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Numerical Magneto Hydro Dynamic 
Flow Simulation of Velocity and 
Pressure for Electrically Conducting, 
Incompressible Fluids 
In this paper, we report on numerical simulations of incompressible 
MagnetoHydroDdynamic flows by a two dimensional finite difference scheme associated 
to an appropriate projection method performed to characterize velocity-pressure 
formulations along the specified MHD duct by solving the set of differential equations of 
magnetohydrodynamics. In the present calculation, a working electrolytic solution is 
considered in order to bring up the application of the magnetohydrodynamic micropump. 
Numerical results show the characteristics of flow velocity, pressure distribution and their 
convergence tests. The computations aim to optimize the flow rate of a given MHD 
micropump regarding to its geometrical dimensions and the external electromagnetic 
excitation. 
Keywords: magneto-hydrodynamics equations, Lorentz force, finite difference scheme, 
projection method, velocity-pressure formulation. 
 
 
 

Introduction 

The determination of velocity and pressure fields in fluids is an 

important problem in a number of technological applications based 

on flows of conducting fluids through channels of various cross-

sections. In practice, there is a great need to understand the effect of 

an external body force, on the conducting fluid in two dimensional, 

time dependant situations. Here, a finite difference scheme will be 

described which is suitable for use on a microcomputer and which 

can solve a range of magnetohydrodynamic flows where magnetic 

field is independent of the flow as enumerated by Cramer (1973) in 

the analogy applied between the magnetic field equation and the 

vorticity equation. So the governing equations of the MHD 

micropump will be derived under a negligible magnetic Reynolds 

number.1 

Along the specified duct, we consider for the time being, a 

single-phase fluid homogeneous incompressible MHD equation in a 

two-dimensional bounded domain. This paper outlines the 

investigation of the fundamental performance of a linear Faraday 

type MHD micropump using an electrolytic working solution where 

its performance is characterized using two-dimensional finite 

numerical simulation with an appropriate projection method. The 

numerical simulation is carried out on the basis of the MHD 

equations, (mass and momentum equations including MHD effects) 

and the set of Maxwell equations developed by Kadid, (2004). And, 

in order to solve this set of equations, the Taylor expansion is used, 

which is one of the finite difference methods using an artificial 

viscosity under initial conditions of isentropic flow.  

Magnetohydrodynamics involves then a combination of both 

electrical and magnetic fields in order to induce mechanical flow in 

a fluid that is made conductive by dissolving an electrolyte in it. 

Since the ionic flow in the magnetic field is the cause of the 

movement of the conductive fluid, then it is necessary to understand 

the properties of the electromagnetic forces at work. So, over the 

last decade, considerable efforts have been directed to the possibility 

of using MHD technology for pumping system, where electrical 

energy is converted directly into force on the working solution. In 

recent works of Harada et all (2002) and Anwari (2005), the basic 

characteristics of a linear Faraday type MHD accelerator were 
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studied, both theoretically and numerically, for various loading 

configurations.  

In the case of electrolytic solutions, the moving ions drag fluid 

molecules with them. These new possibilities of carrying out the 

fluid particles are presented in Kim et all (1997), Ben Salah (1999) 

and Jang et all (2000) works where they try to conceive a 

magnetohydrodynamic system aiming to induce continuous 

pumping of a conductive fluid without the presence of any moving 

parts, advantages enumerated by Lemoff et all in (2000) and later by 

Homsy et all (2005). These last fields of research define the 

Magneto-Hydro-Dynamic acceleration concept where the 

mechanical force of flow is induced on a conductive fluid when it is 

excited by an electromagnetic field, Jang et all (2000).  

This document is organized in five sections. The first section is 

devoted to the magnetohydrodynamic pumping theory. In the 

second section, the magneto hydrodynamic modeling is highlighted. 

Section three is concerned with the mathematical model to solve the 

classical configuration problem based on the magnetohydrodynamic 

governing equations. Discrete equations are introduced in the 

section four. The projection method and the numerical procedure are 

the subject of ongoing work. Finally, numerical results discussion is 

presented.  

