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Transient Stability of Empty and 
Fluid-Filled Cylindrical Shells 
In the present work a qualitatively accurate low dimensional model is used to study the 
non-linear dynamic behavior of shallow cylindrical shells under axial loading. The 
dynamic version of the Donnell non-linear shallow shell equations are discretized by the 
Galerkin method. The shell is considered to be initially at rest, in a position corresponding 
to a pre-buckling configuration. Then, a harmonic excitation is applied and conditions to 
escape from this configuration are sought. By defining steady state and transient stability 
boundaries, frequency regimes of instability may be identified such that they may be 
avoided in design. Initially a steady state analysis is performed; resonance response 
curves in the forcing plane are presented and the main instabilities are identified. Finally, 
the global transient response of the system is investigated in order to quantify the degree of 
safety of the shell in the presence of small perturbations. Since the initial conditions, or 
even the shell parameters, may vary widely, and indeed are often unknown, attention is 
given to all possible transient motions. As parameters are varied, transient basins of 
attraction can undergo quantitative and qualitative changes; hence a stability analysis 
which only considers the steady-state and neglects this global transient behavior, may be 
seriously non-conservative. 
Keywords: Cylindrical shells, fluid-structure interaction, parametric instability, nonlinear 
vibrations 
 
 
 
 

Introduction 

Thin-walled cylindrical shells are widely used in many 
industries. Due to the increasing use of high-strength materials, 
sophisticated numerical techniques and optimization methods in 
analysis, the design of such shells is often buckling-critical. In many 
circumstances these shells are subjected not only to static loads but 
also to dynamic disturbances and filled with internal fluid. However, 
thin-walled cylindrical shells when subjected to axial compressive 
loads often exhibit a highly nonlinear behavior with a high 
imperfection sensitivity and may loose stability at loads levels as 
low as a fraction of the material strength.1 

Many studies are concerned with the analysis of shells vibrating 
in vacuum; far fewer are focused on the analysis of the nonlinear 
vibrations of cylindrical shells in contact with a dense fluid. One of 
the first studies on vibrations of circular cylindrical shells in contact 
with a dense fluid considering shell nonlinearity is due to 
Ramachandran (1979). He studied the large-amplitude vibrations of 
circular cylindrical shells having circumferentially varying thickness 
and immersed in a quiescent, non-viscous and incompressible fluid, 
using the Donnell’s shell theory. 

Boyarshina (1984, 1988) studied theoretically the nonlinear free 
and forced vibrations and stability of a circular cylindrical tank 
partially filled with a liquid and having a free surface. Here, 
nonlinearity is attributed to the interaction of free surface waves and 
elastic flexural vibrations of the shell. 

Gonçalves and Batista (1988) considered simply supported 
circular cylindrical shells filled with incompressible fluid. To model 
the shell, Sanders’ nonlinear shell theory and a novel mode 
expansion that includes two terms in the radial direction (the 
asymmetric and the axisymmetric ones) and ten terms to describe 
the in-plane displacements were used. Numerical results were 
obtained concerning the effect of the liquid on the nonlinear 
behavior of shells. It was found that the presence of a dense fluid 
increases the softening characteristics of the frequency-amplitude 
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relation when compared with the results for the same shell in 
vacuum.  

Chiba (1993) studied experimentally large-amplitude vibrations 
of two vertical cantilevered circular cylindrical shells made of 
polyester sheets partially filled with water to different levels. He 
observed that for bulging modes with the same axial wave number, 
the weakest degree of softening nonlinearity can be attributed to the 
mode having the minimum natural frequency, as observed for the 
same empty shells. He also found that shorter tanks have a larger 
softening nonlinearity than taller ones, as in vacuum. The tank with 
a lower liquid height has a stronger softening nonlinearity than the 
same tank with a higher liquid level. Traveling wave modes and 
coupling between two bulging modes (and between two sloshing 
modes) were also observed. 

Amabili et al (1998) studied the nonlinear free and forced 
vibrations of a simply supported, circular cylindrical shell in contact 
with an incompressible and non-viscous, quiescent dense fluid. 
Donnell’s nonlinear shallow-shell theory is used, so that moderately 
large vibrations can be analyzed. The boundary conditions on radial 
displacement and continuity of circumferential displacement are 
exactly satisfied, while the axial constraint is satisfied “on the 
average”. The problem is reduced to a system of ordinary 
differential equations by means of the Galerkin method, assuming 
an appropriate deflection shape. The mode shape is expanded by 
using two asymmetric modes (driven and companion modes) plus 
the axisymmetric mode. 

