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Numerical Simulation of Two-
Dimensional Complex Flows around 
Bluff Bodies Using the Immersed 
Boundary Method 
This paper presents a two-dimensional numerical simulation of flows around different 
bluff bodies, at Re = 100 and 200, using the Immersed Boundary (IB) method, as a 
sequence of a previous work. The force density term required by the IB method is obtained 
with the Virtual Physical Model (VPM). Simulations were carried out for two circular 
cylinders of different diameter in tandem, two cylinders of the same diameter in tandem 
and two cylinders placed in side by side arrangement. The configurations of seven 
cylinders in a ‘V’ arrangement, for angles of 40o ≤ α ≤ 180o, were also simulated. A 
configuration of 23 different bluff bodies, representing a transverse cut in a central tower 
of an offshore structure, has been also simulated and the results were compared with a 
single compact square, of equivalent size. The Strouhal number, the drag and the lift 
coefficients were also calculated. The Strouhal number is calculated using the Fast 
Fourier Transform (FFT) of the lift coefficient temporal distribution. Visualization of the 
vorticity and pressure fields and the streamlines are presented for each simulation 
showing the flow dynamics and patterns. It was possible to verify that the IB method with 
VPM is a powerful methodology to simulate flows in the presence of complex geometries. 
Keywords: immersed boundary method, virtual physical model, bluff bodies, numerical 
simulation, cartesian grid 
 
 
 

Introduction 
1The Immersed Boundary Method was designed to solve 

problems in the context of biological fluid mechanics, which 
involve the interaction of a viscous fluid with an elastic membrane 
(Peskin, 1977). This methodology has been extended to solve 
complex engineering problems like those with immersed rigid 
bodies (Lima e Silva et al., 2003). The main idea of this method is to 
use a regular, Cartesian-Eulerian grid, to represent the total fluid 
domain, together with a Lagrangian grid to represent the immersed 
boundary. The boundary applies a singular force, generated over 
each Lagrangian point of the immersed surface, to the fluid and at 
the same time, it reacts and moves inside the fluid at the local fluid 
velocity. The interaction between the fluid and the boundary can be 
modeled by a well-chosen discrete delta function, which is an 
approximation to the Dirac delta function. This methodology has 
been applied successfully for studying the flow interference between 
bluff bodies and the wake formed behind them. An important 
feature of this methodology is the modeling and computation of the 
Lagrangian force, which is the force over the immersed surface that 
represents the body. The great advantage of this methodology when 
compared with other numerical methods is to simulate a fixed or a 
moving immersed body, with any geometric shape, using a 
Cartesian fixed grid (Eulerian grid). If the body moves or deforms 
the Lagrangian grid is responsible to represent this behavior.  More 
details of the IB with VPM can be seen in previous work (Lima e 
Silva et al., 2003). 

Peskin (1977) proposed to model this force field using the 
generalized Hooke’s law for immersed elastic boundaries. A 
constant of elasticity has been chosen to simulate the elastic 
boundary. Goldstein et al. (1993) proposed to calculate the fluid-
solid interfacial force using a model that depends on two constants 
adjusted for each simulation. The force field is chosen along a 
specified surface to have a magnitude and direction opposing the 
local flow such that the flow is brought to the same velocity as the 
immersed boundary. This is a kind of virtual boundary condition 
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that is imposed indirectly by the force field. For unsteady viscous 
flows the direct calculation of the force is performed by a feedback 
scheme in which the velocity is used to interactively determine the 
desired Lagrangian force field.  Many other works were developed 
based on the Immersed Boundary Method (Saiki and Biringen, 
1996; Mohd-Yusof, 1997, Ye et al., 1999, Fadlun et al., 2000, Kim 
et al., 2001) and the methodology has been improved for different 
applications (Miller and Peskin, 2005, Griffth et al., 2006). Lima e 
Silva et al. (2003) presented a new proposal to model the force field 
over the Lagrangian grid. This model does not require any constant 
to be adjusted nor a special interpolation scheme near the 
Lagrangian cells. It has been named the Virtual Physical Model 
(VPM). The VPM is based on the momentum equation applied to a 
fluid particle located over the fluid-solid interface. The Strouhal 
number, the recirculation bubble length, the drag, the lift and the 
pressure coefficient were obtained to a single two-dimensional 
cylinder at moderate Reynolds numbers. The model is free of 
modeling constants, as well as any special procedure to recompose 
the discretization cells near the interface. 