Nomenclature 

B = magnetic flux density, T 

d = grid size of cell, m 

E = electric field, N/C 

f  =frequency, Hz 

F = Lorentz force, N 

F+ =Lorentz force carried by positive ions, N 

F- =Lorentz force carried by negative ions, N 

h  = height of the electrode, m 

Ha  = Hartmann number, dimensionless  

 I = electric current, A 

J  = electric current density, A/m2 

k  = constant 

l  = distance between electrodes, m 

Le = total length of the MHD channel, m 

L  = Characteristic length of the fluid flow, m 

n  = normal direction 

N  = interaction parameter  dimensionless  
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αN  = number of ions of speciesα  in the duct 

p  = pressure, N/m2 

p  = average pressure over the width of the outlet duct, N/m2 

q  = unit charge, 1.6 10-19 C 

Re  = hydrodynamic Reynolds number, dimensionless  

S =cross sectional area of channel, m2 

s  = threshold of convergence 

t = time, s 

t∆  =time step, s 

U  = velocity, m/s 

u  = average velocity over the width of the outlet duct, m/s 

nu  = normal velocity, m/s 

tu  = tangential velocity, m/s 

u  = component of dimensional velocity in the x-axis direction, 

m/s 

v  = component of dimensional velocity in the y-axis direction, 

m/s 

U  =Characteristic velocity of the fluid flow, m/s 

V  = total volume device, m3                  

x  = axis in Cartesian coordinates 

y  = axis in Cartesian coordinates 

z  = axis in Cartesian coordinates 

αz  = valence of ions of species α  in the duct    

Greek Symbols 

ν  = kinematic viscosity of the fluid, m2/s 

σ  =electrical conductivity, 1/( m.Ω ) 

ϕ  = phase shift, rad 

jµ  = electrophoretic mobility, m2/(V s) 

µ  = fluid dynamic viscosity Kg /(m s) 

ρ  =flow density, Kg/m3 

ϑ  =flow velocity, m/s 

Φ  =electric potential, volt 

Superscripts 

n relative to variable evaluated at time t 

n+1 relative to variable evaluated at time t+ t∆  

Subscripts 

i relative to direction of the axis in the system of 

coordinates or component 

j relative to direction of the axis in the system of 

coordinates or component 

Abbreviation 

MHD       relative to MagnetoHydroDynamic 

MEMS   relative to Micro Electro Mechanical Systems 

< >  relative to time average 

MHD Pumping Theory 

Motion of electrically conducting fluids across a magnetic field 

induces the so-called Lorentz force. Consider a rectangular cross-

section duct filled with an electrolyte solution where a homogeneous 

electrical field E is applied between the sidewalls consisting of an 

electrically conductive material, as shown in Fig. 1. In order to 

manage the flow movement, a homogeneous magnetic flux density 

is applied perpendicular to both the duct length axis and the 

electrical field. 

This force applied on every ion of species α  in the electrolyte 

solution is expressed by Feynman (1964) as 

)BE.(z.qF ∧+= ααα ϑ  (1) 

 

The applied electrical field yields electrical forces, which act in 

opposite direction for ions of opposite charge (see Fig.1) 
 

 

Figure 1. Vector diagram of MHD pump and electrical forces exerted in 
solution’s ions. 

 

Assuming that αN  is the number of ions of species α  in the 

MHD duct and due to the electroneutrality of the bulk solution, 

there is no net electric force exerted on the solution by the electric 

field, thus 
 

0N.zE.q =∑
α

αα  (2) 

 

From equation (1), the total Lorentz force will be defined as 
 

B.z.N.q ∧∑ α
α

αα ϑ  (3) 

 

So, the Lorentz force is proportional to the velocity of the 

charge carriers in the plane perpendicular to the magnetic field 

which can be split into two components 
 

yx ααα ϑϑϑ +=  (4) 

 

where xαϑ  is the velocity parallel to the electric field and yαϑ  is 

the velocity parallel to the channel axis. The latter one will induce 

the Lorentz force which is significant in determining the flow 

profile based on the dimensionless Hartmann number, given by the 

ratio of the magnetic body force and the viscous force 
21 /Re).N(Ha = , where U./B.L.N ρσ 2=  stands for the non-

dimensional interaction parameter and ν/ULRe =  is the non-

dimensional hydrodynamic Reynolds number, so the Hartmann 

number can be rewritten as Ha= 21 /)/.(B.L µσ  where the dynamic 

viscosity µ  is expressed as ρν . 

 

Table 1. Properties of seawater (20
o
 C, 1 atm); Jang and Lee (2000); Liu et 

all (2006). 

