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Transient Stability of Empty and
Fluid-Filled Cylindrical Shells

In the present work a qualitatively accurate lowndnsional model is used to study the
non-linear dynamic behavior of shallow cylindricahells under axial loading. The
dynamic version of the Donnell non-linear shalldwels equations are discretized by the
Galerkin method. The shell is considered to béailhjtat rest, in a position corresponding
to a pre-buckling configuration. Then, a harmonicitation is applied and conditions to
escape from this configuration are sought. By dedirsteady state and transient stability
boundaries, frequency regimes of instability mayidentified such that they may be
avoided in design. Initially a steady state anay® performed; resonance response
curves in the forcing plane are presented and thenrmstabilities are identified. Finally,
the global transient response of the system issiigated in order to quantify the degree of
safety of the shell in the presence of small pbgtions. Since the initial conditions, or
even the shell parameters, may vary widely, anéeddare often unknown, attention is
given to all possible transient motions. As parargtare varied, transient basins of
attraction can undergo quantitative and qualitatigkanges; hence a stability analysis
which only considers the steady-state and negtacisglobal transient behavior, may be
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seriously non-conservative.
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Introduction

Thin-walled cylindrical shells are widely used inany
industries. Due to the increasing use of high-gfitermaterials,
sophisticated numerical techniques and optimizatieethods in
analysis, the design of such shells is often bagkdiritical. In many
circumstances these shells are subjected not orgyatic loads but
also to dynamic disturbances and filled with ingrituid. However,
thin-walled cylindrical shells when subjected tdadwcompressive
loads often exhibit a highly nonlinear behavior hwin high
imperfection sensitivity and may loose stabilitylaads levels as
low as a fraction of the material strength.

Many studies are concerned with the analysis dfsskibrating
in vacuum; far fewer are focused on the analysishefnonlinear
vibrations of cylindrical shells in contact withdense fluid. One of
the first studies on vibrations of circular cylifeid shells in contact
with a dense fluid considering shell nonlinearity due to
Ramachandran (1979). He studied the large-amplitilatations of
circular cylindrical shells having circumferentiaitarying thickness
and immersed in a quiescent, non-viscous and incessible fluid,
using the Donnell’s shell theory.

Boyarshina (1984, 1988) studied theoretically thelimear free
and forced vibrations and stability of a circuladirdrical tank
partially filled with a liquid and having a free réace. Here,

relation when compared with the results for the esashell in
vacuum.

Chiba (1993) studied experimentally large-amplitwdeations
of two vertical cantilevered circular cylindricahells made of
polyester sheets partially filled with water to fdient levels. He
observed that for bulging modes with the same axale number,
the weakest degree of softening nonlinearity caatbéuted to the
mode having the minimum natural frequency, as otegefor the
same empty shells. He also found that shorter thak® a larger
softening nonlinearity than taller ones, as in waouThe tank with
a lower liquid height has a stronger softening im&drity than the
same tank with a higher liquid level. Traveling wamodes and
coupling between two bulging modes (and between $leshing
modes) were also observed.

Amabili et al (1998) studied the nonlinear free aiodced
vibrations of a simply supported, circular cyliradi shell in contact
with an incompressible and non-viscous, quiescesrisd fluid.
Donnell's nonlinear shallow-shell theory is useal tlsat moderately
large vibrations can be analyzed. The boundaryitiond on radial
displacement and continuity of circumferential tisement are
exactly satisfied, while the axial constraint igigfeed “on the
average”. The problem is reduced to a system ofinard
differential equations by means of the Galerkin hodt assuming
an appropriate deflection shape. The mode shapxpanded by
using two asymmetric modes (driven and companiodesp plus

nonlinearity is attributed to the interaction ofdrsurface waves and the axisymmetric mode.

elastic flexural vibrations of the shell.

