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Numerical Simulation of Two-
Dimensional Complex Flows around
Bluff Bodies Using the Immersed
Boundary Method

This paper presents a two-dimensional numericalukition of flows around different
bluff bodies, at Re = 100 and 200, using the ImewtrBoundary (IB) method, as a
sequence of a previous work. The force density teguired by the IB method is obtained
with the Virtual Physical Model (VPM). Simulatiomgere carried out for two circular
cylinders of different diameter in tandem, two regiérs of the same diameter in tandem
and two cylinders placed in side by side arrangemdine configurations of seven
cylinders in a 'V’ arrangement, for angles of 48ox < 1800, were also simulated. A
configuration of 23 different bluff bodies, repraeg a transverse cut in a central tower
of an offshore structure, has been also simulated the results were compared with a
single compact square, of equivalent size. TheuSabnumber, the drag and the lift
coefficients were also calculated. The Strouhal Ipeimis calculated using the Fast
Fourier Transform (FFT) of the lift coefficient tporal distribution. Visualization of the
vorticity and pressure fields and the streamlings aresented for each simulation
showing the flow dynamics and patterns. It was iptessso verify that the IB method with
VPM is a powerful methodology to simulate flowshie presence of complex geometries.

Keywords. immersed boundary method, virtual physical mot&lff bodies, numerical
simulation, cartesian grid

Introduction

that is imposed indirectly by the force field. Ramsteady viscous
flows the direct calculation of the force is perfiad by a feedback
scheme in which the velocity is used to interadyivdetermine the

The Immersed Boundary Method was designed to solwdesired Lagrangian force field. Many other workerevdeveloped

problems in the context of biological fluid mechami which
involve the interaction of a viscous fluid with afastic membrane
(Peskin, 1977). This methodology has been extendedolve
complex engineering problems like those with imredrsigid
bodies (Lima e Silva et al., 2003). The main idEthis method is to
use a regular, Cartesian-Eulerian grid, to repitetiem total fluid
domain, together with a Lagrangian grid to represke@ immersed
boundary. The boundary applies a singular forceegged over
each Lagrangian point of the immersed surfaceheofiuid and at
the same time, it reacts and moves inside the #tithe local fluid
velocity. The interaction between the fluid and Boeindary can be
modeled by a well-chosen discrete delta functiomjctv is an
approximation to the Dirac delta function. This hwtology has
been applied successfully for studying the floveiférence between
bluff bodies and the wake formed behind them. Arpantant
feature of this methodology is the modeling and potation of the
Lagrangian force, which is the force over the imgedrsurface that
represents the body. The great advantage of thisatielogy when
compared with other numerical methods is to sineutafixed or a
moving immersed body, with any geometric shape,ngisa
Cartesian fixed grid (Eulerian grid). If the bodywes or deforms
the Lagrangian grid is responsible to represeist behavior. More
details of the IB with VPM can be seen in previousk (Lima e
Silva et al., 2003).

Peskin (1977) proposed to model this force fielihgisthe
generalized Hooke's law for immersed elastic bouieda A
constant of elasticity has been chosen to simuthte elastic
boundary. Goldstein et al. (1993) proposed to dateuthe fluid-
solid interfacial force using a model that depeadstwo constants
adjusted for each simulation. The force field isos#n along a
specified surface to have a magnitude and direatipposing the
local flow such that the flow is brought to the sawelocity as the
immersed boundary. This is a kind of virtual bourydeondition
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based on the Immersed Boundary Method (Saiki amihdgin,

1996; Mohd-Yusof, 1997, Ye et al., 1999, Fadlumlet2000, Kim

et al.,, 2001) and the methodology has been imprdeedifferent

applications (Miller and Peskin, 2005, Griffth ét, 2006). Lima e
Silva et al. (2003) presented a new proposal toehtie force field
over the Lagrangian grid. This model does not negany constant
to be adjusted nor a special interpolation schenear nthe
Lagrangian cells. It has been named the Virtualskiay Model

(VPM). The VPM is based on the momentum equatigrlieg to a

fluid particle located over the fluid-solid intecka The Strouhal
number, the recirculation bubble length, the dithg, lift and the
pressure coefficient were obtained to a single dimensional
cylinder at moderate Reynolds numbers. The modelrée of

modeling constants, as well as any special proestturecompose
the discretization cells near the interface.