In the present study, a low dimensional model which retains the 
essential nonlinear terms is used to study the nonlinear oscillations 
and instabilities of the shell. Here the interest is focused on a pivotal 
interaction between non-symmetric and axisymmetric modes which 
allows the escape from the pre-buckling configuration. To discretize 
the shell, Donnell shallow shell equations, modified with the 
transverse inertia force, are used together with Galerkin method to 
derive a set of coupled ordinary differential equations of motion. 
These equations are integrated numerically using the fourth order 
Runge-Kutta method. In order to study the nonlinear behavior of the 
shell, several numerical strategies were used to obtain time 
responses, Poincaré maps and bifurcation diagrams. The interested 
reader will find a description of the relevant numerical algorithms in 
Del Prado (2001). 

It is considered a non-viscous and incompressible fluid and an 
irrotational flow. As a result, it can be characterized by a velocity 
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potencial. The solution for the velocity potencial is taken as a sum 
of suitable functions, where the unknown parameters are determined 
by the kinetic condition along the shell wetted surface (Batista and 
Gonçalves, 1988). 

Steady state and transient stability boundaries are presented and 
special attention is devoted to the determination of the critical load 
conditions. From this theoretical analysis, dynamic buckling criteria 
can be property established which may constitute a consistent and 
rational basis for design of these shell structures under harmonic 
loading. 

Problem Formulation 

Shell Equations 

Consider a perfect thin-walled fluid-filled circular cylindrical 
shell of radius R, length L, and thickness h. The shell is assumed to 
be made of an elastic, homogeneous, and isotropic material with 
Young’s modulus E, Poisson ratio ν, and mass per unit area M. The 
axial, circumferential and radial co-ordinates are denoted by, 
respectively, x, y and z, and the corresponding displacements on the 
shell surface are in turn denoted by U, V, and W, as shown in Fig. 1. 

 
 R
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Figure 1. Shell geometry and coordinate system. 

 
The shell is subjected to a uniformly distributed axial load given 

by: 
 

( ) ( )tPPtP ωcos10 +=  (1) 
 

where P0 is the uniform static load applied along the edges x=0, L, 
P1 is the magnitude of the harmonic load, t is time and ω is the 
forcing frequency. 

The nonlinear equations of motion based on the Von Karmán-
Donnell shallow shell theory, in terms of a stress function f and the 
transversal displacement w are given by: 
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and ph is the fluid pressure, ∇4 is the biharmonic operator, β1 and β2 
are damping coefficients and D is the flexural rigidity defined as: 
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In the foregoing, the following non-dimensional parameters will 

be introduced: 
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where ωo is the lowest natural frequency of the empty shell. 

Modal Analysis 

The numerical model is developed by expanding the transversal 
displacement component w in series in the circumferential and axial 
variables. From previous investigations on modal solutions for the 
non-linear analysis of cylindrical shells under axial loads (Hunt et 
al. 1986; Gonçalves and Batista, 1988; Gonçalves and Del Prado, 
2002) it is observed that, in order to obtain a consistent modeling 
with a limited number of modes, the sum of shape functions for the 
displacements must express the non-linear coupling between the 
modes and describe consistently the unstable post-buckling response 
of the shell as well as the correct frequency-amplitude relation. 

The dimensionless lateral deflection W can be generally 
described as (Gonçalves and Batista, 1988): 
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where n is the number of waves in the circumferential direction of 
the basic buckling or vibration mode, m is the number of half-waves 
in the axial direction, θ = y / R and ξ = x / L. 

These modes represent both the symmetric and asymmetric 
components of the shell deflection pattern. The first double series 
represents the unsymmetrical modes with odd multiples of the basic 
wave numbers m and n. The second double series represents, 
besides the asymmetric modes which contains an even multiple of 
the basic wave numbers m and n and rosette modes, the 
axysimmetric modes which play an important role in the non-linear 
modal coupling and loss of stability of the shell. 

