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In this work a discussion on the particularities of the pressure drop equations being used 
in the design of natural gas pipelines will be carried out. Several versions are presented 
according to the different flow regimes under consideration and through the presentation 
of these equations the basic physical support for each one is discussed as well as their 
feasibility. 
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Introduction 

1The design of gas pipelines and networks is commonly 

presented through a series of numerical procedures and 

recommendations, and usually flow equations are recommended by 

the several authors according to common design and calculation 

practice, without a deep analysis of the basic physical reasoning that 

is behind each one of such equations. In this work a discussion on 

the particularities of the pressure drop equations being used in the 

design of gas pipelines will be carried out and several versions 

presented. The development of the flow equation is commonly 

found in several books and publications in Fluid Mechanics or 

connected to industrial gas utilization technologies (Pritchard et al., 

1978; Katz and Lee, 1990), consequently it is useless to present 

once again such derivation. The reader can consult the work of 

Mohitpour et al. (2000) where such analysis is presented for steady 

and unsteady state compressible fluid flow. 

Nomenclature 

C, C’ = generic constant 

d = gas relative density, dimensionless 

D = internal diameter of pipe, m 

E = potential energy term, Eq.(34), Pa2 

f = Darcy friction coefficient, dimensionless 

g = gravitational acceleration, m/s2 

H = height of points 1 and 2, m 

K = constant, dimensionless 

L = pipe length, m 

M = molecular mass, kg/kmol 

n = exponent for the gas flow rate (range of values between 1.74 

and 2) 

P, P’ = absolute pressure, Pa 

P1 = absolute pressure at pipe entrance, Pa 

P2 = absolute pressure at pipe exit, Pa 

Pavg = flow average pressure, Pa 

Pst =standard pressure, 1.01325×105 Pa 

st
Q&  = volume gas flow rate at standard conditions, m3/s 

R = flow resistance per unit length of pipe 

R  = universal gas constant, 8314.41 J/(kmol K) 

Re = Reynolds number of the gas flow, dimensionless 

T = absolute temperature, K 

Tavg  = flow average temperature, K 
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Tst = standard temperature, 288.15 K 

zavg = gas compressibility factor, dimensionless 

zst = compressibility factor at standard conditions, zst ≈ 1 

Greek Symbols 

α = coefficient, dimensionless 

β = coefficient, dimensionless 

∆max  = maximum variation of the friction factor, dimensionless 

∆P = pressure drop, Pa 

ε  = wall roughness, m 

η = efficiency factor, dimensionless 

µ = gas dynamic viscosity, Pa s 

ν = gas cinematic viscosity, m2/s 

ρ = gas density, kg/m3 

τ = shear stress, Pa 

Subscripts 

air air 

app apparent 

avg average 

cg city gas 

cr critical 

ent entrance 

st standard 

sta standard for air 

w wall 

1 relative to the generic point 1 

2 relative to the generic point 2 

General Equation for Steady-State Flow 

Considering the momentum equation applied to a portion of 

pipe of length dx, inside which flows a compressible fluid with an 

average velocity u, for example natural gas, assuming steady state 

conditions where ρ is the gas density, p is the gas absolute static 
pressure, A is the area of the pipe cross section (πD2/4) and dH 

represents a variation in high, the resultant differential equation is,  
 

2

0
2ρ

+ + + =
dP dx u

u du g dH f
D

 (1) 

 

In the above equation f is the Darcy friction coefficient which is 

related with the wall shear stress by means of, 
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Before proceeding to the integration of Eq. (1) between two 

generic points 1 and 2 of the pipeline, it is most convenient to 

simplify the viscous dissipation term to easy up its integration, 

otherwise the function u2 = f(x) should be known to carry on with 

the integration. But as ρ u= /&m A  = C is a constant, according to the 

steady state conditions, then, 
 

2
2 2 0

2
ρ ρ ρ+ + + =

dx C
u du dP g dH f

D
 (3) 

 

To integrate each one of the terms of the previous equation, a 

more detailed discussion will follow. 

Kinetic Energy Term (ρρρρ2
u du) 

As C uρ =  then, 

 

2

1

2
2 2

1

ln
 

=  
 

∫
u

u

C u
du C

u u
 (4) 

Pressure Force Work Term (ρρρρ dP) 

As ρ =
PM

z R T
, 

 

the integration of this term becomes, 
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Some explanation must be presented about the parameters, Tavg 

and zavg. To follow an easier approach for the integration, average 

values were used for the compressibility factor and gas temperature. 

The gas average temperature can be obtained through Mohitpour et 

al. (2000), 
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whereas the average pressure will be determined through 

( 1dP dx P∝ ), 
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Finally zavg will be determined based on the above obtained 

average values for P and T through adequate tables or formulae, 

Smith (1990). 

Potential Energy Term (ρρρρ2
 gdH) 

2 2
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It is again assumed that (P M /(z R T))2 can be determined by 

average values which greatly simplifies the integration, Mohitpour 

et al. (2000), and the final result is 
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This approach is justified by the fact that there is no simple 

mathematical relationship among height, pressure and temperature, 

and the introduced error is meaningless. 

Energy Dissipation by Viscous Friction 
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where L is the pipe length between points 1 and 2. 

The addition of the previously determined terms yields, 
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and as usually, the kinetic energy term is negligible when compared 

with the other terms, 
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Normally the volume flow rate at standard conditions &
st

Q  

(288.15 K and 1.1325×105 Pa) is used, instead of the constant C, 

and combining the definition of this constant and of the mass flow 

rate 
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and because for a perfect gas, 
 

airM d M=  (14) 

 

where d is the gas density relative to the air and Mair = 28.9625 ≈ 29 
kg/kmol, the combination of Eqs. (12) to (14) gives in SI units that, 
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According to Osiadacz (1987), the real gas flow in a pipe is 

inferior to that calculated by means of the flow equation, namely Eq. 