In the present work the Immersed Boundary Methoth the
Virtual Physical Model (Lima e Silva et al., 2008%re applied to
simulate and analyze flows over bluff bodies. Setiohs of two
circular cylinders in tandem and in side by sidamgement were
done. Flows over other complex arrangements ohdglis such as a
‘V' configuration and a composition of different @metries were
simulated. The results illustrate the potentiatha$ methodology to
simulate flows over any type of complex configura8 of
immersed bodies.

Nomenclature

Cy = drag coefficient Fd/(O.Son%d) ), dimensionless

C = lift coefficient F,/(O.Spuf,d) , dimensionless

d = diameter of the cylinder, m

D = distribution function, rif

f = frequency of vortex sheddingt s

f1, f, = auxiliar functions of the distribution
function,dimensionless
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fi =i component of the Eulerian force, N/m

f = Eulerian force vector, N

F = Lagrangian force vector, N

F. = acceleration force vector, N

F; = inertial force vector, N

F, = viscous force vector, N

F, = pressure force vector, N

Fq =drag force, N

F, = lift force, N

= distance between the cylinders centers, m

L, = horizontal and vertical dimensions of the domaim
= superscript of time, dimensionless

= pressure, N/f

r = paramenter of the distribution function, dimérdess

= Reynolds number numbepU,,d/x ), dimensionless
= Strouhal number {d/U,, ), dimensionless
T =dimensionless timet(,/d ), dimensionless

U, = icomponent of the velocity,ri/s

U =jcomponent of the velocity, /s

U,, = velocity of the frestream, mls

V = velocity vector, mfs

X = (xi ,yj) = Eulerian coordinate vector, m

L
L
n
p

Xk = (xk ,yk) = Lagrangian coordinate vector, m

Greek Symbols

4s = distance between two Lagrangian points, m

4t =time step, s

¢ = general variable of the Lagrangian polynomiaichion
M = dynamic viscosity, kg/(m s)

p = air density, kg/m

¢ = pressure correction, Nfm

Subscripts

k relative to the Lagrangian points

Mathematical Model: Momentum Equations and Virtual
Physical Model

A mixed Eulerian-Lagrangian formulation is usedrépresent
the flow and the immersed boundary. A Cartesiaredixgrid
(Eulerian grid) describes the flow using a Finitéfé»ence method
and a Lagrangian grid, composed by a finite numtifepoints,
describes the immersed bodies. The Eulerian and_dgeangian
grids are coupled by a force field calculated atlthgrangian points
and then distributed across the Eulerian nodes hia body
neighborhood.

The momentum and continuity equations for an incasgible,
Newtonian viscous flow can be written as:

au 9 ap 02y

— 4+ — luu:)|=—+pyy—+ 1 1
pl: ot 6X] (UIUI)} 6xi 6x]6X] : ( )
an
—=0. 2
> ®)
The Eulerian force field is given by
f(x,t)zZD(x—xk)F (xk,t)Asz, (3)

where D(x—xk)is the distribution function, proposed by Peskin

(1977), in order to calculate the Eulerian forceaimliscrete form.
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X is the coordinate vector of Lagrangian points axdis the
coordinate vector of the Eulerian gridr (xk) is the Lagrangian

force density andf(x) is the Eulerian force, which is different

from zero only over the immersed boundary. Equat@nmodels
the interaction between the immersed boundary hadltid flow,
injecting the force field into the fluid. The digmtion function,
which appears in Eq.(3) can be given by:

. )= f1[0a - )/ bl fal(yi - vy )/ ] '

D(x - 2 (4)
where
fo(r) if v <1
f(r)= %‘ faol-|r)it 1<[r] <2}, ®)
0if |r| =2
and
fz(r):s—a|r||+J1;4|r||—4|rn2 | o

As is the distance between the Lagrangian pointindisated
in Fig. 1. The parameteris (X, —xi)/h or ﬁyk —y]-)/h, his the
Eulerian grid size andx;,y;) are the coordinates of the Eulerian
points.