Goncalves and Batista (1988) considered simply cuep
circular cylindrical shells filled with incompregs$e fluid. To model
the shell, Sanders’ nonlinear shell theory and aehanode
expansion that includes two terms in the radiakaion (the
asymmetric and the axisymmetric ones) and ten téondescribe
the in-plane displacements were used. Numericalllteesvere
obtained concerning the effect of the liquid on thenlinear
behavior of shells. It was found that the presesfca dense fluid
increases the softening characteristics of theufraqy-amplitude
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In the present study, a low dimensional model whethins the
essential nonlinear terms is used to study theimesn oscillations
and instabilities of the shell. Here the interedioicused on a pivotal
interaction between non-symmetric and axisymmetricles which
allows the escape from the pre-buckling configoratiTo discretize
the shell, Donnell shallow shell equations, modifieith the
transverse inertia force, are used together witler®a method to
derive a set of coupled ordinary differential eduag of motion.
These equations are integrated numerically usiegfolirth order
Runge-Kutta method. In order to study the nonlirezravior of the
shell, several numerical strategies were used ttairobtime
responses, Poincaré maps and bifurcation diagréhes.interested
reader will find a description of the relevant nuite algorithms in
Del Prado (2001).

It is considered a non-viscous and incompressibie find an
irrotational flow. As a result, it can be charaized by a velocity
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potencial. The solution for the velocity potendigftaken as a sum
of suitable functions, where the unknown parametegsdetermined
by the kinetic condition along the shell wettedface (Batista and
Gongalves, 1988).

Steady state and transient stability boundariepssented and
special attention is devoted to the determinatibthe critical load
conditions. From this theoretical analysis, dynatmickling criteria
can be property established which may constituterssistent and
rational basis for design of these shell structureder harmonic
loading.

Problem Formulation

Shell Equations

Consider a perfect thin-walled fluid-filled circulaylindrical

shell of radiusR, lengthL, and thickness. The shell is assumed to

be made of an elastic, homogeneous, and isotropierial with
Young's modulusE, Poisson ratia/, and mass per unit aréh The
axial, circumferential and radial co-ordinates atenoted by,

respectivelyx, y andz, and the corresponding displacements on the

shell surface are in turn denotedWyV, andW, as shown in Fig. 1.

4

Figure 1. Shell geometry and coordinate system.

The shell is subjected to a uniformly distributedabload given
by:
P(t)=P, +P codat ) (1)
whereP, is the uniform static load applied along the edge3 L,
P, is the magnitude of the harmonic loads time andw is the
forcing frequency.
The nonlinear equations of motion based on the Karman-

Donnell shallow shell theory, in terms of a strigsctionf and the
transversal displacement w are given by:

Mw+ B w+ B,0*w=p, R+ FoW,,

2

+ FXX(W’W +%j -2F w,, (@)
1 1

ED“]‘ =—E ,xx_W,xx\N,yy+W,2xy (3)

where:

1
fF:_E 2%

F=fFf+f
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andpy, is the fluid pressure;* is the biharmonic operatq8;, and5,
are damping coefficients amilis the flexural rigidity defined as:

Eh’

Dleil—vzi @

In the foregoing, the following non-dimensional gaeters will
be introduced:

w=Y e=2X =2
h L R
rmwt 0= fo_ R )
w, Eh®L
- :i:R,lsil—uzi /_:E:R,ISil—vzj
° P Eh? ° " P Eh? !

cr cr

whereay, is the lowest natural frequency of the empty shell

Modal Analysis

The numerical model is developed by expanding rtrestersal
displacement componentin series in the circumferential and axial
variables. From previous investigations on mod#&ltsms for the
non-linear analysis of cylindrical shells underaXbpads (Huntet
al. 1986; Gongalves and Batista, 1988; GongalvesZeidPrado,
2002) it is observed that, in order to obtain aststent modeling
with a limited number of modes, the sum of shapetions for the
displacements must express the non-linear cougdielyveen the
modes and describe consistently the unstable pastibhg response
of the shell as well as the correct frequency-atugdé relation.

The dimensionless lateral deflectioWl can be generally
described as (Gongalves and Batista, 1988):

> 3 W cos(ing)sin(jmmé)+

i=135 =135

> o> V\/ijcos(kné’)sin(lmnf)

k=0,2,4 1=0,2,4

W=
(6)

wheren is the number of waves in the circumferential ctign of
the basic buckling or vibration mod®,is the number of half-waves
in the axial directiond=y/Randé=x/L.