(15) when η = 1, because of extra friction imposed by fittings like 

bends, tees, valves and also by other effects like corrosion, fouling 

and dust/rust deposition. To account for such extra flow reductions 

in a simple and effective way, it is a common practice to use a 

corrective multiplying factor, the efficiency factor η, which usually 

takes values between 0.8 and 1. Mohitpour et al. (2000) suggest η 
values between 0.92 and 0.97, although experience recommends that 

for old piping it can be as low as 0.7, Osiadacz (1987). 

Sometimes the influence of η is introduced as a correction of the 
pipe length, i.e. 

2
L η  replaces L and accordingly an equivalent 

length is used which can take values between 1.56 L and L, 

corresponding to the 0.8 < η < 1 range. 
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Considering that ( )ρ =
st st st st

M P z R T , and that 

( )ρ =avg avg avg avgM P z R T , while excluding for the sake of 

simplicity the factor η, a simpler although less common form can be 

given to the last equation, 
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Replacing all the constants of the above equation that are 

outside the square brackets by C’, 
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For a horizontal pipe and whenever 
2 2

1 2 2 1( ) 2 ( )ρ− 〉〉 −avg avgP P P g H H  the potential energy or elevation 

term can be neglected and consequently 
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With this last equation, the importance of the ratio 1 f , 

known as the transmission factor, as well of the pipe internal 

diameter D, on the gas flow rate, is easily evaluated. The 

transmission factor is an important parameter because it is a simple 

representation of the gas transmissivity inside the duct, Smith et al. 

(1956). On the other end, the pipe internal diameter is another 

important parameter for the design of pipeline systems as, for 

example, in the case of a duplication of its value the flow will 

increase 22.5 ≈ 5.66 times. 

Reworking the last equation, the gas standard volume flow can 

be written as, 
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or in fact, 
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and in a generic way it can be said that, 
 

2 2

1 2
− = & n

st
P P R L Q  (21) 

 

where n e R are dependent upon the equation being used for the 

calculation of the transmission factor, 1 f . 

Flow Regimes 

Before discussing the equations available in the literature for the 

calculation of the friction factor or, which is the same, for the 

calculation of the transmission factor, it is more convenient to 

consider, even in a broad sense, the different flow regimes usually 

found in pipeline gas transportation. For typical transmission lines 

with high pressure gas and moderate to high gas flow rates, one of 

the two following situations is usually observed: Fully turbulent 

flow (rough pipe flow) or partially turbulent flow (smooth pipe 

flow). 

Considering the definition of the Reynolds number, the relation 

between the gas average velocity and its volume flow rate, and 

knowing that ρ ρ= =& & &
st st

Q Q m  for steady state conditions 
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ρ
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As, ( )
st st st st

P M z RTρ =  where zst ≈ 1 and M≈ 29 d 
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But R = 8314.41 J/(kmol K) and remembering that standard 

conditions are defined as Pst = 1.01325×10
5 Pa and Tst = 288.15 K 

then, 
 

Re 1.5616 st
Q d

Dµ
=

&

 (24) 

 

Assuming a gas dynamic viscosity of 1.0758×10-5 Pa s typical 

of natural gases, Mohitpour et al. (2000), the previous equation can 
be further simplified, 

 

Re 145158.7 stQ d

D
=

&

 (25) 

 

As known, for Re smaller than 2100 the flow is laminar, 

whereas for Re above 2100 the flow is considered turbulent. 

Between laminar and turbulent flows there is a transition region, for 

which there are no available pressure drop correlations.  

Laminar Flow Regime 

Although usually gas flow situations in pipelines are turbulent, 

for the sake of completeness of analysis, the laminar flow situation 

is also covered in the present text. 

When the laminar flow is completely developed through a duct 

of circular cross section, the Darcy friction factor, independent of 

pipe roughness, is given by White (1999), 
 

Re 64f =  (26) 

 

According to Shah and London (1978), the laminar flow inside a 

duct is fully developed beyond a certain entrance length Lent, 

determined by, 
 

0.59 0.056 ReentL

D
= +  (27) 

 

For a region when the flow is still under development, i.e. for 

lengths shorter than the entrance length, the average or apparent 

Darcy friction factor can be calculated through Shah and London 

(1978) 
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13.76 5 (4 ) 64 13.76 ( )
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x x
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where the dimensionless length is given by x+ 
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Re

x
x

D

+ =  (29) 

x is the pipe length and D is the internal diameter of pipe. When x+ 

→ ∞, then fapp Re → 64. 

Partial and Fully Turbulent Flow Regions 

In the partially turbulent flow the laminar sublayer thickness is 

bigger than the pipe wall absolute roughness, and there is then a 

laminar region covering the tube inner wall and a turbulent region 

outside it. It is as if there was a turbulent flow inside a smooth 

walled pipe and that is the reason why the pipe wall is designated as 

hydraulically smooth, the pressure drop is found to be independent 

of the roughness of the pipe, Munson et al. (1998). The Darcy 

friction factor in this situation can be calculated by the Prandtl-Von 

Karman equation, Mohitpour et al. (2000), 
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Figure 1. Influence of the relative roughness in the regime transition 
from hydraulically smooth to rough pipes turbulent flow. 