In the present work the Immersed Boundary Method with the 
Virtual Physical Model (Lima e Silva et al., 2003) were applied to 
simulate and analyze flows over bluff bodies. Simulations of two 
circular cylinders in tandem and in side by side arrangement were 
done. Flows over other complex arrangements of cylinders such as a 
‘V’ configuration and a composition of different geometries were 
simulated. The results illustrate the potential of this methodology to 
simulate flows over any type of complex configurations of 
immersed bodies. 

Nomenclature 

Cd = drag coefficient ( )5.0( 2dUFd ∞ρ ), dimensionless 

Cl = lift coefficient )5.0( 2 dUFl ∞ρ , dimensionless 

d = diameter of the cylinder, m 
D = distribution function, m-2 

f = frequency of vortex shedding, s-1 

f1, f2 = auxiliar functions of the distribution 
function,dimensionless 
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fi = i component of the Eulerian force, N/m3  
f = Eulerian force vector, N 
F = Lagrangian force vector, N 
Fa = acceleration force vector, N 
Fi = inertial force vector, N 
Fv = viscous force vector, N 
Fp = pressure force vector, N 
Fd = drag force, N 
Fl = lift force, N 
L = distance between the cylinders centers, m 
Lx, Ly = horizontal and vertical dimensions of the domain, m 
n = superscript of time, dimensionless 
p = pressure, N/m2 

r = paramenter of the distribution function, dimensionless 
Re = Reynolds number  number ( µρ dU ∞ ), dimensionless 

St = Strouhal number ( ∞Ufd ), dimensionless 

T = dimensionless time ( dtU∞ ), dimensionless 

ui = i component of the velocity,m/s2 
uj = j component of the velocity, m/s2 
U∞ = velocity of the frestream, m/s2 
V = velocity vector, m/s2 

( )ji yx ,=x  = Eulerian coordinate vector, m 

( )kk y,x=kx  = Lagrangian coordinate vector, m 

Greek Symbols 

∆s = distance between two Lagrangian points, m 
∆t = time step, s 
φ = general variable of the Lagrangian polynomial function 
µ = dynamic viscosity, kg/(m s) 
ρ = air density, kg/m3 
ϕ = pressure correction, N/m2 

Subscripts 

k relative to the Lagrangian points 

Mathematical Model: Momentum Equations and Virtual 
Physical Model 

A mixed Eulerian-Lagrangian formulation is used to represent 
the flow and the immersed boundary. A Cartesian fixed grid 
(Eulerian grid) describes the flow using a Finite Difference method 
and a Lagrangian grid, composed by a finite number of points, 
describes the immersed bodies. The Eulerian and the Lagrangian 
grids are coupled by a force field calculated at the Lagrangian points 
and then distributed across the Eulerian nodes in the body 
neighborhood. 

The momentum and continuity equations for an incompressible, 
Newtonian viscous flow can be written as: 
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The Eulerian force field is given by 
 

( ) ( ) ( ) 2,, stDt ∆−=∑ kk xFxxxf , (3) 

 
where ( )kxx −D is the distribution function, proposed by Peskin 

(1977), in order to calculate the Eulerian force in a discrete form. 

kx  is the coordinate vector of Lagrangian points and x  is the 

coordinate vector of the Eulerian grid. ( )kxF  is the Lagrangian 

force density and ( )xf  is the Eulerian force, which is different 
from zero only over the immersed boundary. Equation (3) models 
the interaction between the immersed boundary and the fluid flow, 
injecting the force field into the fluid. The distribution function, 
which appears in Eq.(3) can be given by: 
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s∆  is the distance between the Lagrangian points, as indicated 

in Fig. 1. The parameter r is ( ) hxx ik /−  or ( ) hyy jk /− , h is the 
Eulerian grid size and ( )ji yx ,  are the coordinates of the Eulerian 
points. 