ρ  Density = 1025 Kg/m3 
µ  Dynamic viscosity = 1.09 10-3 Kg /(m s) 

ν  Kinematic viscosity = 1.0634 10-6 m2 /s 

0µ  Magnetic permeability of the free space = m/H. 7104 −π  

σ  Electrical conductivity = 4     )m/(Ω1  

η  
Diffusivity = 1.98 105 H/)m.( 2Ω  
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Compared to metals or plasma fluids, the medium is 

characterized by a constant, poor electric conductivity σ ( 11 −− mΩ ) 

highlighten a low magnetic Reynolds number Rem, namely 
 

ησµ /ULULRem == 0  (5) 

 

where 0µ  stands for the magnetic permeability of fluid medium 

equal to the permeability of the free space and η  is the medium 

diffusivity. 

The chosen electric conductivity yields to a Hartmann number 

close to zero due to the low value of σ . This result, allow us to 

neglect the velocity yαϑ . As consequence, only the ionic velocity 

parallel to the electric field will be considered, expressed by 

Ex αα µϑ =  with αµ  is the electrophoretic mobility. Consequently, 

the net sum of the Lorentz force on all migrating ions is  
 

B.z.N.q x ∧∑ α
α

αα ϑ  (6) 

 

B)E.(z.N.q ∧∑ α
α

αα µ  (7) 

 

α
α

αα µ.z.NBE.q ∑∧  (8) 

 

Given that the term α
α

αα µ.z.N.q∑ represents the conductivity 

of the fluid medium multiplied by its volume and referring to our 

geometry, the Lorentz force can be rewritten as 
 

)BI.()BJ(V)BE.(V.F ∧=∧=∧= lσ  (9) 

 

As presented, the Lorentz force presents a crucial step in a 

magnetohydrodynamic pumping system, handling conductive fluids, 

as shown in Homsy et all (2000). Besides, with the recent progress 

in Micro Electro Mechanical Systems (MEMS) technologies, a large 

research effort has been made in microfluidic area, in order to pump 

and precisely control small volumes of small samples, where 

conductive fluids are propelled using Lorenz force. In (2000), Jang 

and Lee were the first to fabricate a MHD micropump, designed to 

propel saline solutions induced by a permanent DC magnet. 

However, electrochemical decomposition and electrodes 

degradation disrupted the flow. So, aiming a good pumping and a 

high flow rate, a permanent AC magnet was used by Heng et all 

(1999). More recently, Lemoff and Lee (2000) studied MHD 

pumping with combined AC magnetic fields and an AC current at 

high frequency. 

To prevent gas bubble, electrolysis and electrodes degradation, a 

sinusoidal electric current and a magnetic flux density will be 

applied at a same frequency ( f ), with a suitable phase shift ϕ  

leading to the following formula expressing the time average Lorenz 

force:  
 

dt)fcos().ftcos(.B.I.f.F

f

ϕππ += ∫ 22

1

0

l  (10) 

 

Evaluating the integral we obtain 
 

)cosB.I.(/F ϕl21=  (11) 

 

Equation (11) describes the time average of Lorentz force 

strength as function of distance between electrodes, magnetic flux 

density and the applied electric current, indicating that the flow rate, 

proportional to the Lorentz force measured in the duct, is therefore 

proportional to the applied current density and magnetic flux 

density, to the cosine of the phase angle between both, as well as to 

the micropump channel width. The maximum value of this 

expression is reached for a phase shift of π2  for a well known 

external electromagnetic excitation and micropump’s geometrical 

dimensions. 

MHD Modeling 

The MHD flow is governed by classical fluid dynamics and 

electromagnetics, including a set of coupled partial differential 

equations that express the conservation of mass continuity and 

Navier-Stokes equation joined to the Maxwell's, current continuity 

and constitutive equations. In this paper, electrically conducting 

fluid flow constrained in a rectangular MHD duct, where a uniform 

magnetic field is applied perpendicular to the stream-wise direction 

and to the homogeneous electric field. 

The flow is characterized by a negligible magnetic Reynolds 

number, which is an usual case with micro-duct flow where 

magnetic field is independent of the flow from vorticity equation 

ϑ∧∇=w  and magnetic field equation as presented by works of 

Cramer (1973). 