 

With the increase of the Reynolds number the laminar sublayer 

thickness decreases, the pipe roughness gets increasingly important, 

disrupting the laminar sublayer, and after a brief transition region, 

the friction coefficient becomes independent of the Reynolds 

number, Munson et al. (1998), i.e. these are the conditions of the 

fully turbulent regime. In such circumstances this Darcy factor is 

determined by the Nikuradse equation, Mohitpour et al. (2000), 
 

10

1
2

3 7

D

f

ε 
= −  

 
log

.
 (31) 

 

Equation (30) for smooth pipes can be used until the influence 

of the viscous sublayer is replaced by the influence of pipe 

roughness Smith (1990) and from then on Eq. (31) must be used. As 

can be seen in Fig. 1 the transition Reynolds is dependent upon the 

relative roughness and the smaller this is, the later is the transition 

region. 

Designating by critical Reynolds number, the Reynolds at which 

value there is an abrupt change from turbulent flow in smooth pipes 

towards turbulent flow in rough pipes, or fully turbulent flow Recr,  

a very convenient graphic can be plotted, Fig. 2, which presents 

through a continuous line the relationship between Recr and ε/D or 

in other words, it shows the border between these two flow regimes. 

Such line can be fitted by the following equation, 
 

1.1039

cr
Re 35.235 ( / )Dε −=  (32) 

Many researchers, as referred by Smith (1990), adopt a 

modification of the Colebrook-White equation, using the 2.825 

constant instead of 2.51, valid for the partial turbulent, transition and 

fully turbulent regions, 
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Figure 2. The critical Reynolds number Recr  and the relative roughness. 

 

However, this same author (Smith, 1990), refers that 

experimental data for commercial pipes do not follow this modified 

Colebrook-White equation, rather have an abrupt change between 

partial and fully turbulent regimes and consequently Eqs. (30) and 

(31) should be used instead of Eq. (33). In such circumstances, Eq. 

(32) is crucial for defining the correct choice. Figure 1 is an 

optimum guidance for a clear comprehension of the situation. 

Most Frequent Flow Regimes 

The gas velocity inside pipelines is limited either to reduce 

erosion or noise and consequently the Reynolds becomes also 

limited. It is then interesting to compare this practical limit value 

with the critical Reynolds previously defined for inter-turbulent 

regime transition. Table 1 shows a comparison between these two 

Reynolds numbers. Flow conditions used for calculations were, 

absolute pressure of 5 atm to give a maximum Re limit for 

distribution and utilization networks; natural gas density 0.65 also 

for the same reason as 29 /( )ρ = P d R T ; temperature 288.15 K; 

average gas velocity 10 m/s, which is for the great majority of 

situations a limit design value; gas absolute viscosity 1.0758×10-5 

Pa s, pipe absolute roughness 0.0191 mm Smith et al. (1956), which 

is a lower limit for some steel pipes and a good reference absolute 

maximum value for all copper and polyethylene pipe tubes, value 

that imposes a maximum critical Reynolds for steel pipes and a 

minimum for copper and polyethylene pipe which is likely to appear 

in normal working conditions, Eq. (32). 
 

Table 1. Comparison between Recr and Relim  

Nominal 

diameter 

Relim Recr 

(ε=0.0191 mm) 

Recr  

(ε=0.046 mm) 

1/2" 45480 46029 18813 

3/4" 68221 72014 26818 

1" 90961 98932 42575 

2" 181922 212640 87089 

4" 363844 457037 183586 

6" 545765 715054 284565 

8" 727687 982333 380583 

10" 909609 1256717 489533 
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As can be seen from the observation of Table 1 the limit 

Reynolds is always inferior to the critical Reynolds which means 

that in distribution and utilization networks, the flow subregime is 

partially turbulent, i.e. hydraulically smooth pipes. Fully turbulent 

flow will occur mainly in the first and second level networks where 

pressures are higher, imposing for the same maximum velocity, an 

increase of the specific volume and consequently of the Reynolds 

number. 

The previous case is substantially changed if an absolute 

roughness of 0.046 mm is used, which is the typical suggested value 

for commercial steel pipes (White, 1999) (with an uncertainty in its 

definition of ± 30%). In these circumstances fully turbulent flow can 

also occur for all available steel pipe diameters, see Table 1, in 

practical terms only copper or polyethylene pipes can guarantee 

exclusive conditions for partially turbulent flow. 

Most Used Equations for Steady Flow 

Equation (15) can take a simpler form when constants are 

replaced by their corresponding values and the potential energy term 

is replaced by 
 

2

2 10.06843 ( )= − avg

avg avg

P
E d H H

T z
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so that, 
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Q

P L d T z f
 (35) 

 

For low pressure flows, i.e., when the gauge pressure is lower 

than 50 mbar, pressure difference 2 2

1 2
P P−  can be simplified, 

Osiadacz (1987), 
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and taking into consideration that for low pressures, 
 

1 2( ) / 2+P P = ′
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where ′
avgP  is the average pressure inside the conveying duct, 
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The result is, 
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In the above equation, P1 and P2 can be either in absolute or 

gauge pressures. As shown, low pressure equations are but 

simplifications of high pressure equations, which have been 

mathematically reworked in order to ease up calculations. High 

pressure equations have universal application instead of low 

pressure equations, which have a narrower field of application.  

As the equation for the transmission factor is generically, 
 

1
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while the Reynolds number can be written as, 
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Equation (15) can reworked to take a more general form 
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In the next sections most common equations used for the 

calculation of pressure drops in gas pipelines are discussed in the 

light of what has previously been said. All equations have been 

converted to SI units although several of them are known in quite 

different systems of units. 

