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Energy-Rate Method and Stability 
Chart of Parametric Vibrating 
Systems 
The Energy-Rate method is an applied method to determine the transient curves and 
stability chart for the parametric equations. This method is based on the first integral of 
the energy of the systems. Energy-Rate method finds the values of parameters of the system 
equations in such a way that a periodic response can be produced. In this study, the 
Energy-Rate method is applied to the following forced Mathieu equation: 

( )( ) ( )2y hy 1 2 2 cos 2rt y 2 sin rt+ + − β + β = β&& &  
This equation governs the lateral vibration of a microcanilever resonator in linear 
domain. Its stability chart in the β-r plane shows a complicated map, which cannot be 
detected by perturbation methods. 
Keywords: energy-rate method, stability chart, parametric vibrations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
1In a recent paper, an energy-based method, called “Energy-Rate 

method” has been developed to investigate the stability chart of the 
parametric differential equations. The method has been introduced 
and applied to the Mathieu equation. 

 
2 2 0x a x b x cos( t )+ ⋅ − ⋅ ⋅ =&&  

 
Application of Energy-Rate method has shown that there are 

new periodic curves in stable domain of a-b plane that have not 
been detectable by conventional methods (Jazar, 2004) (Butcher and 
Sinha, 1998). 
In this study, the Energy-Rate method will be utilized to detect the 
stability diagram of a forced parametric equation, and a function to 
be used as a gauge function for determining relative stability in 
parametric space.  

In general, a solution is unstable if it grows unboundedly as time 
approaches to infinity, while a solution is stable if it remains 
bounded as time approaches to infinity. A periodic solution is 
neutral and is considered as a special case of a stable solution 
(Hayashi, 1964).  

The term parametric equations or parametrically-excited 
oscillation is generally used for phenomena in which a parameter of 
the system is time-varying, usually periodically. In early 
experiments, such systems showed resonance when the variable 
parameter has a frequency equal to the double of the natural 
frequency of the linearized system. Existence of periodic vibration 
with frequencies equal to multiple of the principal resonance 
frequency is an essential characteristic of parametric equations. 
Parametric equations can be seen in many branches of applied 
science. They have been the subject of a vast number of 
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investigations since the beginning of the last century (Whittaker and 
Watson, 1927) (Van der Pol and Strutt, 1928). 

Investigation of parametric phenomena has been started since 
1831 when Faraday produced wave motion in water by vibrating an 
immersed plate (Iwanowski, 1965). Shortly afterwards, the 
importance of parametric phenomena was revealed by many 
scientists in the late 19th and the beginning of 20th century 
(Richards, 1983). 

The Mathieu equation expressed in the form: 
 

2 2 0 dxx a x b x cos( t ) x
dt

+ ⋅ − ⋅ ⋅ = =&& &  (1) 

 
is a special case of Hill equation, 0x f ( t ) x+ ⋅ =&& , is the simplest 
and the first well defined parametric differential equation, in which 
a and b are constant parameters. Depending on the value of a and b, 
Mathieu equation has bounded as well as unbounded solutions. 
Because the Mathieu equation is linear, it’s stability is not 
dependent on initial conditions. The values of the pairs (a, b) that 
produces periodic responses at the boundaries of stable and unstable 
regions, make a set of continuous curves in the parametric plane, as 
shown in Figure 1 (McLachlan1947). Stability charts of time-
varying systems, including Mathieu equation, have been 
investigated using a variety of methods and concepts, such as 
Lyapunov exponents, Poincaré maps, Liapunov-Floquet 
transformations, and perturbative Hamiltonian normal forms (Sinha 
and Butcher, 1997) (Guttalu and Flashner, 1996) (Butcher and 
Sinha, 1995). 
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Figure 1. Mathieu stability chart based on the numerical values, generated 
by (McLachlan, 1947). 