 

 
Figure 1. Immersed boundary illustration: Lagrangia n grid for the interface 
and Eulerian grid for the domain.  

 
The Virtual Physical Model developed by Lima e Silva et al. 

(2003) and used to calculate the Lagrangian force field is based only 
upon the momentum equations. A momentum balance is done over 
the fluid particle, taking into account the Lagrangian force field 

( )t,kxF . Isolating this Lagrangian force, yields: 
 

( ) ( ) ( ) ( ) ( )ttttt ,,,,, kpkυkikak xFxFxFxFxF +++= . (7) 

 
The different terms that compose Eq. (7) are named the 

acceleration force aF , the inertial force iF , the viscous force 
υF  

and the pressure force pF . These terms are given by: 
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( ) ( )VVxF ki ∇= ρt, , (9) 
 

( ) VxF kυ

2, ∇−= µt , (10) 
 

( ) ( )kkp xxF pt ∇=, . (11) 

 
The terms described by Eqs. (8)-(11) must be evaluated over the 

interface using the Eulerian velocity field ( )tx,V  and pressure field 

( )tp x, . These calculations also take into account that, at the 
interface, the fluid velocity must be equal to the interface velocity, 
which guarantees the no-slip boundary condition. The velocity and 
pressure spatial derivatives are computed using the fluid velocity 
and pressure obtained by means of Eqs. (1) and (2).  The derivatives 
that compose the different terms are calculated using a second-order 
polynomial of Lagrange. Equations (12) and (13) were established 
for a generalized variable φ , which can represent the velocity 
components and the pressure. 

The derivatives in the x direction are given by:  
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with similar terms representing the y direction derivatives. 

The velocity components ( )tu ,x , ( )t,xυ  and ( )tp ,x  are 

interpolated over the auxiliary points ix , with i = 1, 2, 3 and 4, 

disposed in the x and y direction. The velocity and pressure 
interpolations are performed using the neighboring Eulerian grid. 
After knowing the velocity components and the pressure on the 
auxiliary points 1, 2, 3, 4 and at point k, Eqs. (12) and (13) are used 
to evaluated each term of Eq. (7). The Lagrangian force ( )t,xF  is 
distributed, using Eq. (3), to the Eulerian points near the interface.  
The scheme used for these calculations is presented in details in 
Lima e Silva et al. (2003). 

Numerical Algorithm 

Equations (1) and (2) are solved by the finite difference method 
through a fractional step pressure correction method (Armfield and 
Street, 1999). As follows, an estimation of the velocity is explicitly 
calculated by 
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where iu  is the estimated velocity component, t∆  is the 

computational time step, n is the substep index,  
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The pressure correction, 1+nϕ , is obtained by solving  
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The velocity field is updated using the solution of Eq. (14) by: 
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The previous pressure field and the correction pressure are used 

to calculate the new pressure field using 
 

11 ++ += nnn pp ϕ . (19) 
 
The linear system for the pressure correction, Eq.(17), is solved 

by the modified strongly implicit procedure (MSI), Schneider and 
Zedan (1981). The interface force field and the momentum 
equations are computed using an explicit method.  

A detailed description of the IB method with the VPM is 
presented in Lima e Silva et al. (2003). 

Numerical Results 

The simulations were carried out at Reynolds numbers 
( ν/Re dU ∞= ) equal to 100 and 200, where ∞U  is the freestream 

velocity and d is the circular cylinder diameter or the characteristic 
length for the other geometries and ν  is the kinematic viscosity of 
the fluid. The dimensionless time was defined as dtUT /∞= , 

where t is the physical time in seconds. Once the pressure and 
velocities fields are obtained, the drag and lift coefficients and the 
Strouhal number are calculated using the Lagrangian force field, 
directly.  