Previous studies on buckling of cylindrical shells have shown 
that the most important modes are the basic buckling or vibration 
mode and the axi-symmetric mode with twice the number of half 
waves in the axial direction as the basic mode, that is: 
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The relevance of these modes from a physical point of view was 

explained by Croll and Batista (1981) and, from symmetry and 
catastrophe theory arguments, by Hunt et al. (1986). These modes 
are enough to describe the initial post-buckling behavior of the shell 
as well as the topology of the pre-buckling configuration and the 
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potential barrier connected with the unstable equilibrium positions 
lying on the initial post-buckling path. 

Substituting the assumed form of the lateral deflection, Eq. (7), 
on the right-hand side of the compatibility Eq. (3), this equation can 
be solved to obtain the stress function f in terms of w together with 
the relevant boundary and continuity conditions. Upon substituting 
the modal expressions for f and w into Eq. (2) and applying the 
Galerkin method, a set of non-linear ordinary differential equations 
is obtained in terms of modal amplitudes ζ(τ)ij . 

Fluid Mechanics Equations 

The shell is assumed to be completely fluid-filled. The 
irrotational motion of an incompressible and non-viscous fluid can 
be described by a velocity potential φ(x, r, θ, t). This potential 
function must satisfy the Laplace equation which can be written in 
dimensionless form as: 
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where: 
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The dynamic fluid pressure acting on the shell surface is 

obtained from the Bernoulli equation: 
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where ρF is the density of the fluid and ρS is the shell material 
density. 

At the shell-fluid interface, the fluid velocity normal to the shell 
surface must be equal to the shell velocity in this direction, that is: 
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where Rh 2/=δ . 

Further, for a fluid-filled shell, the following restriction must be 
imposed at κ = 0: 
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Solving equations (8) to (11), one obtains the following 

expressions for the hidrodynamic fluid pressure: 
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where ma is the added mass due to the fluid contained in the shell, 
which is given by: 
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where In-1 and In are Bessel functions. 

Results 

To check the validity and accuracy of the present methodology 
for the determination of the natural frequencies, a key point in any 
non-linear dynamic analysis, empty and fluid-filled cylindrical 

shells are analyzed and the results are compared with experimental 
and other numerical values found in literature. As a first example, 
the lowest natural frequencies of a simply supported empty cylinder 
are compared with the analytical solution derived by Dym (1973) 
using Sanders’ shell theory and the experimental results obtained by 
Gasser (1987). The results are shown in Table 1. For the same shell, 
the present results for a water filled shell are compared with those 
obtained experimentally by Gasser (1987) and the numerical results 
obtained by Gonçalves and Batista (1987) in Table 2. In both cases, 
there is an excellent agreement between all results. 

 

Table 1. Comparison of natural frequencies (Hz) for  an empty cylindrical 
shell.(m = 1, L = 0.41 m, R = 0.3015 m, h = 0.001 m , E = 2.1x108 kN/m²,         
νννν = 0.3, ρρρρ = 7850 kg/m³). 

n Gasser (1987) Dym (1973) Present work 

7 318 305.32 303.35 
8 278 281.37 280.94 
9 290 288.28 288.71 
10 334 317.51 318.40 
11 362 362.22 363.33 
12 418 417.96 419.19 
13 478 482.23 483.51 
14 550 553.67 554.97 

 

Table 2. Comparison of natural frequencies (Hz) for  a cylinder filled with 
water. (m = 1, L = 0.41 m, R = 0.3015 m, h = 0.001 m, E = 2.1x10 8 kN/m²,      
νννν = 0.3, ρρρρ = 7850 kg/m³, ρρρρF = 1000 kg/m³). 

n Gasser (1987) Gonçalves and 
Batista (1987) Present work 

8 120 118 119.2 
9 124 124 127.9 
10 146 144 146.7 
11 182 171 173.3 
12 214 204 206.4 
13 254 243 245.0 
 
Consider a thin-walled cylindrical shell with h=0.002m, R=0.2 

m, L=0.4 m, E=2.1x108kN/m2, ν=0.3, β1=2εMω0, with ε=0.003 
(fluid-filled shell) and ε=0.0008 (empty shell) (Popov et al. 1998), 
and β2=ηD with η=0.0001. The shell and fluid densities are: 
ρs=7850kg/m3 and ρF=1000kg/m3. For this shell geometry the lowest 
natural frequency occurs for (n ,m)=(5, 1). 