Equations for Turbulent Flows in Hydraulically Smooth 

Pipes 

Panhandle A Equation 

In this case the transmission factor is given by, 
 

0.073051
3.436 Re

f
=  (42) 

 

which means that α = 3.436 and β = 0.07305. Reworking Eq. (41) 

with these values, the Panhandle A equation in S.I. units is obtained 
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According to the suggestion frequently found in the technical 

literature, Mohitpour et al. (2000), that for this equation, µ = 

1.0415×10-5 Pa s, the previous equation becomes, 
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AGA Partially Turbulent Equation 

The American Gas Association equation for partially turbulent 

uses the transmission factor given by the Prandtl-von Karman 

expression, 
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and replacing it into Eq. (41) gives, 
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White 

To simplify the calculation of the transmission factor and 

assuring at the same time that the resulting friction factors are close 

to those obtained from a reference equation like that of Prandtl-von 

Karman, a good approach is to use the White equation (White, 

1979) for f. This equation besides having a small error band between 

+0.24% and -3.23%, for the calculated results, when the Reynolds 

goes from 2000 to 2×106, has also the advantage of the explicitness. 

It must be stressed that, among the several equations presented by 

Branco et al. (2001) the White equation, shown next, is the one that 

presents smaller deviations when compared with the Prandtl-von 

Karman (or AGA partially turbulent) equation, 
 

( )1.2510

1 1
log Re

1.02f
=   (46) 

 

The corresponding flow equation is obtained through the 

introduction of the White Eq. (46) into Eq. (41) giving  
 

( )
0.5

2 2
1.25 2.51 2

10

. .

( ) 1
13.2986 log Re

1.02

st
st

st méd méd

T P P E
Q D

P L d T z

 − −  
=    

  
&   (47) 

 

Figure 3 is a comparison of friction coefficients used in the 

Panhandle A, AGA partially turbulent and White equations. As can 

be seen the f corresponding to the last equation has higher values 

than those for Panhandle A at low Reynolds numbers. This fact is a 

demonstration of how limited is the range of application of several 

of the available equations as many of them were developed for 

particular situations, Schroeder (2001). As previously referred it is 

evident the good superimposition of friction factor values obtained 

with the AGA partially turbulent (or Prandtl-von Karman) and the 

White equations. 
 

 
Figure 3 Comparison of attrition factors for Panhandle A, AGA p/t and 
White equations. 

Turbulent Flow in Rough Pipes 

Panhandle B Equation 

The transmission factor for this equation is given by, 
 

0.019611
8.245 Re

f
=   (48) 

 

and so the Panhandle B equation is obtained by introducing into Eq. 

(41), α = 8.245 and β = 0.01961, 
 

0.510
2 2

2.531 2

0.020 0.9608

1 ( )
108.080

µ

 − −
=  

  

& st
st

st avg avg

T P P E
Q D

P L d T z
  (49) 

 

Using the typical viscosity of µ = 1.0758×10-5 Pa s, the previous 

equation becomes, 
 

0.510
2 2

2.531 2

0.9608

( )
135.8699

 − −
=  

  

& st
st

st avg avg

T P P E
Q D

P L d T z
  (50) 

Weymouth Equation 

According to Mohitpour et al. (2002) this equation 

overestimates the pressure drop calculation and because of that it is 

most frequently used in the design of distribution networks in spite 

of being less exact than other equations. In this case the 

transmission factor is given by, 
 

1

6
1

10.3196= D
f

  (51) 

 

with the pipe inner diameter in meters. 

Replacing this transmission factor into Eq. (41) the result is, 
 

1
22 2

8
1 2 3

( )
137.2364

 − −
=  

  

& st
st

st avg avg

T P P E
Q D

P L d T z
  (52) 

AGA Fully Turbulent Equation 

This is one of the most recommended and used equations for 

this type of flow, being able to estimate with high precision flow 

and pressure drop values, if pipe roughness is known with 

correctness. The transmission factor is given by the Nikuradse 

expression, Eq. (31), 
 

10

1
2 log

3.7

ε 
= −  

 

D

f
  (31) 

 

which after being replaced into Eq. (41) gives, 
 

0.5
2 2

2.51 2
10

( )
13.2986 2 log

3.7

ε   − −  
= −    

    

& st
st

st avg acg

T P P E D
Q D

P L d T z
 (53) 

Modified Colebrook-White Equation 

This equation combines the three flow regimes, partially 

turbulent, transition and fully turbulent and it is recommended 

(Mohitpour et al., 2002) when the system is operating in the 

transition region between both regimes, although other authors have 

different opinions about this subject (Smith, 1990; Gersten et al., 

2000). The transmission factor is given by a modification of the 

Colebrook-White equation where the constant 2.51 was replaced by 

2.825(18) to achieve better agreement with experimental data at 

higher Reynolds numbers (Gersten et al., 2000 ). 
 

10

1 2.825
2 log

3.7 Re

D

f f

ε 
= − +  

 
  (33) 
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and consequently the Modified Colebrook-White flow equation will 

be, 
 

0.5
2 2

2.51 2
10

( ) 2.825
13.2986 2 log

3.7 Re

st
st

st avg avg

T P P E D
Q D

P L d T z f

ε    − −
= − +            

&  (54) 

Gersten et al. Equation 

This equation is the recent result of the work by GERG (Groupe 

Europeen de Recherches Gazières) founded in 1961 and composed 

by members from eight european countries. 

It is an equation valid for both regimes, similarly to what 

happened with the previously considered Modified Colebrook-

White equation, but according to its proponents this equation 

reproduces with high fidelity the transition between partially and 

fully turbulent flow as shown by the experimental results, i.e. an 

abrupt change on the transmission factor with the Reynolds number. 

The transmission factor is then given by Gersten et al. (2000), 
 

0.942

10

1 2 1.499
log

3.71 Re

n t

n
D

nf t f

ε
⋅ ⋅    = − +          

  (55) 

 

while the corresponding flow equation is 
 

0.942
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2.5

10
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n
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Q
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D
D
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ε
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 − −
=  

  

      − +             

&

  (56) 

 

The parameter t is equivalent to the efficiency factor η present 
in the Eq. (22) and similarly, it is equal to the unity in the absence of 

localized pressure drops. Parameter n has no importance for 

hydraulically smooth pipe flows as well as fully rough flow, but on 

the contrary it is fundamental for the transition region between these 

two flows. 