These modes represent both the symmetric and adyimme
components of the shell deflection pattern. Thst fitouble series
represents the unsymmetrical modes with odd mattipf the basic
wave numbersm and n. The second double series represents,
besides the asymmetric modes which contains an ewstiple of
the basic wave numbersn and n and rosette modes, the
axysimmetric modes which play an important rolé¢ha non-linear
modal coupling and loss of stability of the shell.

Previous studies on buckling of cylindrical shéilsve shown
that the most important modes are the basic bugldinvibration
mode and the axi-symmetric mode with twice the neimtf half
waves in the axial direction as the basic modé,itha

W = Z(r)ncos(nﬂ)ser(mné)

+¢(r),,cof 2mm¢) ™

The relevance of these modes from a physical miniew was
explained by Croll and Batista (1981) and, from syetry and
catastrophe theory arguments, by Hunt et al. (1986¢se modes
are enough to describe the initial post-bucklinigawéor of the shell
as well as the topology of the pre-buckling confagion and the
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potential barrier connected with the unstable @opiim positions
lying on the initial post-buckling path.

Substituting the assumed form of the lateral défle¢c Eq. (7),
on the right-hand side of the compatibility Eq., @8)s equation can
be solved to obtain the stress functfdn terms ofw together with
the relevant boundary and continuity conditionsol/gubstituting
the modal expressions férandw into Eq. (2) and applying the
Galerkin method, a set of non-linear ordinary défeial equations
is obtained in terms of modal amplitudgs);.

Fluid Mechanics Equations

The shell is assumed to be completely fluid-fillefihe
irrotational motion of an incompressible and noseaus fluid can
be described by a velocity potentig{x, r, 6, t). This potential
function must satisfy the Laplace equation which ba written in
dimensionless form as:

- 1-— 1 - -
¢,{<" +;¢,K +F¢,9€ +¢,m( :O (8)

where:

K=r/R  @=yg/R  y=[pRA-v)/E"
The dynamic fluid pressure acting on the shell aaefis
obtained from the Bernoulli equation:
Ja

() y
i (psj(‘wz

where g- is the density of the fluid angs is the shell material
density.

At the shell-fluid interface, the fluid velocity moal to the shell
surface must be equal to the shell velocity in ¢hisction, that is:

©)

@, =2yd(ow/at) (10)

wheres =h/2R.
Further, for a fluid-filled shell, the following s&riction must be
imposed ak = 0:

9, =0 (11)

Solving equations (8) to (11), one obtains the ofelhg
expressions for the hidrodynamic fluid pressure:

Py =11, M, cos(n@ )sin(mzé) (12)

wherem, is the added mass due to the fluid contained ensttell,
which is given by:

m, =(p, R){mn{ ._((m_,,? m_”{ﬂ

I, \mmé (13)

wherel,.; andl, are Bessel functions.

Results

To check the validity and accuracy of the preseethwdology
for the determination of the natural frequenciegeg point in any
non-linear dynamic analysis, empty and fluid-fillexylindrical
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shells are analyzed and the results are compartbdexperimental
and other numerical values found in literature.a8rst example,
the lowest natural frequencies of a simply suppbetapty cylinder
are compared with the analytical solution derivgdOym (1973)

using Sanders’ shell theory and the experimensallt® obtained by
Gasser (1987). The results are shown in Table ritHeosame shell,
the present results for a water filled shell armpared with those
obtained experimentally by Gasser (1987) and theenical results
obtained by Goncalves and Batista (1987) in Table ®oth cases,
there is an excellent agreement between all results

Table 1. Comparison of natural frequencies (Hz) for an empty cylindrical
shell.(m =1, L = 0.41 m, R = 0.3015 m, h = 0.001 m , E = 2.1x10% kN/m2,
v =0.3,p = 7850 kg/m3).

n Gasser (1987) Dym (1973) Present work
7 318 305.32 303.35
8 278 281.37 280.94
9 290 288.28 288.71
10 334 31751 318.40
11 362 362.22 363.33
12 418 417.96 419.19
13 478 482.23 483.51
14 550 553.67 554.97

Table 2. Comparison of natural frequencies (Hz) for a cylinder filled with
water. (m =1, L =0.41m, R=0.3015m, h=0.001 m, E = 2.1x10°8 kN/m2,
v =0.3,p = 7850 kg/m3, pr =1000 kg/m3).