The time step of st 610.1 −=∆ is used at the first iteration and is 

increased gradually, up to st 310.1 −=∆ , to ensure numerical 
stability. As the geometry of the interface is established by the force 
field, the time step is calculated in such a way that the CFL < 1.0 
criterion is attained. 

A grid refinement was done with the objective of to verify its 
influence on the drag and lift coefficients. Different test cases 
varying the distance from inlet and outlet to the cylinder and the 
width of the domain were accomplished in order to minimize the 
influence of the domain on the aerodynamic coefficients. This study 
had also been made in the previous paper and those information 
were used for the present simulations. At the inlet a uniform 
velocity profile was imposed. At the top and bottom boundaries, the 
free stream condition was imposed and at the outflow the Newman 
boundary condition was used. 

Cylinders of Different Diameters in Tandem 

The IB simulations have been carried out in the domain shown 
in Fig. 2(a). This figure shows a global view of the domain with the 
main geometrical parameters. Figure 2(b) shows a closer view of the 
arrangement with the Cartesian and the Lagrangian grids.  
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The upstream and the downstream cylinders diameters are d and 
d/2, respectively. The simulations were done for the distances 
between the cylinder centers of L = 1.5d, 2.0d, 2.5d, 2.7d, 3.0d and 
4.0d. A grid of 500x250 points in the x and y directions respectively 
was used. The flow direction is from the left to the right side of the 
domain. The simulations were carried out at a Reynolds number of 
200, based on the diameter of the upstream cylinder, and the 
dimensionless time step, dtUT /∞∆=∆ , is 0.015. The indices 1 

and 2 refer to the upstream and downstream cylinder, respectively. 
 

 
(a) 

 
(b) 

Figure 2. Geometric parameters of the simulation do main with two 
cylinders of different diameters disposed in tandem ; global view (a) and 
representation of the closer view (b). 

 
The vorticity contours for four values of the time steps are 

shown in Fig. 3, for L = 2.7d. It can be observed that, at the 
beginning, cylinder 2 (downwind cylinder) is embedded in the 
vortex street generated by the cylinder 1. As time advances, the 
vortex shed by cylinder 1 retracts downward and begins to collide 
frontally against cylinder 2 ( st 10= ). At this time, the flow near 
cylinder 2 changes its direction and this cylinder starts shedding 
vortices. 

These effects (collision and vortex shedding) are directly 
observed in the temporal evolution of the drag coefficients as shown 
in Fig. 4(a). The drag coefficient of cylinder 2 (Cd2) presents 
negative values for T up to 150. For T >150, the drag coefficient 
assumes a positive time distribution. This behavior has its origin in 
the vortices transport dynamics explained above. The temporal 
sequence illustrated in Fig. 3 shows that as time passes the vortex 
shed from the upstream cylinder retracts and collides frontally with 
the downstream cylinder. This behavior explains why Cd2 changes 
its sign as a function of time. The Cd1 distribution also presents a 
sudden increase at the same time T =150 and also has a periodic 
response with time. For distances smaller than 2.7d the wake formed 
by the cylinder 1 envelopes cylinder 2 and near its surface there is a 
flow in the opposite direction (from right to left).  

 

 
Figure 3. Arrangement in Tandem for different cylin ders. Sequence of 
Vorticity Contours for L = 2.7d. From top to bottom: t =2.5s, 5.0s, 10.0s 
and 21s. 
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(b) 

Figure 4. Arrangement in Tandem for different cylin ders. Time evolution of 
Cd1 and Cd2 for L = 2.7d (a) and the Power Spectrum (b). 
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In Fig. 4(b) the power spectrum obtained with the lift coefficient 
of cylinder 1 is presented. There is a single dominant frequency of 
vortices shedding. It is important to mention that in the IB 
methodology, the instantaneous and the mean drag coefficient and 
the Strouhal number are directly obtained through the Lagrangian 
force, calculated over the immersed body.  