For n = 1 there is a smooth transition, as suggested by the 

Modified Colebrook-White equation, but on the other end, the 

abrupt transition as shown in the experimental natural gas data, is 

well described for n = 10. 

Comparison of Friction Factors 

Figure 4 has a comparison among several friction factors used in 

the above mentioned equations for fully turbulent flow. 

To carry out such comparison a typical roughness of 0.046 mm 

was used as well as three pipe diameters 1", 15" and 40". As can be 

seen Panhandle B equation, although only dependent upon the 

Reynolds number closely follows AGA for medium and large 

diameters. It is also seen that Weymouth equation overestimates the 

friction coefficient when compared to AGA results and this 

difference increases with the pipe diameter reduction. As far as the 

Modified Colebrook-White friction factor evolution is concerned, 

this was calculated for two pipe diameters 1" and 40" and, as 

expected, this equation results are similar to those obtained with 

AGA equation for high Reynolds. 
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Figure 4 Friction coefficients used in the Panhandle B, AGA fully 
turbulent, Colebrook-White and Weymouth. 

 

In most of the literature and for both equations, Panhandle A 

and B, the exponent of the ratio Tst/Pst is different from the unity 

contrary to the versions presented herein. Such difference is 

understandable if it is realized that in the present text a general form 

of Reynolds number equation has been used, Eq. (23), while in the 

developments appearing in the literature the Reynolds Eq. (24) was 

used. In this last equation the standard temperature and pressure 

were replaced by 288.15 K and 1 atm, whereas such was not done to 

the same ratio, Tst/Pst, in the flow Eqs. (15) or (41). There is then a 

contradiction on the way the equation was developed and this results 

in the fact that the Panhandle A and B equations found in the some 

literature only give correct results if the standard temperature and 

pressure to be used with them are the same as those previously used 

in the definition of the Reynolds number, i.e., 288.15 K and 1 atm. 

Other Equations for Steady State Flow 

IGT Distribution Equation 

In this case the transmission factor is given by, 
 

0.1001
2.3095 Re

f
=   (57) 

 

and using now Eq. (41) where α = 2.3095 and β = 0.100, the 

following equation is obtained, 
 

5
9

2 2
8

1 2 3
1 8
9 10

1 ( )
24.6145 st

st

st
avg svg

T P P E
Q D

P L d T zµ

 − − =
 
 

&   (58) 

 

where the average compressibility factor zavg., is assumed as 1. 

Mueller Equation 

For this case the transmission factor is given by, 
 

0.1301
1.675 Re

f
=   (59) 

 

and following the same methodology as in the previous section, 
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0.5747
2 2

2.7241 2

0.1494 0.74

1 ( )
15.7650 st

st

st avg avg

T P P E
Q D

P L d T zµ

 − −
=  

  

&  (60) 

 

Once again the average compressibility factor zavg., is assumed 

as 1. 

Fritzsche Equation 

Now the transmission factor is given by, 
 

0.0711
3.3390 (Re )D

f
=   (61) 

 

and reworking Eq. (41), 
 

0.5382
2 2

2.69111 2

0.07643 0.858

1 ( )
39.2220 st

st

st avg avg

T P P E
Q D

P L d T zµ

 − −
=  

  

&   (62) 

 

Using the approach of µ = 1.0415×10-5 Pa s and assuming that 

zavg, is equal to unity, the last equation becomes 
 

0.5382
2 2

2.69111 2

0.858

( )
94.2565 st

st

st avg

T P P E
Q D

P L d T

 − −
=  

  

&   (63) 

Pole Equation 

In this equation as well as in the next ones, and similarly to the 

Weymouth equation, the transmission factor is only dependent upon 

the pipe inside diameter. For the Pole equation the transmission 

factor will take the values shown in Table 2 (Mohitpour et al., 

2000). 
 

Table 2. f1 for Pole equation. 

Pipe nominal diameter (inches) 
1 f  

¾ to 1 4.78 

1 ¼ to 1 ½ 5.255 

2 5.735 

3 6.215 

4 6.45 
 

As the Pole equation is valid for low pressure flows, to obtain 

such equation the transmission factor according to what is presented 

in Table 2 is introduced in equation (39). In the technical literature 

this Pole equation is presented while neglecting the potential energy 

term E, the compressibility factor is assumed one, Tst = 273.15 K, 

Tavg = 277.8 K and Pst = 1.015598×10
5 Pa. In such conditions, Eq. 

(39) becomes, 
 

1
25

1 2( )
st

P P D
Q C

L d

 −
=  

 
&   (64) 

 

where C is given in Table 3. 

For avgP′ , see equation (39), a value of avgP′  = Pst + 390 [Pa] was 

adopted so that C values were identical to those found in the 

technical literature Mohitpour et al. (2000) for the Pole equation. 
 