[ Y A I T |
Eulerian grid

||
[T
As Lagrangian grid 1+
H— 4
o] 7
¢ b=t
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[y
N
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]
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Figure 1. Immersed boundary illustration: Lagrangia
and Eulerian grid for the domain.

n grid for the interface

The Virtual Physical Model developed by Lima e Silet al.
(2003) and used to calculate the Lagrangian faete fs based only
upon the momentum equations. A momentum balandernig over
the fluid particle, taking into account the Lagremyg force field
F (xk ,t). Isolating this Lagrangian force, yields:

F (xi,t) = Fa (xic. 1)+ Fy (i, )+ F, (x 1) + Fp(xkvt) - (7)

The different terms that compose Eq. (7) are narties
acceleration forceF, , the inertial forceF; , the viscous forceF,

and the pressure forde, . These terms are given by:

Fa(xi)= 025 (x ). ®

ot
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Fi(xi.t)=p0v), ©)
F, (X t)= =0V (10)
Fp(xi,t)=0p(x) (12)

The terms described by Egs. (8)-(11) must be eteduaver the
interface using the Eulerian velocity fie\d(x,t) and pressure field

p(x,t). These calculations also take into account thattha

interface, the fluid velocity must be equal to thterface velocity,
which guarantees the no-slip boundary conditiore Vélocity and
pressure spatial derivatives are computed usingfltie velocity
and pressure obtained by means of Egs. (1) andT{®}. derivatives
that compose the different terms are calculatedguaisecond-order
polynomial of Lagrange. Equations (12) and (13)enmestablished

for a generalized variablep, which can represent the velocity

components and the pressure.
The derivatives in thg direction are given by:

[ _ %)
ax(xk'yk)_ X1 = Xp (% — X ¥ 12)
(% —x) +(Xk—X1)+(Xk ~%,)
(Xz ‘Xl)(xz ‘Xk) (Xk ‘X1)(Xk ‘Xz)
and
g 2
— (X ,y = +
ax? ( K k) (Xl X2 j(xl _Xk) ’ (13)

20 . 29,
(Xz - xl)(XZ - Xk) (Xk - Xl)(xk - Xz)

with similar terms representing tlyelirection derivatives.
The velocity componentsu(x,t), u(x,t) and p(x,t) are
interpolated over the auxiliary pointg; , withi = 1, 2, 3 and 4

disposed in thex and y direction. The velocity and pressure

interpolations are performed using the neighboffingerian grid.
After knowing the velocity components and the puesson the

auxiliary points 1, 2, 3, 4 and at poigtEgs. (12) and (13) are used

to evaluated each term of Eq. (7). The LagrangrinnefF(x,t) is

distributed, using Eq. (3), to the Eulerian pointsar the interface.
The scheme used for these calculations is preseéntei@tails in
Lima e Silva et al. (2003).

Numerical Algorithm

Equations (1) and (2) are solved by the finiteat#hce method
through a fractional step pressure correction nee{#omfield and
Street, 1999). As follows, an estimation of theoeél is explicitly
calculated by

=n+l _ n n
U ou 1O )L )s g, (14)

At P 0x;
where U; is the estimated velocity componentit is the

computational time step,is the substep index,
0%y,

L{ui )=v ! 15
)= 5o (15)
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and
6(uiu»)
N(y; )= L 16
)==5; (16)
The pressure correctioraﬁ,’”l, is obtained by solving
2 pn+l —n+1
0°¢ :ﬁau' . 7

o0X i 0X i At aXi

The velocity field is updated using the solutiorEaf. (14) by:

n+l
uin+1 — Gin+1 -At 6¢

18
ox (18)

The previous pressure field and the correctionsuresare used
to calculate the new pressure field using

p™=p" g™ (19)

The linear system for the pressure correction, 15, (is solved
by the modified strongly implicit procedure (MSBchneider and
Zedan (1981).The interface force field and the momentum
equations are computed using an explicit method.

A detailed description of the IB method with the MPis
presented in Lima e Silva et al. (2003).

Numerical Results

The simulations were carried out at Reynolds number
(Re=U,d/v) equal to 100 and 200, whetg,, is the freestream

velocity andd is the circular cylinder diameter or the charastir
length for the other geometries amd is the kinematic viscosity of

the fluid. The dimensionless time was defined BstU, /d,

wheret is the physical time in seconds. Once the presand
velocities fields are obtained, the drag and Ideficients and the
Strouhal number are calculated using the Lagranfpare field,
directly.

The time step ofAt = 110 ®sis used at the first iteration and is

increased gradually, up taAt= 11073s, to ensure numerical
stability. As the geometry of the interface is bithed by the force
field, the time step is calculated in such a waat tthe CFL < 1.0
criterion is attained.

