd
monotonic decay characteristically happens wherflthedirection  methodologies. The velocities decrease rapidlyetm.zWe have a
is opposite to positive bottom slope. Accordingthe calculated stagnation point with very small associated height.
values and the height curvature indices of theobotiunction (near
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0,0215

0,021
0,0205+
0,02 1
0,0195+

0,019 \ \

Direct

Perturbative

0975 1
ip

09 0925 0,9

1,025 1,05 1,075 11

Figure 4. Mean height functional corresponding to the quadratic bottom variation.

Table 2 shows the errors in the sensitivity coddfits
corresponding to both parameters in study. As treesficients
have been calculated normalizing them so that tlee
dimensionless, the errors can be compared. Ther énrothe

computation of the solitary wave amplitude sengitigoefficient is
very small; both parameters are important to besiclemed for
sensitivity studies. The signs of the sensitivigefficients show
concordance with the physical meaning.

Table 2. Sensitivity coefficients.

Funcionales Parametros A p (gm)dir (gm)dif (CS)dir (Cs)dif Errores%
(@n)re= 0.020177 amp 5% 0.020617| 0.020616Y 0.088000 0.087950 0.053
ip 5% 0.019695| 0.0197071  -0.00914D -0.009364 2.440

Conclusions

We applied the “mass lumping” methodology to sobhe
solitary wave propagation (direct method). The fgots considered
are: simplified model with horizontal and quadrdtattom variation
and model with all nonlinear terms and linear anddyatic bottom
variation. All of these cases constitute a direalidation. These
results were compared with results in other paf@enkiewicz et
al. (1993), Zienkiewicz and Ortiz (1995), Bemansond aVrobel
(1997), Patil and Rao (1997)) and the comparisos segisfactory.
Particularly we see that the bottom and its congavave a great
influence in the open surface distribution. Aldte thdependence of
this mean functional respect to the Chézy resist@oefficient was
observed. For this reason we do not present atséysanalysis
respect to this parameter. The methodology desttiitbehis paper
for the sensitivity analysis allows us to obtainsBvity coefficients
respect to the mean height without building a respcsurface used
in the direct methodology. So, we solve only omeetithe problem
of the one-dimensional shallow water equation. Wectude that
the mean height functional is more sensitive respedhe initial
solitary wave amplitude than to the bottom paramdistribution.
Also, the mean height functional is not affected thg velocity
variations and, then, this problem is not good ghoto study the
variation of the functional respect to the resistaparameter. On
the other hand, to continue studying the sengitiait the mean
height functional we prefer to choose the entrasfdhe tidal wave
to the open channel with a quadratic bottom distidm. Finally, it
is important to emphasize that the perturbationhoetmay be
applied to sensitivity studies in more complex dilons. Some
works (lonescu-Bujor and Cacuci (2000a), lonescjeBuand
Cacuci (2000b), Cacuci (2000)) are examples ofpplication to a
very sophisticated case. Our aim is to continue #pproach to
eventually apply the method to the complete shall@ater equation
and so to substantially improve the efficiency afdal calibration,

J. of the Braz. Soc. of Mech. Sci. & Eng.
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always a difficult inverse problem in fluvial and antime

hydraulics.
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