Gongalves and

n Gasser (1987) Present work

Batista (1987)
8 120 118 119.2
124 124 127.9
10 146 144 146.7
11 182 171 173.3
12 214 204 206.4
13 254 243 245.0

Consider a thin-walled cylindrical shell witlh=0.002n, R=0.2
m, L=0.4 m, E=2.1x16kN/m?, 1=0.3, B;=2eMw, with &0.003
(fluid-filled shell) and&=0.0008 (empty shell) (Popat al 1998),
and B=nD with 7=0.0001. The shell and fluid densities are:
0=785kg/nT andg==100kg/n. For this shell geometry the lowest
natural frequency occurs fan (m=(5, 1).

Now the parametric instability and escape fromprebuckling

configuration of the fluid-filled cylinder under @k harmonic
forcing, as described by Eq. (1), will be considerdn the
following, the constant part of the loading) is assumed to be
between the upper and lower static critical loathefshell. In these
circumstances, the shell potential energy exhithitee wells, one
associated with the fundamental pre-buckling camfijon and two
wells associated with the two possible post-bugktionfigurations.
If the cylinder is subjected to a periodic axiahdio it will undergo
the familiar longitudinal forced vibration, exhiiiy a uniform
transversal motion, due to the effect of Poissoat®, also known
as breathing mode. However, at certain criticalues) the
longitudinal motion becomes unstable and the cglindxecutes
transverse bending vibrations.

Figure 2 shows some representative time histodeg §=0.40.
Here Q=al ay anduy, is the lowest natural frequency of the unloaded
shell. A projection of the phase space and Poinsacéon are also
shown in these figures. These figures were obtaiyedumerically
integrating the equation of motion with the Rungettd method. In
Fig. 2.a, for a forcing amplitude lower than aicst value (;=0.45
and 2=1.00), after a finite initial disturbance, the ditygle of the
response decreases rapidly converging to the ltsalation. If the
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control parameter is increased beyond a critical value, the shelbecondary instability region occurring arouag«, and the other

exhibits initially an exponential growth of the alityde, as shown
in Fig. 2.b, converging to a limit cycle within tipee-buckling well.
In this case, the trivial solution becomes unstafgdarametric
instability) and the system converges to a penealgtable solution.
If /7 is increased to a higher value, for examfjel.30, the shell
escapes from the pre-buckling well (snap-througlekling) and
exhibits large cross-well chaotic motions, as shamwifrig. 2.c, or
small amplitude oscillation around a post-bucklaogfiguration.
Figure 3 shows the numerically obtained paramétstability
boundary as well as the transient and permaneapedtoundaries
for the fluid-filled shell and the same shell ircuam, in (frequency
of excitation x amplitude of excitation) controlege for/,=0.40,

smaller wells to the left are connected with sumpemonic
resonances. The horizontal dotted line correspdondthe static
critical load of this shell. Comparing Figures 33a) and 3.c, one
can conclude that the static pre-loading has tfectebf lowering
the stability boundaries, of enlarging the width thé instability
regions and of shifting the instability regions ttee left. In both
cases the instability boundaries can be much Idgha&n the static
critical load. The fluid has a similar influence dhe stability
boundaries. This is expected since the influencéheffluid is to
increase the effective mass of the system, deogasinsequently
the natural frequencies.

For the region between the parametric instabilityitland the

[5=0.60 and/4=0.80. The lower stability boundary corresponds tdransient escape limit, the shell exhibits vibrasioin the pre-

parameter values for which small perturbations frtm trivial
solution will result in an initial growth in the cflations; therefore
it defines the parametric instability boundary. Téecond limit
corresponds to escape from the pre-buckling patentell in a
slowly evolving environment. These curves were ioleth by
increasing slowly the amplitude while holding theedquency
constant. As one can observe, the parametric gyabdundary is
composed of various “curves”, each one associatédanparticular
bifurcation event. The deepest well is associatil the principal