A grid refinement was done with the objective ofvirify its
influence on the drag and lift coefficients. Diffet test cases
varying the distance from inlet and outlet to thginder and the
width of the domain were accomplished in order toimize the
influence of the domain on the aerodynamic coeffits. This study
had also been made in the previous paper and thém@nation
were used for the present simulations. At the irdeuniform
velocity profile was imposed. At the top and bottboundaries, the
free stream condition was imposed and at the autflee Newman
boundary condition was used.

Cylinders of Different Diameters in Tandem

The IB simulations have been carried out in the @ianshown
in Fig. 2(a). This figure shows a global view oétlomain with the
main geometrical parameters. Figure 2(b) showsseclview of the
arrangement with the Cartesian and the Lagrangids.g

October-December 2007, Vol. XXIX, No. 4 / 381
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The upstream and the downstream cylinders diamatecsand
d/2, respectively. The simulations were done for tlistances
between the cylinder centerslof 1.5, 2.0d, 2.5, 2.7, 3.0d and
4.0d. A grid of 500x250 points in theandy directions respectively
was used. The flow direction is from the left te thight side of the
domain. The simulations were carried out at a Rigigmaumber of
200, based on the diameter of the upstream cylinded the
dimensionless time stepAT =AtU,, /d, is 0.015. The indices 1

and 2 refer to the upstream and downstream cyljmdspectively.

—_— d
— di2
i M - 20
- I
- 16.54d |
- i
L,=350d
()
TTTT
T
mm
10.5 T
10d —
9.5d Eaa s
Figure 3. Arrangement in Tandem for different cylin  ders. Sequence of
Vorticity Contours for L = 2.7d. From top to bottom: t =2.5s, 5.0s, 10.0s
i6d 165d 74 lasd+L and 21s.
(b)
Figure 2. Geometric parameters of the simulation do  main with two I
cylinders of different diameters disposed in tandem ; global view (a) and 3
representation of the closer view (b). 15
The vorticity contours for four values of the tins¢eps are o 1.0
shown in Fig. 3, forL = 2.7. It can be observed that, at the O i
beginning, cylinder 2 (downwind cylinder) is embeddin the 2 0.5r

vortex street generated by the cylinder 1. As timdeances, the [

vortex shed by cylinder 1 retracts downward andirfsetp collide 0.0f

frontally against cylinder 2t(=10s). At this time, the flow near r

cylinder 2 changes its direction and this cylindéarts shedding -0.5f Ca

vortices. T80 100 150 _ 200 250 300 350
These effects (collision and vortex shedding) aieectly T

observed in the temporal evolution of the drag ficiehts as shown @

in Fig. 4(a). The drag coefficient of cylinder Z4) presents : : : : :

negative values fo up to 150. FoiT >150, the drag coefficient 0.35) .

assumes a positive time distribution. This behaki@s its origin in

the vortices transport dynamics explained abovee T@mporal

sequence illustrated in Fig. 3 shows that as tiass@s the vortex 0.25¢ .

shed from the upstream cylinder retracts and asliffontally with

Cd 1

0.3} B

the downstream cylinder. This behavior explains Wy changes o2
its sign as a function of time. TH&y, distribution also presents a ¥ o1s) ]
sudden increase at the same time150 and also has a periodic 01k i
response with time. For distances smaller thad th& wake formed
by the cylinder 1 envelopes cylinder 2 and neastt$ace there is a 0.05r ]
flow in the opposite direction (from right to left) OQ ‘ : ‘ ‘ |
0.1 0.2 0.3 0.4 0.5
St
(b)

Figure 4. Arrangement in Tandem for different cylin ~ ders. Time evolution of
Cq1 and Cgypfor L =2.7d (a) and the Power Spectrum (b).
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In Fig. 4(b) the power spectrum obtained with tftecbefficient
of cylinder 1 is presented. There is a single damirfrequency of
vortices shedding. It is important to mention that the IB
methodology, the instantaneous and the mean drefficient and
the Strouhal number are directly obtained through ltagrangian
force, calculated over the immersed body.

The drag coefficient for both cylinders and de Stra number,
as a function of the distance between their cenégesshown in Fig.
5. The drag coefficient sign of cylinder 2 switcHesm a negative
value to a positive value when the vortices of raydir 1 start to
collide with cylinder 2, as presented before. Ttioal value ofL/d

Cylinders of Same Diameters in Tandem

These simulations were done for two cylinders ofisaiameter
d separated from each other by the following distaic= 1.5,
2.0d, 3.0d and 4.@. The simulations were carried out on a 500x250
grid for Re = 200. The domain used in these siraratis similar to
the previous simulation of cylinders of distincanieters.