Energy-Rate Method 

The Energy-Rate method can be applied to the following general 
parametric differential equation: 

 
( ) ( ), , 0x f x g x x t+ + =&& &  (2) 

 
where, f(x) is a single variable function, and ( )g x,x,t&  is a smooth 
periodic time varying function with the following conditions. 

 
( )0 0 0g , ,t = . (3) 

 
( ) ( )g x,x,t T g x,x,t+ =& &  (4) 

 
Furthermore, the functions f and g can depend on finite sets of 

parameters. Equation (2) may be assumed as a model of a unit mass 
attached to a spring, acted upon by a non-conservative force 

( )g x,x,t− & . Introducing the kinetic, potential, and mechanical 

energies for the system, 2( ) / 2T x x=& & , ( ) ( )V x f x dx= ∫ , and 

( ) ( )E T x V x= +& , we may transform Equation (2) to an integral of 
energy as follows:  

 

( ) ( )21( ) ( ) , ,
2

d dE E x f x x dt x g x x t
dt dt

⎛ ⎞= = + = − ⋅⎜ ⎟
⎝ ⎠∫& & & & & . (5) 

 
The function ( ), ,E x g x x t= − ⋅& & & , which is equal to the time 

derivative of the mechanical energy of the system, represents the 
instantaneous rate of generated or absorbed energy by the applied 
force ( )g x,x,t& . Instantaneous generation or absorption of energy 

depends on the value of parameters, time, x, and x& . If the overall 
value of the rate of energy in an excitation period is negative for a 
set of parameters and a nonzero response x(t), the response of the 
system shrinks along the path of x(τ), t t T< τ < + , and the 
amplitude of oscillation decreases. On the other hand, if the overall 
value of the rate of energy in an excitation period is positive for a 
set of parameters and a nonzero response x(t), then the response of 
the system expands along the path of x(τ), t t T< τ < + , and the 
amplitude of oscillation increases. 

We define an Energy-Rate function as an average of the integral 
of the energy rate: 

 

( )
0

0

1 1T

T

Edt x g x,x,t dt
T T

Γ = = ⋅∫ ∫& & & . (6) 

 
The Energy-Rate function is zero for free vibration of a 

conservative system, as well as the steady state (T/n)-periodic 
response of the system (2). Equation (2) includes two parameters, a 
and b, so the parameter space is two-dimensional. The number of 
parameters determines the dimension of the parameter space. 
Determination of stability diagram is carried-out by finding the pairs 
of (a, b) located on the boundary of stable regions. For a steady state 
T-periodic response, we pick a pair of (a, b) and integrate Equation 
(2) numerically to evaluate Γ. If Γ>0 then, (a, b) belongs to an 
unstable region where energy is being inserted to the system. 
However, if Γ<0, then (a, b) belongs to a stable region in which 
energy is being extracted from the system. On the common 
boundary of these two regions, Γ=0, and (a, b) belongs to a 
transition curve. 

Let us fix b and search for a on a transition curve such that its 
left hand side is stable and its right hand side is unstable. So, if a 
point (a, b) shows that Γ is less than zero, the point is in the stable 
region. In such a case, increasing a will increase Γ. On the other 
hand, if Γ is greater than zero, the point is in the unstable region so, 
decreasing a will decrease Γ. The Energy-Rate function Γ can be 
used as a scale for converging a to an appropriate value, such that 
Γ becomes zero. Applying this procedure, we find a point on a 
transient curve with a stable region on the left and an unstable 
region on the right. Varying b by an increment and repeating the 
calculation, we will find another periodic point. The transient curve 
can be found when b is varied enough to cover the entire domain of 
interest. It is often useful to have a prior understanding of behavior 
of the system.  