With these assumptions and adopting a dimensional analysis 

based on the characteristic current density j  of Eσ  and the 

characteristic pressure p  of L/U.µ , the governing equations are 

reduced to the following equations 
 

0=∇ϑ  (12) 
 

ER

B
Ej

)( ∧
+=
ϑ

 (13) 

 

)(
11

.
2

BjN
R

p
Rt ee

∧+∇=∇+∇+
∂

∂
ϑϑϑ

ϑ
 (14) 

 

where UB/ERE = , E  is the electric field density, B  is the 

characteristic magnetic flux density and U  is the characteristic 

velocity. The parameter ER  has large value in the microchannel in 

which high electric field is applied, indicating that j  is little 

dependant on the velocity ϑ . This guarantees very small 

fluctuations of the magnetic field due to the fluid motion as 

compared to the external applied field, therefore the total magnetic 

field can be considered uniform and time independent. 

In general, the induced electrical current j  is given by 

B)(j ∧+−∇= ϑΦσ  where Φ  is the induced electrical potential, 

produced by the interactions of the flow vorticity ϑ∧∇=w  and the 

applied magnetic field. Besides, the configuration considered here is 

two dimensional for which, in practice, it is reasonable to assume 

that the vorticity is negligible. With this assumption, the induced 

electrical potential can be assumed to be null as cited in Holman 

(1990), so the Lorentz force defined per unit of volume, takes the 

form 
 

BE..B)B(Bj σϑσ =∧∧=∧  (15) 

 

As outlined above, the MHD equations for the transient 2-D (x-

y) planar flow with the presence of a uniform, time dependant, 
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positive z-direction magnetic field and y-direction electric field are 

formulated as 
 

0=
∂

∂
+

∂

∂

y

v

x

u
 (16) 

 

xF
y

u

x

u

x

p

Dt

Du
+

∂

∂
+

∂

∂
+

∂

∂
−= )(

2

2

2

2

µρ  (17) 

 

yF
y

v

x

v

y

p

Dt

Dv
+

∂

∂
+

∂

∂
+

∂

∂
−= )(

2

2

2

2

µρ  (18) 

 

where u  denote the velocity component in the streamwise x-

direction and v  denote the velocity component in the transverse y-

direction, Dt/D  is the material derivative, µ  is the fluid dynamic 

viscosity and xF , yF  are the component of the Lorentz force, per 

unit volume, in x-direction and y-direction, respectively. 
 

Table. 2  Data and parameters for computer experiment 

L=900 mµ  Distance between micropump’s electrodes 

I=0.8 A Applied electric current 

B=0.05 T Applied magnetic field 

t∆ =0.1 Time discretization 

MHD Governing Equations 

In this numerical simulation, we consider the widely used set of 

basic equations with MHD approximations, as given by eq. (9). 

Since the essential feature of the MHD flow is the existence of a 

Lorentz force, fluid equations, eqs. (16-17-18), including MHD 

effects are used. 

Aiming a fundamental performance of the 

magnetohydrodynamic accelerator, the research employed two-

dimensional numerical simulation with a mesh of 40 by 40 grid 

points. Further, for time discretization, and in order to have a 

consistent scheme, i.e., with a unique and limited solution, the 

following condition is used td ∆ν ..22 ≥ , where d is the cell size. 

 

 

Figure 2. Typical cell for the finite difference scheme 

 

It was assumed that a low viscous, incompressible, conducting 

fluid is flowing in the x-direction, down z-axis magnetic field and y-

axis electric field. In solving the flow field, no slip condition is 

imposed on the walls of the duct. The velocity boundary condition 

at the duct walls is the thin conducting wall condition cited in 

Shercliff (1956), Hunt (1965), Temperley et all (1971) and Tillak et 

all (1998), where nu  and tu  are the normal and the tangential 

velocity, respectively. 

0=nu  (19) 

 

nuku tt ∂∂= /.  (20) 

 

The cross-section of the duct having a boundary conditions 

described for pressure field and satisfying Neumann condition 
 

0=∂∂ nP  (21) 

 

For the initial condition, the velocity field is considered 

divergence free and is assumed to satisfy the no-slip boundary 

condition 0== vu , except in the entrance of the duct. A constant 

pressure P=0 is defined everywhere in the MHD duct.  Figure 3 

shows the geometry and boundary conditions, where for the inner 

MHD duct we adopt a characteristic function equal to the unit and 

zero elsewhere. However, for the corners the value of the 

characteristic function   is hold at 2 and for the edges it is assumed 

to be 1 as depicted in figure. 3.  
 

 
 

 

Figure 3. Cavity geometry and characteristic function 

 

For our specific application, it will be supposed that there is a 

uniform magnetic field imposed in the z-direction and there is a null 

axial velocity gradient. 