Figure 6(a) shows the drag coefficient of cylindefupstream)
and cylinder 2 (downstream) as a function of tretagice between
their centers. This figure clearly shows the pairdtere the drag
coefficient sign changes to positive. The transitdzcurred at. =

= 2.7d is a little larger than the value of 8,5resented by Surmas 4.0d in the present work, which is the same value priese by

et al. (2003) and Flatschart et al. (2000). Eft < 2.7 the low

pressure region formed between the cylinders insltice negative
value on the downstream cylinder. The Strouhal remivas
calculated with the time distribution & (lift coefficient) of the
upstream cylinder. In the IB method the Strouhainber can be
easily obtained because the force distributiorirsady known. The
Strouhal number was calculated by taking the FastriEr

Transformer (FFT) of the lift coefficient distribab. The results
have the same behavior when compared with othelnadetogies
(Surmas et al., 2003 and Flatschart et al., 2000).

2,
ir
s of
o [ —@—— C,, present work
AF —&—— C, Surmas etal. (2003)
I —&— C,, Flatschartetal. (2000)
[ —©o—— C,, present work
3 ——+&— C, Surmas etal. (2003)
2r ——&—— C,, Flatschart et al. (2000)
cx
15 2 25 3 3.5 4 4.5
L/d
@
0.25r
0.2
0.15-
I
0.1f
[ ——e—— present work
0,051 ———e&—— Surmas et al. (2003)
iyl —<—— Flatschart et al. (2000)
o) S S P ISR R SRR
15 2 2.5 3 3.5 4
L/d

(b)

Figure 5. Arrangement in Tandem for different cylin
coefficient (a) and Strouhal number (b) as a functi
cylinders centers. 1 upstream cylinder and 2 downst

ders. Mean drag
on of the gap between
ream cylinder.

The Strouhal number, Fig. 5(b), presents a mininmatue close
to the transition point (point wher€y, changes its sign). The
alternate vortices that hit the downstream cylindfarce its
shedding to occur at the same frequency of theregst cylinder.
This behavior seems to be function of the Reynalgdsber and of
the cylinder’s diameters.
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2,
1 S
N O; %
° - —F =
o 1L —e— C, presentwork
I ——=—— C, Surmas etal. (2003)
| ——e—— C, Meneghinietal. (2001)
oF Cy presentwork
| ——&—— C, Surmas etal. (2003)
[ ——— C, Meneghinietal. (2001)
ol L L L
3 2 3 4
L/d
(@
0.251
o.2f
0.15-
h I
oaf
|  ——e—— presentwork
005 —+8—— Surmas et al. (2003)
7 —<—— Meneghini et al. (2001)
L 1 1 1
O1 2 3 4
L/d
(b)

Figure 6. Arrangement in Tandem for cylinders of th
coefficient for both cylinders (a) and Strouhal num
the gap.

e same diameter. Drag
ber (b) as a function of

When the cylinders have the same diameter, thetsigsition
occurs in the larger distancd. (= 4.0d) as compared with
simulations with cylinders of different diametets< 2.7d).

The Strouhal number, based on the diameter of agtirl, is
presented in Fig. 6(b) as a function of the distased between the
cylinders centers. The results of the present vaoekcompared with
results of other authors. The comparisons showttfetagreement
among the three methods is very good, except for2.0d, where
Surmas et al. (2003) presented a higher value.pfésent Strouhal
value forL = 4.0d was only 2 percent lower than the obtained by
Meneghini et al. (2001).
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Cylinders of Same Diameters Side by Side cylinders). This repulsive force is due to the mueat of the
stagnation points of both cylinders where the pnesss high as

These simulations were done with two cylinders ame observed by Meneghini et al. (2001). The flow hasegion of
diameter disposed side by side. The gdetween their centers was intense instabilities that cause changes in theg daad lift
considered as 1d52.0d, 3.0d and 4.@. The simulation domain is coefficients. ForL < 20d , only one wake is formed and it deflects
similar to the presented in Fig. 2. A grid of 5088hodes was used
and Re = 200, as in the last two cases.