 

Table 3.Constant C in Pole equation 

Pipe nominal diameter (inches) C 

¾ to 1 4.635 

1 ¼ to 1 ½ 5.096 

2 5.561 

3 6.027 

4 6.255 

Spitzglass (Medium Pressure) Equation 

In this equation the transmission factor is given by, 
 

0.500

1 88.5

1 0.09144/ 1.1811D Df

 
=  

+ + 
 (65) 

 

where D [m] is the pipe inside diameter. Replacing f in Eq. (35) it 

gives, 
 

1
22 2

2.51 2( )
125.1060

(1 0.09144 / 1.1811 )

st
st

st avg avg

T P P E
Q D

P L d T z D D

 − −
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+ +  

& (66) 

 

The expression usually found in the literature is however more 

simplified as the potential energy is not taken into account, the 

compressibility factor is assumed equal to one, Tst = Tavg = 288.8 K 

and Pst = 1.01325×10
5 Pa, giving as result the following equation for 

medium pressure transportation, 
 

1
22 2 5

1 2( )
0.02094

(1 0.09144/ 1.1811 )
st

P P D
Q

L d D D

 −
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&  (67) 

Spitzglass (Low Pressure) Equation 

In this case Eq. (65) of the transmission factor is replaced into 

Eq. (39) for low pressure instead of Eq. (35) for higher pressure. 

Then, 
 

1
2

1 2 2.5
( ) 2

125.1060
(1 0.09144 / 1.1811 )

avgst
st

st avg avg

P P P ET
Q D

P L d T z D D

 ′− −
=  

+ +  

&  (68) 

 

Once again and similarly to what happened with Pole equation, 

the low pressure Spitzglass equation is usually presented in the 

technical literature in a simpler form because the potential energy is 

not taken into account, the compressibility factor is again assumed 

equal to one, also Tst = Tavg = 288.15 K and Pst = 1.01325×10
5 Pa. 

Finally, avgP′  = Pst + 1210 [Pa] and so by using all these approaches 

the Spizglass equation for low pressure flows becomes, 
 

1
25

1 2( )
9.50

(1 0.09144 / 1.1811 )
st

P P D
Q

L d D D

 −
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&  (69) 

Renouard (Medium Pressure) Equation 

Renouard equations are frequently used in Portugal and Spain 

(Brucart, 1987; Andrés et al., 1989; Becco, 1989) for the sizing of 

gas lines. In the present situation the transmission factor according 

to Brucart (1987) is given by, 
 

0.091
2.4112 Re

f
=   (70) 
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and replacing it in Eq. (41) with α = 2.4112 and β = 0.09 gives the 

following equation, 
 

1
1.822 2

4.82
1 2 1.82

0.0989 0.82

1 ( )
26.4437 st

st

st avg avg

T P P E
Q D

P L d T zµ

 − −
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  

&   (71) 

 

This last equation is only valid in the cases when Q&  [m3/h]/D 

[mm]<150 (Brucart, 1987), i.e. this means that Re<4×106, according 

to Eq. (25). For higher Reynolds numbers the transmission factor 

should be calculated through, 
 

0.101 2.1822 Ref =   (72) 

 

which gives 1 f  values 9 % higher than those obtained through 

equation (70), in other words, using the transmission factor such as 

defined by equation (70) results in an overestimation of the friction 

losses. 

Renouard (1952) also suggests for interior piping, branches and 

rising columns (Re<104), the use of the following equation, 
 

0.2
0.21 Ref −=   (73) 

 

resulting in friction factors higher than those obtained by means of 

equation (70). 

Using an absolute viscosity of µ = 1.0757×10-5 Pa s, neglecting 

the potential energy term and assuming Tst = Tavg = 288.15 K, Pst = 

1.01325×105 Pa and that zavg = 1, Eq. (71) is reworked to give an 

equation applicable to medium pressure flows, 
 

1
1.822 2

4.82
1 2 1.82

0.82

( )
0.010367st

P P
Q D

L d

 −
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 
&   (74) 

 

In the technical literature the Renouard equation comes written 

in an explicit form in terms of the pressure difference and in such 

circumstances Eq. (74) becomes, 
 

2 2 1.82 0.82 4.82

1 2
4088

st
P P Q L d D−− = &   (75) 

 

whereas in the technical literature (Brucart, 1987) it appears as, 
 

2 2 1.82 4.82

1 2
4810

st
P P Q L d D−− = &   (76) 

 

where the constant 4810 takes the value 48600 if the following units 

are used, P – kg/cm2, L – km, Q&  – m3/h and D – mm.  

It must be stressed that in the development leading to equation 

(76), Renouard (1952) used a constant value for city gas kinematic 

velocity, cgν = 2.2×10-5 m2/s, and a flow temperature of 15 ºC. This 

means that by fixing the value of gas cinematic viscosity, the 

density is also kept fixed, which is physically inaccurate when 

considering compressible gas flows at medium or high pressure, 

because the cinematic viscosity of gases is highly dependent upon 

pressure. The gas flow Reynolds number is now defined as 
 

5

4
Re

2.2 10

st
Q

Dπ −
=

×

&

  (77) 

 

and every time a gas with a cinematic viscosity ν  different from the 

city gas is being used, a multiplying correction factor ( )0.18cgν ν  

must be applied into Eq. (76), Renouard (1952). The product 

between such correction factor and the relative density of gas 

( )0.18cgd ν ν  is usually called the corrected density. 

To get a deeper understanding of the reasoning and 

mathematical simplifications carried out by Renouard (1952), it is 

necessary to go back and rework Eq. (22) for the gas flow Reynolds 

number. Such equation can thus be written as 
 

4
Re

st

st

Q

D
ρν

π
ρ

=
 
 
 

&

  (78) 

 

which means that this equation is identical to Eq. (77) whenever the 

used viscosity is an apparent viscosity calculated through 
 

app st

st st

ρ µν
ν ν

ρ ρ
= = ≅   (79) 

 

The correction factor to be applied into Eq. (76) when a gas 

different from the city gas originally used by Renouard (1952) is 

being used, or because a different temperature is being considered, 

must then be calculated through one of the following ratios 
 

( ) ( )
0.18 0.180.18

,

5 5 5

1.26

2.2 10 2.2 10 2.2 10

st airst
d dµ ρ µµ ρ

− − −

    
 = =   × × ×     

 (80) 