Also, an uniform velocity parallel to the duct direction is 

imposed U(t=0)=1. In the outlet duct, we consider a null velocity 

gradient ( ) ( )21 cc λλ =   where vu,=λ . 

Internal and external corners must satisfy pressure and velocity 

conditions depicted in figures 4 to 6. 
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Figure 4. Internal corner 0)1)U(c2P(c)1P(c ======== . 

 

 

Figure 5. External corner )C(U)C(U))C(P)C(P(2/1)C(P 21431 ∞∞∞∞++++==== . 

 

 

Figure 6. Extrapolation of pressure field )c(P)c(P2)c(P 321 −−−−==== . 

 

These conditions are incorporated with the MHD equations 

governing the magnetohydrodynamic flow. 

Discrete Equations 

An elementary Taylor expansion for first and second order is 

used to describe the magnetohydrodynamic equations for  
 

vu,=λ
dx
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 24) 

 

For time explicit scheme we have 
 

dt

uu

t

u
n

ji
n

ji
n

,
1

, −
=

∂

∂
+

 (25) 

 

The discrete equations form shows that the diagonal term 

coefficient is proportional to viscosity. So, if we work with a low 

viscous fluid, this term can be neglected and the transport 

phenomenon will dominate the diffusion one.  

In order to equalize the weighted diffusive and convective 

term, we introduce a numerical viscosity. As result, the convergence 

criteria aims to minimize the partial derivative of velocity, more 

precisely snn <−− )10()( λλ , for n>10 where s=10-4.   

Projection Method and Numerical Procedure 

Numerical resolution of the momentum equation is incorporated 

with the continuity equation which must be verified at every time 

step. Besides, the pressure field deduced from the velocity evolution 

must satisfy the condition of mass conservation. So, we use a 

mathematical projection method introduced and developed in the 

different works of Temam (1977), Chorin (1986), Gerbeau (1997) 

and Guermond (2003). It consists of two sub-steps per time step 

where the pressure is treated explicitly in the first sub-step and 

corrected in the second one by projecting the intermediate velocity 

onto the space of divergence-free fields. 

The time integration of the velocity is rewritten as 
 

dtdtdtt

nnnnnn UUUUUUU −
+

−
=

−
=

∂

∂ ++++ 2/12/111

 (26) 

 

The prediction step consists of solving the following equation in 

order to deduce 2/1+nU calculated from nU  
 

( )
dtρ

F n/n UU
.UU.U

−
=∇−+∇

+ 21
2.ν  (27) 

 

We consider the pressure field at (t+ t∆ ), the divergence of the 

following equation 
 

 
UU

dt

p nn 2/11. ++ −
=

∇−

ρ
 (28) 

 

So, applying divergence to pressure at (t+ t∆ ) is  
 

) 
dt

()
ρ

p
(

/nnn 2111

.
.

.
+++ −

∇=
∇−

∇
UU

 (29) 

 

The condition of continuity at (t+ t∆ ) is written as 
 

01 =∇ +n.U  (30) 
 

The pressure field at (t+ t∆ ) satisfy Poisson equation model and 

is rewritten as 
 

dt

p n 2/1.. +∇
=

U

ρ
∆

 (31) 

 

The finite difference scheme for Poisson equation implies 
 

dt

ji
d

jipjipjipjip
jip

nnnn
n

4
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1

.U
                   

∇
−

−+++−++
=

+++++

 (32) 

 

d

jivjiv

d

jiujiu
ji

nn

nn

2

)1,()1,(

2

),1(),1(
),(

2/12/1

2/12/1

−−+
+

−−+
=∇

++

++

                      

.U

 (33) 

 

We complement these equations with a Neumann condition 

 c3 

 c4 

c2 
 

 c1 

c1 

c2 

c3 

c2 

 
 c3 

 c1  c4 



Raoudha Chaabane et al 

/ Vol. XXIX, No. 3, July-September 2007 ABCM 304 

0=
∂
∂
n

p
 (34) 

 

Having the pressure field, we deduce the velocity evolution 

satisfying the momentum equation and the continuity one.  
 

dt
pnn .
.2/11

ρ
∇

−= ++ UU  (35) 

 

d

jipjip
dtjiujiu

nn
nn

ρ2
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11
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−=
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d
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dtjivjiv

nn
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ρ2
)1,()1,(
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11

2/11 −−+
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++
++  (37) 

Numerical Results And Discussions 

We will now present and analyse the numerical results for the 

electrolytic solution inside the MHD micropump where we present 

plots of flow velocity, pressure distribution and convergence tests 

for both pressure and velocity. The ongoing computation aims to 

show the characteristic of the MHD flow in a 40*40 mesh. All 

simulations are realised for the following parameters, a current 

density of I=0.8A, a magnetic field of B=0.05T and a micropump 

with a width of l =900 mµ .  580 iterations were employed for both 

pressure and velocity.  