Figure 7 shows the vorticity (left column) and @@® contours
(right column) for all the distances simulated. Bamresults of
Meneghini et al. (2001) and Surmas et al. (2008)mesent in the
literature. There is a great interference betwdenwakes of the
cylinders for small distances (a repulsive forcetwieen the

towards one of the cylinders and then in the oppodirection
(flopping phenomenon). This behavior was also observed by
Bearman and Wadcock (1973), Williamson (1985) areh&ghini

et al. (2001). The formation of two independent @slcan be
observed as the distance between the cylindergdses, and the
wakes become independent of each other as inésbtatinders.

Figure 7. Vorticity Contours (left) and pressure fi  eld (right) from top to bottom, L =1.5d,L =2.0d,L =3.0d and L =4.0d.

The mean drag and lift coefficients are presemnteHig. 8. The 1.8
drag has the same value for both cylinders becahsg are [
symmetrically placed in the domain. The resultsSafmas et al., 16k
(2003) and Meneghini et.g2001) are also presented in this figure. ’ B/E\B\ﬂ
Again, as in previous section, the agreement amibreg three [
methodologies is not good and experimental resubtsrequired in 1.4 ?j\’\:\\’
order to draw conclusions about these results. F |

The lift coefficient has the same magnitude forhboylinders 10k
but with opposite signs, as shown in Fig. 8(b). ruex 1 indicates "t —e— c, presentwork
the upper cylinder and the index 2 indicates theelocylinder. | 8*1 ;‘é’r::ail‘:z'télzo(gg%l)
There is a repulsive force between the cylindersioall distances. 1r @ 9 ’
As the gap between them increases, the mean Igfficient for -
both cylinders tends to zero. This behavior waseetqd as it was ogb— v
observed for a single cylinder. "1 2 3 4

L/d
@

Figure 8. Drag (a) and lift (b) coefficients as a f  unction of the gap between
the cylinders for the side by side arrangement.
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I
0 =
UL
-1 ——e— C, present work
[ ——=—— (), Surmaset al. (2003)
| ———— C; Meneghini etal. (2001)
| —&—— (), present work
T C, Surmas et al. (2003)
|  ——— C,, Meneghini ef al. (2001)
C 1 1 1
1 2 3 4
Lid
(b)

Figure 8. Drag (a) and lift (b) coefficients as a f
the cylinders for the side by side arrangement.

unction of the gap between

Cylinders of Same Diameter in a 'V’ Configuration

The configuration shown in Fig. 9 was chosen tdyaeaand to
verify the influence between the wakes formed byeeecylinders
of same diameted. This configuration can be related with the well
known ‘V’ formation of the birds, which in accordam with the
scientists, reduces the drag force that each biperences
compared to if it were flying alone. The cylindevere arranged in
different configurations by changing the angle. This angle was
assumed equal to 46, 8¢, 10¢, 140 and 186

The diagonal distance between two consecutive agtisy Fig.
9, was maintained equal to @.%or all the simulations (different

values of @ ). The cylinders 1, 3, 5 and 7 where chosen to be

analyzed because of the flow symmetry. The Reynaoldsiber
based on the diameter of one cylinder is 100. Titesize used for
these simulations was 500x500 and the domain lmasrdiions 50

x 50d.

c® ®7
4@ /”Ei“\ QS
2 ® ®3
IQ\A\(J

T Flow direction

Figure 9. Schematic view of the ‘v’ Configuration.

Figure 10 shows the vorticity field for all the deg simulated.
It is interesting to note that the vortex formatiower individual
cylinders is totally inhibited when the angle is small. This flow is
similar to that of a single immersed body like dtaleThe wake

B4
3 147

Figure 10. Vorticity Field for the ‘v’ Configuratio  n. a = 40° (a), a = 60° (b), a
=80°(c), a = 100° (d), a = 140° (e) and a = 180° (f).