 

Comparing Eqs. (75) and (76) and considering what has been 

previously exposed, the error obtained in the calculation of the 

pressure differential by using Eq. (76) instead of Eq. (75) is given 

by 
 

( ) ( ) ( )2 2 1 2 2 2
1 2 1 2 1 2

Eq.(76) Eq.(75) Eq.(75)
P P P P P P − − − −

 
 (81) 

 

and so if in Eq.(75) it is assumed that the constant, 4088, changes 

according to the gas viscosity and in Eq. (76) a corrected gas density 

is used according to Eq. (80), the Eq. (81) becomes, 
 

( ) ( )
( )

0.180.18 5

0.180.18 0.82 5

4810 2.2 10
1

4088 1.0757 10

std

d

µ ρ

µ

−

−

×
−

×
  (82) 

 

leading after simplification to the following result, 
 

0.180.18

,

4810 1.0757 1
0.8 %1

4088 2.2 st airρ

  
− = −       

  (83) 

 

which means that both Eqs. (75) and (76) are equivalent. However, 

this result suggest that Eq.(75) should be used instead of Eq. (76), 

because that equation was not only deduced through a physically 

correct way, but it does not require the use of the corrected density, 

provide in Eq. (71) the typical density for the gas being used is 

applied. For an even higher correctness it would be necessary to use 

a viscosity calculated for average flow conditions. 

The use of Eq.(76) without the viscosity correction, although 

quite common in the daily practice, leads to an overestimation on 

the calculation of the pressure drop, as the pressure difference 
2 2

1 2P P−  is about 6 to 9 % higher than the value obtained through 

Eq. (75). 
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Renouard (Low Pressure) Equation 

For low pressure, Eq. (70) is still being used for the transmission 

factor but the pressure drop equation is based upon Eq. (39). It is 

then obtained that, 
 

1
1.82

4.82
1 2 1.82

0.0989 0.82
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&  (84) 

 

As in the previous situation, assuming that µ = 1.0757×10-5 Pa s, 

ignoring the potential energy term and considering that Tst = Tavg = 

288.15 K, Pst = 1.01325×10
5 Pa and zavg =1 a simpler equation can 

be obtained 
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8.614st

P P
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The ′
avgP  is defined as ′

avgP  = Pst + 1390 [Pa] (This pressure 

value is used to convert from high to low pressure equations found 

in the literature). Such mathematical treatment is equivalent to 

replace 2 2

1 2
P P−  by 1 2( )2 avgP P P′−  in Eqs. (74) to (76). The 

efficiency factor used with Renouard equations is usually 0.91 

which is equivalent to use, in the flow equation, an equivalent length 

of 1.2 L. 

Laminar Flow Regime 

The laminar flow can occur in domestic gas pipes which 

justifies the deduction of the flow equation for this situation. 

The transmission factor is given by, 
 

1 21
ReK

f
=   (86) 

 

where K is equal to 1 Reappf  where the value of fapp Re is given 

by Eq. (28). Replacing the definition of the transmission factor for 

laminar flow into Eq. (41) and solving it in order to 
st

Q& , 
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π
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&   (87) 

 

Neglecting the potential energy term E, assuming that Tavg = Tst 

= 288.15 K, zavg = 1 and µ = 1.0757×10-5 Pa s and adapting the last 

equation exclusively for low pressure flow calculations by doing 

avgP′  = Pst + 390 [Pa], the result is, 

 

41 2146588 ( )

( Re)
st

app

P P
Q D

f L

−
=&   (88) 

 

which is the simplified flow equation for laminar, low pressure 

regime. 

Figure 5 presents a comparison among several friction factors 

for partially and fully turbulent flow regimes. In the situations when 

the pipe diameter and roughness are essential for the calculation of f, 

it was assumed for calculation purposes that D = 4" and steel pipe 

with ε = 0.046 mm roughness (White, 1999). 

From the analysis of Fig. 5 it is clear that the Muller equation 

gives f values approximated to those of AGA partially turbulent 

equation (AGA p/t), for Reynolds numbers up to 4×104, whereas the 

IGT equation gives values quite close to those of AGA p/t precisely 

beyond Re = 4×104. The combination of Muller and IGT equations 

is a good alternative to the use of AGA p/t equation as those two are 

explicit equations while AGA p/t equation is an implicit one, thus 

more difficult to deal with. Still keeping an eye on Fig. 5 it is 

observed that the friction coefficients from Renouard equations are 

inferior to those obtained from AGA p/t for Reynold numbers 

smaller than 7.4×103, which means that the value of f is 

underestimated when using the Renouard equation. However, for 

Reynolds numbers above 7.4×103 the friction factor for the 

Renouard equation is superior to the value obtained with AGA p/t 

equation; in this case there is an overestimation of the friction factor 

which places the designer on the safe side during equipment and 

piping design. The Fristzsche equation has an overall behavior quite 

similar to the Renouard equation, although giving higher friction 

factors when Re > 7.4×103. 
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Figure 5 Evolution of friction factors used in several, previously 
discussed, flow equations. 

 

Equations of Pole and Spitzglass, because they are only function 

of the pipe diameter should, in theory, be most adequate for fully 

turbulent flow where they seem to overestimate the value of f when 

compared with the fully turbulent AGA equation. In the partially 

turbulent flow, for low Reynolds numbers and small pipe diameters, 

Pole and Spitzglass equations still can go on overestimating the 

friction factor as this factor greatly increases with the decrease of 

pipe internal diameter. In fact, for D = 3/4" f is equal to 0.0438 or 

0.06579 according to Pole or Spitzglass equations, however for 

large pipe diameters and small Reynolds these equations may 

underestimate the value of f as it is clearly seen in Fig. 5. Once 

again is clear that the physical support of the equations is weak and 

consequently their used should be avoided whenever possible. 