buckling potential well during both permanent arghsient states.
When comparing the permanent and transient bowsjashe can
observe that the transient escape limit is lowantthe permanent
one. This means that the shell may exhibit largepliunde
vibrations during the transient state but conveoga low amplitude
solution within the pre-buckling well when the stgsstate response
is reached. A structure may display in a nonlinesgime long
transients, but their lengths can not be knownieripiSo, in order
to avoid any damage due to large amplitude vibnatithe transient

instability region atw=2cq, while the second well to the left is the résponse of the shell must be analyzed in detail.
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Figure 2. Time response, phase plane and Poincaré s  ection for =0.40 and Q=1.00. Fluid-filled circular cylindrical shell.
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Figure 3. Instability boundaries in control space f or different values of static load.

Figure 4 shows typical bifurcation diagrams coneéatith the line means stable solutions. The bifurcation diagdepicted in Fig.
principal instability region for the fluid-filledhell as a function of 4.a is typical of the left descending branch ofghiacipal region of
the forcing amplitude/;, for different values of the forcing parametric instability. The system exhibits a stibieal bifurcation,
frequency Q. These bifurcation diagrams where obtained byhat is, the fundamental solution looses its sitgbigiving rise to a
numerical continuation techniques (Del Prado, 200h) these 2T unstable periodic motion. In this case, any insegal ; beyond
diagrams a dotted line means unstable solutionsaandntinuous the critical value leads to a jump to another staollution that may

exist within the pre-buckling well or around a pbsickling

J. of the Braz. Soc. of Mech. Sci. & Eng. C opyright O 2006 by ABCM July-September 2006, Vol. XXVIII, No. 3 /335



Paulo B. Gongalves et al

configuration. Also, the R solution exhibits a stable branch betweerbuckling well after the critical point is reachedhdahence an
two unstable branches. So, for load levels lowantthe critical unavoidable jump to escape under increasing foroeaurs. This
value the shell may display different types of hétlawithin the explains why in this region the numerically obtainparametric
pre-buckling well. As observed in Fig. 4.a, thisnftdvial stable instability boundary practically coincides with theansient and
region corresponds to forcing values lower than dhigcal load. permanent escape boundaries.

This leaves a regime where there is no attractehinvithe pre-
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(a) £2=0.60 (b) 2=0.78 (c) 2=1.00
Figure 4. Bifurcation diagrams of the Poincaré map. Principal instability region for fluid-filled shel I, [0=0.40.
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Figure 5. Cross sections of the basins of attractio
Evolution of the basin for
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n, in transient state, for increasing values of the
lNo=0.40 and Q=1.00. Parametric instability load=0.525.

(b) 7=0.60
2
1
€2 O
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2
2 -1 0 1 2
C1 1
(d) /=1.10

forcing amplitude Iy of the fluid-filled cylindrical shell.
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Figure 6. Cross sections of the basins of attractio
shell. Evolution of the basin for

In Figure 4.b, the jump is indeterminate. The kiétion is sub-
critical, but the stable small-amplitude non-trivéalution subsists
for forcing values higher than the critical loado, Svhen the
fundamental trivial solution becomes unstable,résponse may re-
stabilize within the pre-buckling well or jump toremote attractor.
The response that is attained physically dependsheninitial
conditions. The bifurcation diagram shown in Figc & typical of
the right ascending branch of the stability boupd&hen /7 is
lower than the critical value, the only possibleasly state solution
within the pre-buckling well is the trivial one, wh is stable.
Consequently, the response is trivial. Whenis greater than a
critical value, there are two possible steady ssatations: (a) the
trivial one, which is unstable; and (b) a finite @itude period-two
(2T) solution, which is stable. In this case, simisturbances are
always present, the response is non-trivial. AlBese figures show
that as/; increases from zero, the response consists ofrithal
solution. As/; exceeds the critical valu&y; begins to increase

slowly with increasing/;. The critical value in this case is a

supercritical bifurcation. As the amplitude of tfeecing increases,
the amplitude of the response increases until $hape boundary is
reached. Before escape occurs, the period-twoigpluhay also
become unstable, being followed by a period dogblascade,
eventually reaching a narrow zone of chaotic motion
In order to evaluate the safety of the structure ahould