The drag coefficient for both cylinders and de Strouhal number, 
as a function of the distance between their centers, are shown in Fig. 
5. The drag coefficient sign of cylinder 2 switches from a negative 
value to a positive value when the vortices of cylinder 1 start to 
collide with cylinder 2, as presented before. The critical value of L/d 
= 2.7d is a little larger than the value of 2.5d, presented by Surmas 
et al. (2003) and Flatschart et al. (2000). For L/d < 2.7d the low 
pressure region formed between the cylinders induces the negative 
value on the downstream cylinder. The Strouhal number was 
calculated with the time distribution of Cl (lift coefficient) of the 
upstream cylinder. In the IB method the Strouhal number can be 
easily obtained because the force distribution is already known. The 
Strouhal number was calculated by taking the Fast Fourier 
Transformer (FFT) of the lift coefficient distribution. The results 
have the same behavior when compared with other methodologies 
(Surmas et al., 2003 and Flatschart et al., 2000).  
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(b) 

Figure 5. Arrangement in Tandem for different cylin ders. Mean drag 
coefficient (a) and Strouhal number (b) as a functi on of the gap between 
cylinders centers. 1 upstream cylinder and 2 downst ream cylinder. 

 
The Strouhal number, Fig. 5(b), presents a minimum value close 

to the transition point (point where Cd2 changes its sign). The 
alternate vortices that hit the downstream cylinder, force its 
shedding to occur at the same frequency of the upstream cylinder. 
This behavior seems to be function of the Reynolds number and of 
the cylinder’s diameters. 

Cylinders of Same Diameters in Tandem 

These simulations were done for two cylinders of same diameter 
d separated from each other by the following distances L = 1.5d, 
2.0d, 3.0d and 4.0d. The simulations were carried out on a 500x250 
grid for Re = 200. The domain used in these simulations is similar to 
the previous simulation of cylinders of distinct diameters.  

Figure 6(a) shows the drag coefficient of cylinder 1 (upstream) 
and cylinder 2 (downstream) as a function of the distance between 
their centers. This figure clearly shows the point where the drag 
coefficient sign changes to positive. The transition occurred at L = 
4.0d in the present work, which is the same value presented by 
Surmas et al. (2003) and Meneghini et al. (2001). 
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Figure 6. Arrangement in Tandem for cylinders of th e same diameter. Drag 
coefficient for both cylinders (a) and Strouhal num ber (b) as a function of 
the gap. 

 
When the cylinders have the same diameter, the sign transition 

occurs in the larger distance (L = 4.0d) as compared with 
simulations with cylinders of different diameters (L = 2.7d).  

The Strouhal number, based on the diameter of cylinder 1, is 
presented in Fig. 6(b) as a function of the distance and between the 
cylinders centers. The results of the present work are compared with 
results of other authors. The comparisons show that the agreement 
among the three methods is very good, except for L = 2.0d, where 
Surmas et al. (2003) presented a higher value. The present Strouhal 
value for L = 4.0d was only 2 percent lower than the obtained by 
Meneghini et al. (2001). 
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Cylinders of Same Diameters Side by Side 

These simulations were done with two cylinders of same 
diameter disposed side by side. The gap L between their centers was 
considered as 1.5d, 2.0d, 3.0d and 4.0d. The simulation domain is 
similar to the presented in Fig. 2. A grid of 500x350 nodes was used 
and Re = 200, as in the last two cases. 

Figure 7 shows the vorticity (left column) and pressure contours 
(right column) for all the distances simulated. Similar results of 
Meneghini et al. (2001) and Surmas et al. (2003) are present in the 
literature. There is a great interference between the wakes of the 
cylinders for small distances (a repulsive force between the 

cylinders). This repulsive force is due to the movement of the 
stagnation points of both cylinders where the pressure is high as 
observed by Meneghini et al. (2001). The flow has a region of 
intense instabilities that cause changes in the drag and lift 
coefficients. For dL 0.2≤ , only one wake is formed and it deflects 

towards one of the cylinders and then in the opposite direction 
(flopping phenomenon). This behavior was also observed by 
Bearman and Wadcock (1973), Williamson (1985) and Meneghini 
et al. (2001). The formation of two independent wakes can be 
observed as the distance between the cylinders increases, and the 
wakes become independent of each other as in isolated cylinders. 