Now the parametric instability and escape from the pre-buckling 
configuration of the fluid-filled cylinder under axial harmonic 
forcing, as described by Eq. (1), will be considered. In the 
following, the constant part of the loading (Γ0) is assumed to be 
between the upper and lower static critical load of the shell. In these 
circumstances, the shell potential energy exhibits three wells, one 
associated with the fundamental pre-buckling configuration and two 
wells associated with the two possible post-buckling configurations. 
If the cylinder is subjected to a periodic axial load, it will undergo 
the familiar longitudinal forced vibration, exhibiting a uniform 
transversal motion, due to the effect of Poisson’s ratio, also known 
as breathing mode. However, at certain critical values, the 
longitudinal motion becomes unstable and the cylinder executes 
transverse bending vibrations. 

Figure 2 shows some representative time histories for Γ0=0.40. 
Here Ω=ω/ω0 and ω0 is the lowest natural frequency of the unloaded 
shell. A projection of the phase space and Poincaré section are also 
shown in these figures. These figures were obtained by numerically 
integrating the equation of motion with the Runge-Kutta method. In 
Fig. 2.a, for a forcing amplitude lower than a critical value (Γ1=0.45 
and Ω� =1.00), after a finite initial disturbance, the amplitude of the 
response decreases rapidly converging to the trivial solution. If the 
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control parameter Γ1 is increased beyond a critical value, the shell 
exhibits initially an exponential growth of the amplitude, as shown 
in Fig. 2.b, converging to a limit cycle within the pre-buckling well. 
In this case, the trivial solution becomes unstable (parametric 
instability) and the system converges to a period-two stable solution. 
If Γ1 is increased to a higher value, for example Γ1=1.30, the shell 
escapes from the pre-buckling well (snap-through buckling) and 
exhibits large cross-well chaotic motions, as shown in Fig. 2.c, or 
small amplitude oscillation around a post-buckling configuration. 

Figure 3 shows the numerically obtained parametric instability 
boundary as well as the transient and permanent escape boundaries 
for the fluid-filled shell and the same shell in vacuum, in (frequency 
of excitation x amplitude of excitation) control space for Γ0=0.40,  
Γ0 =0.60 and Γ0=0.80. The lower stability boundary corresponds to 
parameter values for which small perturbations from the trivial 
solution will result in an initial growth in the oscillations; therefore 
it defines the parametric instability boundary. The second limit 
corresponds to escape from the pre-buckling potential well in a 
slowly evolving environment. These curves were obtained by 
increasing slowly the amplitude while holding the frequency 
constant. As one can observe, the parametric stability boundary is 
composed of various “curves”, each one associated with a particular 
bifurcation event. The deepest well is associated with the principal 
instability region at ω=2ωp, while the second well to the left is the 

secondary instability region occurring around ω=ωp and the other 
smaller wells to the left are connected with super-harmonic 
resonances. The horizontal dotted line corresponds to the static 
critical load of this shell. Comparing Figures 3.a, 3.b and 3.c, one 
can conclude that the static pre-loading has the effect of lowering 
the stability boundaries, of enlarging the width of the instability 
regions and of shifting the instability regions to the left. In both 
cases the instability boundaries can be much lower than the static 
critical load. The fluid has a similar influence on the stability 
boundaries. This is expected since the influence of the fluid is to 
increase the effective mass of the system, decreasing consequently 
the natural frequencies. 