analyze the behavior of the basins of attractiothef solutions in
both transient and permanent states. Figure 5 sti@wsvolution of
the transient basin of attraction for increasintpea of the forcing
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n, in permanent state, for increasing values of the
[0=0.40 and Q=1.00. Parametric instability load=0.525.
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(b) /7=0.60
2 -
17
Qozo . " v
_1*
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(d) /7=1.10

forcing amplitude T’y of the fluid-filled cylindrical

amplitude/3, 2=1.00 and/(=0.40. Here th&7;,x{,, cross-sections
of the four dimensional phase spa(i@l:ZOz:O.O) are shown for

increasing values of the forcing amplitude. Figéreshows the
evolution of the permanent basin of attractionifareasing values
of the forcing amplitude;, £2=1.00 and/(=0.40. Both figures are
associated with the bifurcation diagram of Fig. 4 cover the
same set of initial conditions.

In Figure 5 the gray area is associated with teapesduring the
transient response and the white area correspondsthé
fundamental trivial and period-two stable solutiani¢hin the pre-
buckling well. As/7 increases the region associated with the escape
increases and after a certain critical value, itec® completely the
analyzed region, showing that escape occurs forsamyof initial
conditions during the transient response, well teefthe critical
escape load displayed in the bifurcation diagramFigf. 4.c is
reached.

In Figure 6 the black area corresponds to the foneddal trivial
solution, the gray areas correspond to the peradstable solution
within the pre-buckling well and the white arearesponds to the
escape. For; lower than the critical point, the response fatiah
conditions within the analyzed area converges ¢attivial solution
or to escape. Of course, escape can only occur |doye
perturbations. After the critical point, the blackgion suddenly
disappears and the response for the majority diainconditions
converges to the period-two stable solutions withm pre-buckling
well. As /7 increases, the region associated with this salutio
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decreases and a rapid erosion is observed. Alser; af certain
critical value the whole basin of attraction becsrfactal. In this
case the response becomes very sensitive to tti@ ioonditions
and the steady state response, unpredictable.

Comparing the trivial and period-two areas of Big@nd Fig. 6,
one can observe that the basin area occupied bytrémsient
response is smaller than the area occupied by #rengment
response. So, a practical design criterion musbé&sed on the
transient analysis rather than on the steady stsponse of the
system. Also, the critical loads obtained from thiurcation
diagrams are not enough to evaluate the robustfebe structure
in the presence of unavoidable disturbances ocwurdiuring its
construction or service life. The analysis of simgl structure of the
basin of attraction must be taken into accountriheoto specify
allowable disturbances in a dynamic environment.détailed
parametric analysis of the basin evolution congigdeempty and
fluid-filled shells can be found in Silva (2004).

Concluding Remarks

Based on Donnell's shallow shell equations, an ateulow-
dimensional model is derived and applied to thedytof the
nonlinear vibrations of an axially loaded fluidiitl circular
cylindrical shell in transient and permanent stalém results show
the influence of the modal coupling on the postkiing response
and on the nonlinear dynamic behavior of fluidefil circular
cylindrical shells. Also the influence of a statiempressive loading
on the dynamic characteristics is investigated withphasis on the
parametric instability and escape from the pre-bogk
configuration. The most dangerous region in paramspace is
obtained and the triggering mechanisms associaithdthe stability
boundaries are identified. Also the evolution o&nsient and
permanent basin boundaries is analyzed in detad #meir
importance in evaluating the degree of safety sfractural system
is discussed. It is shown that critical bifurcatidoads and
permanent basins do not offer enough informatiordésign. Only
a detailed analysis of the transient response eaah fo safe lower
bounds of escape (dynamic buckling) loads in thagmeof fluid-
filled cylindrical shells under axial time- depemdéads.

Acknowledgements

This work was made possible by the financial suppbrthe
Brazilian Research Council — CNPq.

References
Amabili, M., Pellicano, F. and Paidoussiss, M., 899Nonlinear

Vibrations of Simply Supported Circular Cylindric&hells, Coupled to
Quiescente Fluid"Journal of Fluids and Structure¥ol. 12, pp. 883-918.