Reversing the strategy and searching for transient curves whose 
right hand side is stable and left hand side is unstable, completes the 
stability diagram of the system. This procedure can be arranged in 
an algorithm to be set up in a computer program, as follows: 

 
Step 1 - set a 
Step 2 - set b, equal to some arbitrary small value 
Step 3 - solve the differential equation numerically 
Step 4 - evaluate Γ  
Step 5 - decrease / increase a, if Γ >0 / Γ <0 , by a small  
              increment 
Step 6 - the increment of a must be decreased if  
              i i-1(a ) (a )<0Γ × Γ  
Step 7 - save a and b when Γ <<1 
Step 8 - while b<bfinal , increase b and go to Step 3  
Step 9 - reverse the decision in Step 5 and go to Step 1 
 
An alternative method is to set a domain of interest in the 

parameter plane and then, evaluate Γ for the domain using a fine 
resolution. A two-dimensional matrix will be found for a two-
parameter equation. Each element of the matrix would be the value 
of Γ for the associated pair of parameters. Using this matrix, a three-
dimensional surface can be plotted to illustrate the Energy-Rate 
function. This plot shows the relative stability of different points in 
the parameter plane. Intersection of the surface with plane Γ=0 
designates the transition curves, while the domain below it indicate 
stable regions, and the domain above this plane indicate instable 
regions. The accuracy of this analysis depends on the resolution in 
the parametric plane.  

There are some advantages in Energy-Rate method over 
classical perturbation methods. First, Energy-Rate method can be 
applied to nonlinear parametric equations as well as linear ones. 
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Second, it can be applied to both, small and large values of 
parameters. Third, the values of the parameters for a periodic 
response can be found faster and more accurately than in other 
methods. Fourth, application of the Energy-Rate method for 
detection of periodic solutions can be adjusted to detect any periodic 
response, not necessarily on the boundary of stable and instable 
regions. Fifth, the Energy-Rate function can be used as a gauge 
function to compare the relative stability of different points of 
parameter space.  

The greatest disadvantage of perturbation methods is that they 
can usually be applied to very small values of the parameters. Also, 
the accuracy of the results of most asymptotic methods cannot be 
increased by increasing the degree of polynomials or the number of 
terms in the perturbed solution.  

In the next section we apply the Energy-Rate method to the 
Mathieu equation and to forced Mathieu type equation to show that 
the Energy-Rate method provides much more accurate stability 
diagram as compared to perturbation methods. 

Stability Diagram of Mathieu Equation 

To show the applicability of the Energy-Rate method, Mathieu 
equation is examined as the first example. Mathieu equation is a 
well investigated equation, and because of its linearity, there exist 
some effective methods for finding its stability diagram. Transition 
curves of Mathieu equation are π and 2π-periodic. The analytic 
solution of the equation on transient curves are available and are 
called cosine and sine elliptic functions (Richards, 1983). The first 
three even and odd cosine and sine elliptic functions, ce2n , se2n , 
ce2n+1 , and se2n+1 are shown in Figure 1. The unstable tongues are 
bounded with two transition curves starting from integer roots of 

2a n 0− = , n=0, 1, 2, 3,…. It can be shown that although the odd 
order cosine and sine elliptic functions are not symmetric with 
respect to b, the overall stability diagram looks symmetric. 

Since the parametric resonance of Mathieu equation happens in 
periods T and 2T, the bound of integral may be defined from zero to 
2T to include T and 2T periodic solutions. The Energy-Rate function 
for Mathieu Equation (1) would be a two-parameter equation. 

 

( ) ( )
2

0

1 2 2
2

a,b b x x cos( t ) dt
π

Γ = Γ = ⋅ ⋅ ⋅
π ∫ &  (7) 

 
Consider a case in which b=1, then Γ is only a function of a. 

This function is plotted in Figure 2 using 10000 points in the 
interval 0<a<45. It can be seen that the curve Γ intersects the a axis 
exactly at the same points where the line b=1 intersects the 
transition curves of the Mathieu stability diagram (see Figure 1). 