For the region between the parametric instability limit and the 
transient escape limit, the shell exhibits vibrations in the pre-
buckling potential well during both permanent and transient states. 
When comparing the permanent and transient boundaries, one can 
observe that the transient escape limit is lower than the permanent 
one. This means that the shell may exhibit large amplitude 
vibrations during the transient state but converge to a low amplitude 
solution within the pre-buckling well when the steady-state response 
is reached. A structure may display in a nonlinear regime long 
transients, but their lengths can not be known a priori. So, in order 
to avoid any damage due to large amplitude vibrations the transient 
response of the shell must be analyzed in detail. 
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(b) Γ1=0.80 
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(c) Γ1=1.30 

Figure 2. Time response, phase plane and Poincaré s ection for ΓΓΓΓ0=0.40 and  ΩΩΩΩ=1.00. Fluid-filled circular cylindrical shell. 
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(a.1) Shell in vacuum. Γ0=0.40 

0 0.4 0.8 1.2 1.6 2
Frequency of excitation

0

0.5

1

1.5

2

2.5

A
m

pl
itu

de
 o

f 
ex

ci
ta

tio
n

Parametric instability

Permanent escape

Transient escape

2 ωpωp

Γcr = Γ0 + Γ1

 
(a.2) Fluid-filled shell. Γ0=0.40 
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(b.1) Shell in vacuum. Γ0=0.60 
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(b.2) Fluid-filled shell. Γ0=0.60 
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(c.1) Shell in vacuum. Γ0=0.80 
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(c.2) Fluid-filled shell. Γ0=0.80 

Figure 3. Instability boundaries in control space f or different values of static load. 

 
Figure 4 shows typical bifurcation diagrams connected with the 

principal instability region for the fluid-filled shell as a function of 
the forcing amplitude Γ1, for different values of the forcing 
frequency Ω. These bifurcation diagrams where obtained by 
numerical continuation techniques (Del Prado, 2001). In these 
diagrams a dotted line means unstable solutions and a continuous 

line means stable solutions. The bifurcation diagram depicted in Fig. 
4.a is typical of the left descending branch of the principal region of 
parametric instability. The system exhibits a sub-critical bifurcation, 
that is, the fundamental solution looses its stability, giving rise to a 
2T unstable periodic motion. In this case, any increase in Γ1 beyond 
the critical value leads to a jump to another stable solution that may 
exist within the pre-buckling well or around a post-buckling 
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configuration. Also, the 2T solution exhibits a stable branch between 
two unstable branches. So, for load levels lower than the critical 
value the shell may display different types of behavior within the 
pre-buckling well. As observed in Fig. 4.a, this non-trivial stable 
region corresponds to forcing values lower than the critical load. 
This leaves a regime where there is no attractor within the pre-

buckling well after the critical point is reached and hence an 
unavoidable jump to escape under increasing forcing occurs. This 
explains why in this region the numerically obtained parametric 
instability boundary practically coincides with the transient and 
permanent escape boundaries. 
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Figure 4. Bifurcation diagrams of the Poincaré map.  Principal instability region for fluid-filled shel l, ΓΓΓΓ0=0.40. 

 

  
(a) Γ1=0.40 (b) Γ1=0.60 

  
(c) Γ1=0.80 (d) Γ1=1.10 

Figure 5. Cross sections of the basins of attractio n, in transient state, for increasing values of the  forcing amplitude ΓΓΓΓ1 of the fluid-filled cylindrical shell. 
Evolution of the basin for ΓΓΓΓ0000=0.40 and ΩΩΩΩ=1.00. Parametric instability load=0.525. 
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(a) Γ1=0.14 (b) Γ1=0.60 

  
(c) Γ1=0.80 (d) Γ1=1.10 

Figure 6. Cross sections of the basins of attractio n, in permanent state, for increasing values of the  forcing amplitude ΓΓΓΓ1 of the fluid-filled cylindrical 
shell. Evolution of the basin for  ΓΓΓΓ0=0.40 and  ΩΩΩΩ=1.00. Parametric instability load=0.525. 

 
In Figure 4.b, the jump is indeterminate. The bifurcation is sub-

critical, but the stable small-amplitude non-trivial solution subsists 
for forcing values higher than the critical load. So, when the 
fundamental trivial solution becomes unstable, the response may re-
stabilize within the pre-buckling well or jump to a remote attractor. 
The response that is attained physically depends on the initial 
conditions. The bifurcation diagram shown in Fig. 4.c is typical of 
the right ascending branch of the stability boundary. When Γ1 is 
lower than the critical value, the only possible steady state solution 
within the pre-buckling well is the trivial one, which is stable. 
Consequently, the response is trivial. When � Γ1 is greater than a 
critical value, there are two possible steady state solutions: (a) the 
trivial one, which is unstable; and (b) a finite amplitude period-two 
(2T) solution, which is stable. In this case, since disturbances are 
always present, the response is non-trivial. Also, these figures show 
that as Γ1 increases from zero, the response consists of the trivial 
solution. As Γ1 exceeds the critical value, ζ11 begins to increase 
slowly with increasing Γ1. The critical value in this case is a 
supercritical bifurcation. As the amplitude of the forcing increases, 
the amplitude of the response increases until the escape boundary is 
reached. Before escape occurs, the period-two solution may also 
become unstable, being followed by a period doubling cascade, 
eventually reaching a narrow zone of chaotic motion. 