The use of turbulent flow equations for laminar flow situations 

will impose an overestimation of the friction coefficient, although in 

the majority of practical situations the minimum Reynolds number 

is 1400. As can be seen in Fig. 5 for a long duct, when the entrance 

length effect can be neglected and consequently fapp Re = 64, the 

friction factor obtained through equations of Renouard, Fritzsche 

and IGT is inferior to the one obtained through adequate 

correlations for laminar flow, but only for Reynolds smaller than 

1400. The same happens for AGA p/t and Muller equations when 

the Reynolds number is inferior to 1000. However, for shorter pipes, 

a common situation in buildings and small gas networks, the laminar 

friction coefficient is higher than those obtained by the turbulent 

equations. For a duct with 80 D length the product fapp Re is close to 

94 and according to what is observed in Fig. 5, in this situation the 

laminar friction factor is always superior to the value obtained by 

means of any other turbulent equations. However, practical 

minimum diameters in domestic installations are well above the 
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sizes suggested by these laminar calculations and accordingly this 

analysis is purely academic. 

Figure 6 presents the maximum variation detected for the 

friction factor in relation to the average value calculated by means 

of the AGA partially turbulent, Renouard, Muller, IGT and laminar 

flow equations as a function of the Reynolds number. There is a 

minimum dispersion around 5 % for Reynolds closer to 1.6×104, but 

such dispersion increases for extreme Reynolds number, be they 

very small or very large. 
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Figure 6 Maximum variation of the friction factor relatively to its average 
value when calculated through the following equations: AGA p/t, 
Renouard, Muller, IGT and for laminar flow regime. 

 

From this analysis it can be said that in the calculation and 

design for distribution and or utilization gas networks in partially 

turbulent regime, which is nowadays highly dependent upon 

numerical procedures, such calculation procedure could be carried 

out through the following explicit equations (for pressure 

calculations): for Reynolds above 2100, White Eq. (47), although 

this equation will still be implicit in terms of D and Q& , while in the 

laminar regime Re<2100, Eq. (88) is the recommended correct 

option, although for practical reasons it is not frequent the use of 

very small (< 18 mm ) pipe diameters, making the use of this last 

equation not very common. In all these recommended equations the 

average flow temperature is dependent upon the designer choice and 

the gas absolute viscosity is calculated in accordance with such 

temperature. 
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Figure 7 Comparison among AGA, Colebrook-White and Gersten et al 
equations (2000). 

 

Figure 7 presents the performance of several flow equations at 

the transition between partially and fully turbulent flow regimes for 

a 4" pipe with 0.046 mm of absolute roughness. The best equation to 

translate the experimental behavior is the Gersten et al. (2000) with 

the abrupt transition between the two flow regimes. Both AGA 

equations, using Eq. (32) as selection criterion, closely follow the 

Gersten et al. (2000) equation (and accordingly the experimental 

data) and at the same time are formally simpler to use. In this Fig. 7 

it is also evident the inadequacy of the modified Colebrook-White 

equation to translate correctly the experimental behavior in the 

transition region. 

Conclusions 

In spite of the large amount of work carried out on natural gas 

flow it is quite useful to join in a single text the multiplicity of 

equations that are dispersed in the vast amount of the available 

technical literature. It is then shown that the basic difference among 

the several presented and discussed equations, is not in their formal 

aspect, but lies in the corresponding transmission coefficient 

equations. There is however a unique equation in this universe that 

differs from all the others, not only by means of the transmission 

coefficient equation, but also through the way the flow equation is 

deduced, the Renouard equation. 

The comparison among the different flow equations using AGA 

equations as a reference basis was fundamental to the definition, for 

each equation under analysis, of the corresponding application range 

and errors arriving from their use. It is, as far as the authors are 

concerned, the first time all these equations are presented together in 

S.I. units. The main conclusions of this work are: 

i) It is possible, through a very simple equation, to correlate the 

relative pipe roughness ε/D with the critical Reynolds corresponding 

to the transition from partially to fully turbulent natural gas flow; 

ii) According to practical limitations for natural gas pipeline 

flow (Kennedy, 1993) and taking into account typical pipe 

roughness, it is possible to conclude that for pressures below 5 bar 

and for cooper and polyethylene pipes, the only available flow 

regime is the partially turbulent flow and in such circumstances the 

pipe roughness is not required for calculation purposes. However, 

for steel pipes the existence of fully turbulent flow is common and it 

is not correct to use in the calculations flow equations that ignore 

the influence of internal pipe roughness; 

iii) Low pressure flow equations are simplifications of the flow 

equation which was obtained through the integration of the equation 

of linear momentum conservation for compressible fluids. The result 

is an equation of limited scope, as it can only be applied to a limited 

pressure range, i.e. < 50 mbar; 

iv) The use of a formula for the calculation of the Reynolds 

number where Tst e Pst are previously replaced by the corresponding 

numerical values, imposes that on the deduction of the flow 

equations the exponent of the ratio (Tst/Pst) is different from unity. 

On the other end, if during calculations carried out with this flow 

equation the values used for Tst e Pst are different from those used in 

the calculation of Re, there will be an error in the numerical results; 

v) The utilization of the AGA equations, together with the 

equation for the determination of Recr recommended in the present 

text, is a good alternative to the Gersten et al. (2000) equation, 

because AGA equations are formally simpler and translate equally 

well the abrupt change found in the transition from partially to fully 

turbulent flow of natural gas. 

vi) Equation (75) should be used instead of Eq. (76) when 

calculating natural gas pipelines through the equation of Renouard. 
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