Evaluating Γ over a domain of a and b generates a three 
dimensional stability surface. Figure 3(a) displays the stability 
surface of Mathieu equation over the area 2 a 12− < <  and 
0 b 12< < . Based on Energy-Rate method, wherever Γ is negative, 
Mathieu Equation (1) is stable, and wherever Γ is positive, it is 
unstable. The stability surface has been found by integrating over 
T=2π. Therefore, the intersection of the stability surface with the 
plane Γ=0, indicates π or 2π-periodic curves, because a π-periodic 
function is 2π-periodic as well. Figure 3(b) depicts a top view of the 
stability surface. It also illustrates the intersection curves of the 
stability surface with plane Γ=0.  

 

Γ

 
Figure 2. Plot of π for Mathieu equation as a function of a for b=1. 
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Figure 3(a). Stability surface of Mathieu Equation (1). 
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Figure 3(b). 2π-periodicity curves of Mathieu Equation (1). 

 
If a periodic curve separates stable and unstable regions, it is 

called a transition curve, otherwise it is a splitting curve. A splitting 
curve is a periodic curve embedded in a stable region. Figure 4 
depicts the π and 2π-periodic transition curves of Mathieu equation, 
along with a splitting curve in each stable region (Jazar, 2004).  
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Figure 4. 2π-periodicity curves of Mathieu Equation (1), intersection of the 
stability surface and plane Γ =0. 

 

Stability Diagram of A Forced Mathieu Type Equation 

As a second example, forced vibration of a Mathieu type system 
will be studied in this section. Consider the following forced and 
parametrically excited equation: 

 

( )( ) ( )2y hy 1 2 2 cos 2rt y 2 sin rt+ + − β + β = β&& & .  (1) 
 

which is the nondimensionalized governing equation of a linearized 
model of a micro-electro-mechanical system (Luo, 2002) (Jazar, 
2006). The system is a cantilever resonator activated by an 
alternating electric field.  Equation (1) is dependent on three 
independent parameters. Therefore the parameter space of the 
system is a three-dimensional r-β-h space. Assuming h=0, the 
condition for parametric resonance, which states that n times of the 
forcing frequency is equal to twice of the natural frequency of the 
unforced system, would be 1 2 nr,n N− β = ∈ . Therefore, 
transition curves, if there is any, must start from r 1 / n,n N= ∈  on 
the line β=0. The periodic curves corresponding to n=1 makes the 
principal instability domain, if they are transition curves.    

Assuming a periodic solution, nn 0
y Y sin( nrt )∞

=
= + ϕ∑ , and 

applying multiple scale perturbation method provides the following 
relationship for the periodic condition with Y0=0.  

 

( )( )2 2 4 2 2
2

1r 2 h 4 h 4h 1 2 4 , n N
2n

= − − β ± − − β + β ∈ .    (2) 

 
Traditionally, the periodic condition is used to determine the 

periodic curves in parameter plane r-β. The periodic curves need to 
be checked to determine if they are transition or splitting curves. 
The periodic curves (2) corresponding to n=1 are plotted in Figure 5 
for different values of h. It is expected that two periodic curves 
come out of r=1 and make the principal instability tongue. Time 
response of the undamped system for selected points  (r, β) =  
(0.9, 0.1), and (1.2, 0.1), are found and shown in Figure 5. It is 
concluded that Equation (2) are transition curves, and the region 
surrounded by curves coming out of r=1 is unstable. Figure (5) also 
illustrates that the instability domain shrinks by increasing the 
dimensionless damping, h.  

 

β

r

h=0

h=0.2

h=0.5
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Figure 5. Transient curves and instability region for Equation (1). 

 
Applying Poincare-Lindstad method provides the following 

equations for no damping transient curves will be found 
 

2 4
1 1 r O( r )β = − +        

2
4

2
1 r O( r )
3 3

β = − +  (3) 

 
which are in agreement with Equation (2) and Figure 5. 

It must be mentioned that not only the curves derived from 
perturbation analysis are not necessarily transition curves, the 
stability behavior of the system is also questionable when 
parameters are close to a curve. Furthermore, we know that although 
Equations (2) and (3) might be used to determine the periodic curves 
and stability regions in r-β space around β=0, they cannot be used 
to determine the global stability regions of the system.  