In order to evaluate the safety of the structure one should 
analyze the behavior of the basins of attraction of the solutions in 
both transient and permanent states. Figure 5 shows the evolution of 
the transient basin of attraction for increasing values of the forcing 

amplitude Γ1, Ω=1.00 and Γ0=0.40. Here the ζ11×ζ02 cross-sections 

of the four dimensional phase space ( )000211 .==ζζ ɺɺ  are shown for 

increasing values of the forcing amplitude. Figure 6 shows the 
evolution of the permanent basin of attraction for increasing values 
of the forcing amplitude Γ1, Ω=1.00 and Γ0=0.40. Both figures are 
associated with the bifurcation diagram of Fig. 4.c and cover the 
same set of initial conditions. 

In Figure 5 the gray area is associated with the escape during the 
transient response and the white area corresponds to the 
fundamental trivial and period-two stable solutions within the pre-
buckling well. As Γ1 increases the region associated with the escape 
increases and after a certain critical value, it covers completely the 
analyzed region, showing that escape occurs for any set of initial 
conditions during the transient response, well before the critical 
escape load displayed in the bifurcation diagram of Fig. 4.c is 
reached. 

In Figure 6 the black area corresponds to the fundamental trivial 
solution, the gray areas correspond to the period-two stable solution 
within the pre-buckling well and the white area corresponds to the 
escape. For Γ1 lower than the critical point, the response for initial 
conditions within the analyzed area converges to the trivial solution 
or to escape. Of course, escape can only occur for large 
perturbations. After the critical point, the black region suddenly 
disappears and the response for the majority of initial conditions 
converges to the period-two stable solutions within the pre-buckling 
well. As Γ1 increases, the region associated with this solution 
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decreases and a rapid erosion is observed. Also, after a certain 
critical value the whole basin of attraction becomes fractal. In this 
case the response becomes very sensitive to the initial conditions 
and the steady state response, unpredictable. 

Comparing the trivial and period-two areas of Fig. 5 and Fig. 6, 
one can observe that the basin area occupied by the transient 
response is smaller than the area occupied by the permanent 
response. So, a practical design criterion must be based on the 
transient analysis rather than on the steady state response of the 
system. Also, the critical loads obtained from the bifurcation 
diagrams are not enough to evaluate the robustness of the structure 
in the presence of unavoidable disturbances occurring during its 
construction or service life. The analysis of size and structure of the 
basin of attraction must be taken into account in order to specify 
allowable disturbances in a dynamic environment. A detailed 
parametric analysis of the basin evolution considering empty and 
fluid-filled shells can be found in Silva (2004). 

Concluding Remarks 

Based on Donnell’s shallow shell equations, an accurate low-
dimensional model is derived and applied to the study of the 
nonlinear vibrations of an axially loaded fluid-filled circular 
cylindrical shell in transient and permanent states. The results show 
the influence of the modal coupling on the post-buckling response 
and on the nonlinear dynamic behavior of fluid-filled circular 
cylindrical shells. Also the influence of a static compressive loading 
on the dynamic characteristics is investigated with emphasis on the 
parametric instability and escape from the pre-buckling 
configuration. The most dangerous region in parameter space is 
obtained and the triggering mechanisms associated with the stability 
boundaries are identified. Also the evolution of transient and 
permanent basin boundaries is analyzed in detail and their 
importance in evaluating the degree of safety of a structural system 
is discussed. It is shown that critical bifurcation loads and 
permanent basins do not offer enough information for design. Only 
a detailed analysis of the transient response can lead to safe lower 
bounds of escape (dynamic buckling) loads in the design of fluid-
filled cylindrical shells under axial time- dependent loads. 
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