‘»

(it

The drag coefficients and Strouhal numbers forajlmders 1,
3, 5 and 7 divided by the value of a single cylindee presented in

Fig. 11. All the cylinders have forr<100° drag coefficients lower

than for a single cylindeiCgingie = 1.3997 Stjnge = 0.1955). As the
angle decreases, the wake becomes more inhibitezl.amplitude
of the wake oscillations increases with Also, asa increases, the
time variation of the drag coefficient becomes mared more
complex. Strouhal and drag increase witHor all cylinders and
reach values higher than that for an isolated dglin for higher
angles. These parameters are influenced by théewuai cylinders
and the angle of the configuration. These simutetican be
explored of different ways by changing the Reynpttle number of
cylinders, the angle of the configuration or thagtinal distance
between the cylinders.

structure changes as the angleincreases. The flows become more

complex and all the cylinders start to shed vostiaghich strongly
interact. There is a great influence between thakes, which
changes the drag force coefficients.
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Figure 11. Drag Coefficient ratio (a) and Strouhal number ratio (b) as
function of a for the ‘V’ Configuration.  Cgsinge @and Stsinge is the drag and
Strouhal of a single cylinder.

Combination of Bluff Bodies of Several Shapes

The IB methodologywith the VPM has the advantage of

providing a flow simulation around several geonestriwithout any
type of additional complexity in the grid generatiprocess. The
grid is always Cartesian irrespective of the comipjeof the
configuration of immersed bodies. It is possibleotdain the force
coefficients on each immersed body or an overadllejsbecause the
force distribution is known over each body indivadly at each time
step.

In order to illustrate these characteristics, advarse horizontal
cut at the main tower of an offshore structure wiaslized. These
structures are subject to strong wind streams asritime currents,
which can cause vibration, damaging the structimeggrity. The
schematic view of a composition of bluff bodiesnegeated by the
transverse cut, is shown in Fig. 12(a).
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Figure 12. Schematic view of a horizontal cut in a central tower of an
offshore structure (a) and instantaneous vorticity field (b).

Each body was numbered to facilitate the identifica For
these simulations a non-uniform grid with 400x3@0nps was used
The Reynolds number based on the dimenbipRig. 12(a), is Re =
200. The distance between the external bodies ¢badtlito 16) was
chosen equal to OH, as indicated in Fig. 12(a).

The results showed that the fluid flows through iimenersed
bodies but there is no vortex shedding inside thectire because
all bodies are very close, as can be seen in REigh)that presents
the instantaneous vorticity field. The system ofdies can be
considered as a porous media. The recirculatiorbleupenerated
behind the global structure has the same ordét ahd the flow is
unsteady. It could be observed that there was imgastion in the
shear layer due to the gap between the bodies.cAssequence the
horizontal length of the recirculation bubble wagger than that of
the flow over a square of the same dimensions. Vitlee of the
global drag coefficient calculated by the sum @f tbrces from each
body is equal to 1.9492. The mean drag coefficedrthe square is
1.6844. This value is 13% smaller than the dradfictent of the
composition of bluff bodies.

This results illustrate that it is possible, usitige IB-VPM
methodology to easily calculate the drag and 6ftféicients of each
body that compose such a complex geometry.

Conclusions

The Immersed Boundary Method with the Virtual Pbgki
Model was used to simulate flows over different positions of
bluff bodies. The results of the mean drag coeffitiand the
Strouhal number for cylinders in tandem and sidesidg were
compared with other author’s results. The flow dyitas changes
with the distance between the cylinders. It waseold the
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presence of a repulsive force when the distanosewsst the bodies
is small. Consequently the drag coefficient is @#d and can
change from negative to positive. For the simufatiavith different
cylinders and with two identical cylinders in tandeit was
observed that the distance where @esign changes was 21’and
4.0d, respectively. In the side-by-side arrangemengpalsive force
between the cylinders has been observed for dag2.0d . The

simulations with seven cylinders in a ‘V’ configtiom show the
potential of the methodology to study flows overmpdex

geometries. There is no restriction on the numlbdrodies and the
computational cost is not significantly increasetiew a great
number of bodies are immersed in the flow. In otherds the main
cost is due to the solution of the linear system tfee pressure
correction. With these simulations, it is possilite choose the
optimal configuration for which the drag coefficterare minimized.
The last case simulated was the flow in the presefcdifferent
bluff bodies, illustrating a horizontal section @ offshore
structure. The global drag coefficient was compaséti that of a
square with the same dimensions. The drag coefficialue

obtained for the compact square was approximatdk Bmaller
than that for the composed geometry. There wasaagehin the
shape of the recirculation bubble and the vortegdding starts
earlier than it is for the simulations with a scpait is also
important to emphasize that in the IB method a &ah grid is
used to simulate flows over any geometric shapeotider

advantage is the ease of calculating the forceficmefts for an
isolated body or the global value for the configioma
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