 

  
 

  
 

  
 

  
Figure 7. Vorticity Contours (left) and pressure fi eld (right) from top to bottom, L = 1.5d, L = 2.0d, L = 3.0d and  L = 4.0d. 

 
The mean drag and lift coefficients are presented in Fig. 8. The 

drag has the same value for both cylinders because they are 
symmetrically placed in the domain. The results of Surmas et al., 
(2003) and Meneghini et al. (2001) are also presented in this figure. 
Again, as in previous section, the agreement among the three 
methodologies is not good and experimental results are required in 
order to draw conclusions about these results. 

The lift coefficient has the same magnitude for both cylinders 
but with opposite signs, as shown in Fig. 8(b). The index 1 indicates 
the upper cylinder and the index 2 indicates the lower cylinder. 
There is a repulsive force between the cylinders for small distances. 
As the gap between them increases, the mean lift coefficient for 
both cylinders tends to zero. This behavior was expected as it was 
observed for a single cylinder.  
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Figure 8. Drag (a) and lift (b) coefficients as a f unction of the gap between 
the cylinders for the side by side arrangement. 
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(b) 

Figure 8. Drag (a) and lift (b) coefficients as a f unction of the gap between 
the cylinders for the side by side arrangement. 

Cylinders of Same Diameter in a ‘V’ Configuration 

The configuration shown in Fig. 9 was chosen to analyze and to 
verify the influence between the wakes formed by seven cylinders 
of same diameter d. This configuration can be related with the well 
known ‘V’ formation of the birds, which in accordance with the 
scientists, reduces the drag force that each bird experiences 
compared to if it were flying alone. The cylinders were arranged in 
different configurations by changing the α  angle. This angle was 
assumed equal to 400, 600, 800, 1000, 1400 and 1800.  

The diagonal distance between two consecutive cylinders, Fig. 
9, was maintained equal to 2.5d for all the simulations (different 
values of α ). The cylinders 1, 3, 5 and 7 where chosen to be 
analyzed because of the flow symmetry. The Reynolds number 
based on the diameter of one cylinder is 100. The grid size used for 
these simulations was 500x500 and the domain has dimensions 50d 
x 50d. 

 

 
Figure 9. Schematic view of the ‘V’ Configuration. 

 
Figure 10 shows the vorticity field for all the angles simulated. 

It is interesting to note that the vortex formation over individual 
cylinders is totally inhibited when the angle α  is small. This flow is 
similar to that of a single immersed body like a delta. The wake 
structure changes as the angle α  increases. The flows become more 
complex and all the cylinders start to shed vortices, which strongly 
interact. There is a great influence between their wakes, which 
changes the drag force coefficients.  

 

   
(a) (b) 
 

  
(c) (d) 

 

  
(e) (f) 

Figure 10. Vorticity Field for the ‘V’ Configuratio n. αααα = 400 (a), αααα = 600 (b), αααα 
= 800 (c), αααα = 1000 (d), αααα = 1400 (e) and αααα = 1800 (f). 

 
The drag coefficients and Strouhal numbers for the cylinders 1, 

3, 5 and 7 divided by the value of a single cylinder, are presented in 

Fig. 11. All the cylinders have for 0100<α  drag coefficients lower 

than for a single cylinder (Cdsingle = 1.3997, Stsingle = 0.1955). As the 
angle decreases, the wake becomes more inhibited. The amplitude 
of the wake oscillations increases with α. Also, as α increases, the 
time variation of the drag coefficient becomes more and more 
complex. Strouhal and drag increase with α for all cylinders and 
reach values higher than that for an isolated cylinder, for higher 
angles.  These parameters are influenced by the number of cylinders 
and the angle of the configuration. These simulations can be 
explored of different ways by changing the Reynolds, the number of 
cylinders, the angle of the configuration or the diagonal distance 
between the cylinders.  
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Figure 11. Drag Coefficient ratio (a) and Strouhal number ratio (b) as 
function of α for the ‘V’ Configuration. Cdsingle  and Stsingle  is the drag and 
Strouhal of a single cylinder. 