338/ Vol. XXVIII, No. 3, July-September 2006

Paulo B. Gongalves et al

Amabili, M., Pellicano, F. and Paidoussis, M. POO@, “Nonlinear
vibrations of fluid-filled, simply supported cir@ cylindrical shells: theory
and experiments”’Nonlinear Dynamics Plates and Shells; AMDNew
York: ASME, Vol. 238, pp. 73-84

Amabili, M., Pellicano, F. and Paidoussis, M. POO2, “Nonlinear
supersonic flutter of circular cylindrical shell®]AA Journal Vol. 39, pp.
564-573.

Boyarshina, L. G., 1984, “Resonace effects in tiinear vibrations of
cylindrical shells containing a liquid'Soviet Applied Mechanic&/ol. 20,
pp. 765-770.

Boyarshina, L. G., 1988, “Nonlinear wave modes of ealastic
cylindrical shell partially filled with a liquid wher conditions of resonance”,
Soviet Applied Mechanic¥ol. 24, pp. 528-534.

Chiba, M., 1993, “Non-Linear Hydroelastic Vibratiaf a cantilever
Cylindrical Tank”,International Journal of Non-Linear Mechanjcgol. 28,
pp. 591-559.

Croll, J. G. A. and Batista, R. C., 1981, “Explicitwer Bounds for the
Buckling of Axially Loaded Cylinders"international Journal of Mechanical
ScienceVol. 23, pp. 331-343.

Del Prado, Z.J.G.N., 2001, “Modal coupling and iattion in the
dynamic instability of cylindrical shells” (in Parguese)D. Sc. Thesis, Civil
Engineering Department, Catholic University, PU@RRIio de Janeiro, RJ,
Brazil

Dym, C. L., 1973, “Some new results for the vibvad of circular
cylinders”. Journal of Sound an Vibration, Vol. 2§, 189-205.

Gasser, L. F. F, 1987, “Free vibrations of thinirgjtical shells
containing fluid (in Portuguese)Master's Thesis, PEC-COPPE, Federal
University of Rio de JaneirdRio de Janeiro, RJ, Brazil.

Gongalves, P. B. and Batista, R. C, 1987, “Frequemsponse of
cylindrical shells partially submerged or filledttviiquid”. Journal of Sound
and Vibration Vol. 113, pp. 59-70.

Gongalves, P. B. and Batista, R. C., 1988, “Norehin Vibration
Analysis of Fluid-Filled Cylindrical Shells'Journal of Sound and Vibration
Vol. 127, pp. 133-143.

Gongalves, P. B. and Del Prado, Z. J. G. N., 20Di6e Role of Modal
Coupling on the Non-linear Response of Cylindri€hlells Subjected to
Dynamic Axial Loads”,Nonlinear Dynamics of Plates and Shells; AMD
Vol. 238, pp. 105-116. New York: ASME.

Gongalves, P. B. and Del Prado, Z. J. G. N., 200&n-Linear
Oscillations and Stability of Parametrically ExditeCylindrical Shells”,
Meccanica Vol. 37, pp.569-597.

Hunt, G. W., Williams, K. A. J. and Cowell, R. GL986, “Hidden
Symmetry Concepts in the Elastic Buckling of Axjalloaded Cylinders”,
International Journal of Solid and Structuréfol. 22, pp. 1501-1515.

Popov, A. A., Thompson, J. M. T. e McRobie, F. A998, “Low
dimensional models of shell vibration. Paramethjcakited vibrations of
cylindrical shells”.Journal of Sound and Vibratioiol. 209, no 1, pp. 163-
186.

Ramachandran, J., 1979, “Nonlinear Vibrations ofir@yical Shells of
Varying Thickness in an Incompressible Fluidipurnal of Sound and
Vibration, Vol. 64, pp: 97-106.

Silva, F. M. A. “Instability dinamics analisys of/ladrical fluid-filled
shells (in Portuguese)”. 200Mlaster’s Thesis, Federal University of Gaias
Goiania, GO, Brazil, 2004.

Yamaki, N., 1984, “Elastic Stability of Circular @ydrical Shells”,Ed.
Amsterdam: North Holland

ABCM