The analysis of the obtained results for velocity profile inside 

the magnetohydrodynamic micropump depicted in figures 7 to 9 

shows that velocity in x-axis direction have a constant value along 

the duct and decrease slightly in the extreme outlet of the channel 

exit. While velocity in y-axis direction depicted in Fig. 8 present 

some fluctuations in the entrance of the duct. 

Regarding symmetrically to the flow direction, velocity profile 

presents a minimum followed by a maximum in the right sight of 

the duct. However, close to the outlet of the magnetohydrodynamic 

duct the inverse situation is depicted with a more noticeable 

elevation. 

As result, the norm velocity distribution inside the duct, defined 

as 22 vu + , is depicted in fig. 9 indicating a noticeable elevation in 

the middle of the micropump's channel. So, the velocity study 

confirms that the working fluid was successfully accelerated by the 

Lorentz force due to the externally applied current and the magnetic 

flux density related to the chosen geometry. 
 

 

Figure 7. Velocity variation in x-direction 

 

 

Figure 8. Velocity variation in y-direction 

 

 

Figure 9. Velocity norm 

 

Focused on the pressure behavior in fig.10, we can notice a 

noticeable elevation of the pressure in of the inlet of the 

magnetohydrodynamic duct, followed by a two symmetric 

diminution equidistant from the x-axis. In the outlet of the duct, the 

pressure presents a symmetric increase regarding the x-direction.  

From Figure.10, we can deduce that the imposed inlet and outlet 

geometry is the essential parameter of the pressure elevation. 

However, in the middle of the duct, the flow shows a symmetric 

depression. In order to understand the coupling between the velocity 

and the pressure, in fig.11, both quantities are presented, i.e., the 

velocity vector field and isolines of pressure. 
 

 

Figure 10. Pressure distribution 
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Figure11. Velocity field and isobar plots 

 

At each time step, the pressure and the velocity fields are solved 

alternatively and iteratively until convergence is reached. The 

process is repeated until satisfying convergence criteria. 

Convergence behavior of pressure distribution and field velocity can 

be depicted in fig. 12 and 13. Such convergence plots prove the 

efficiency of the numerical approach adopted in this paper. 
 

 

Figure 12. Convergence of pressure distribution 

 

 

Figure 13. Convergence of velocity field 

 

To summarize, inspection of the flow velocity characteristics 

shows that the Lorentz force effect has successfully accelerated the 

electrolytic solution inside the MHD micropump. These results are 

high lighten in fig.14 by the computation of the flow lines for 

I=800 mA, B=0.05 T with a chosen distance between electrodes of 

9.10-4m. 
 

 

Figure 14. Flow lines for I=0.8A, B=0.05T and e=9.10
-4
m 580 iterations for 

velocity and pressure (ipmax= iumax=580) 

Conclusion 

This paper has presented a numerical method based on the 

performance of a MHD micropump with Faraday electrode 

configuration evaluated by a two dimensional finite difference 

scheme. From our results, we concluded that the cited method 

achieves good convergence for pressure distribution and velocity 

field along the magnetohydrodynamic duct. Numerical simulations 

for pressure-velocity formulation show that the flow velocity of the 

electrolytic solution presents a maximum along the axial distance of 

the MHD channel. However, the results of the pressure analysis 

inside the electrolytic working fluid micropump taking into account 

the movement of the fluid show a noticeable increase in the exit of 

the duct. From Lorentz force analysis, we noticed that the oscillation 

amplitudes of the velocity and the pressure increase with the 

increasing of the current density and the magnetic flux density. So, 

the flow rate becomes more significant with the increase of 

magnetic and current density value. The obtained results confirm a 

directly influence of the external electromagnetic excitation and the 

chosen geometrical dimensions of the MHD duct on the velocity 

and pressure distribution in the investigated flow. 
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