Combination of Bluff Bodies of Several Shapes 

The IB methodology with the VPM has the advantage of 
providing a flow simulation around several geometries, without any 
type of additional complexity in the grid generation process. The 
grid is always Cartesian irrespective of the complexity of the 
configuration of immersed bodies. It is possible to obtain the force 
coefficients on each immersed body or an overall value, because the 
force distribution is known over each body individually at each time 
step.  

In order to illustrate these characteristics, a transverse horizontal 
cut at the main tower of an offshore structure was idealized. These 
structures are subject to strong wind streams and maritime currents, 
which can cause vibration, damaging the structural integrity. The 
schematic view of a composition of bluff bodies, generated by the 
transverse cut, is shown in Fig. 12(a).  
 

 
(a) 

 
(b) 

Figure 12. Schematic view of a horizontal cut in a central tower of an 
offshore structure (a) and instantaneous vorticity field (b). 

 
Each body was numbered to facilitate the identification. For 

these simulations a non-uniform grid with 400x300 points was used 
The Reynolds number based on the dimension H, Fig. 12(a), is Re = 
200. The distance between the external bodies (bodies 1 to 16) was 
chosen equal to 0.1H, as indicated in Fig. 12(a). 

The results showed that the fluid flows through the immersed 
bodies but there is no vortex shedding inside the structure because 
all bodies are very close, as can be seen in Fig. 12(b) that presents 
the instantaneous vorticity field. The system of bodies can be 
considered as a porous media. The recirculation bubble generated 
behind the global structure has the same order of H and the flow is 
unsteady. It could be observed that there was mass injection in the 
shear layer due to the gap between the bodies. As a consequence the 
horizontal length of the recirculation bubble was bigger than that of 
the flow over a square of the same dimensions. The value of the 
global drag coefficient calculated by the sum of the forces from each 
body is equal to 1.9492. The mean drag coefficient of the square is 
1.6844. This value is 13% smaller than the drag coefficient of the 
composition of bluff bodies. 

This results illustrate that it is possible, using the IB-VPM 
methodology to easily calculate the drag and lift coefficients of each 
body that compose such a complex geometry. 

Conclusions 

The Immersed Boundary Method with the Virtual Physical 
Model was used to simulate flows over different compositions of 
bluff bodies. The results of the mean drag coefficient and the 
Strouhal number for cylinders in tandem and side-by-side were 
compared with other author’s results. The flow dynamics changes 
with the distance between the cylinders. It was observed the 
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presence of a repulsive force when the distance between the bodies 
is small. Consequently the drag coefficient is affected and can 
change from negative to positive. For the simulations with different 
cylinders and with two identical cylinders in tandem, it was 
observed that the distance where the Cd sign changes was 2.7d and 
4.0d, respectively. In the side-by-side arrangement, a repulsive force 
between the cylinders has been observed for gaps dL 0.2≤ . The 

simulations with seven cylinders in a ‘V’ configuration show the 
potential of the methodology to study flows over complex 
geometries. There is no restriction on the number of bodies and the 
computational cost is not significantly increased when a great 
number of bodies are immersed in the flow. In other words the main 
cost is due to the solution of the linear system for the pressure 
correction. With these simulations, it is possible to choose the 
optimal configuration for which the drag coefficients are minimized. 
The last case simulated was the flow in the presence of different 
bluff bodies, illustrating a horizontal section on an offshore 
structure. The global drag coefficient was compared with that of a 
square with the same dimensions. The drag coefficient value 
obtained for the compact square was approximately 13% smaller 
than that for the composed geometry. There was a change in the 
shape of the recirculation bubble and the vortex shedding starts 
earlier than it is for the simulations with a square. It is also 
important to emphasize that in the IB method a Cartesian grid is 
used to simulate flows over any geometric shape. Another 
advantage is the ease of calculating the force coefficients for an 
isolated body or the global value for the configuration. 
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