Defining the Energy-Rate function as follow: 
 

( ) ( )( )
2

2

0

2
/ rr y sin rt hy y cos rt dt

π

′Γ = β − −β
π ∫ & . (4) 

 
and applying Energy-Rate method provides an exact stability 
diagram. To present a better view of stability diagram, we study the 
system in 1/r-β plane instead of r-β plane. However, it is also 
possible to apply a transformation rt = τ , and convert Equation (1) 
into the form: 

 

( )( ) ( )2y 2Hy A 2Bcos 2 y 2B sin′′ ′+ + + τ = τ  
 

where,  
 
y dy / rd′ = τ , 22H h / r= , 

 
( ) 2A 1 2 / r= − β ,      2B / r= β . 

 
Therefore, the Energy-Rate function may be defined as  
 

( ) ( )( )2 2

0
2* y B sin rt Hy By cos d

π
′ ′πΓ = − − τ τ∫ . 

 
A three dimensional illustration of stability surface / rπΓ  is 

depicted in Figure 6(a) to provide a relative stability view. The 
stability surface is made by 5000 1000×  points. The intersection of 
the stability surface with Γ=0 specifies the transition curves of the 
system that are shown in Figure 6(b). Figure 6(c) shows a top view 
of the stability surface along with the stability diagram. The stability 
characteristic of stable and unstable regions of Figure 6(b) is clear 
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by investigating Figures 6(a) or 6(c). It can also be determined by 
numerical solution of the equation for a sample point within each 
region. 

A deep and an elevated regions are associated to strong stable 
and an unstable region: a stable region for large values of β around 
r=1, and an unstable region corresponding to large values of β and 
1/r. There is also an unstable region connected to 1/r=1 which is the 
principal instability region that could be predicted by perturbation 
methods approximately.  
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Figure 6(a). Stability surface for the parametric Equation (1). 
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Figure 6(b). Stability diagram for the parametric Equation (1). 

 
 
 
Because of the importance of the principal instability region, a 

magnified view of the stability surface for 0<β<0.4 and 1<1/r<2.5 
is shown in Figure 7(a). A better view of the transition curves is 
depicted in Figure 7(b). A top view of the stability surface along 
with the transition curves are also shown in Figure 7(c) to highlight 
the stability characteristic of Figure 7(b). In order to better 
understand the behaviour of the system when parameters are around 
the principal instability region, time responses of the system for a 
few selected points in different regions are shown in Figure 8. The 
examined points are marked in Figure 7(b). 
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Figure 6(c). Top view of the stability surface for the parametric Equation 
(1) along with transition curves. 
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Figure 7(a). Magnification of stability surface at the principal instability 
region of the parametric Equation (1). 
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Figure 7(b). Transition curves around the principal instability region of the 
parametric Equation (1). 
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Figure 7(c). Top view of the stability surface of Equation (8) along with 
transition curves around the principal instability region. 

 
 
Comparison of the results of perturbation analysis in Equation 

(9) or (10) with the results of Energy-Rate method is shown in 
Figure 9. From a design point of view, the strong stable region 
related to r 1≈  and large values of β are important. This is 
probably the best area to set the parameters of the system governed 
by Equation (8). To clarify the boundary of the stable and unstable 
regions in this area, a three dimensional illustration of stability 
surface, and a two dimensional stability diagram are shown in 
Figures 10-12. 
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Figure 8. Time response of the parametric Equation (8) for some points of 
the parameter plane. 
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Figure 9. Comparison of the result of perturbation and Energy-Rate 
method close to the principal instability region of Equation (8). 
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Figure 10. Magnification of stability surface around the strong stable 
region of the parametric Equation (8). 
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Figure 11. Magnification of transition curves around the strong stable 
region of the parametric Equation (8). 
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Figure 12. Top view of the stability surface of the parametric Equation (8) 
along with transition curves around the strong stable region. 

Conclusion 

The Energy-Rate function, ( )
0

T
x g x,x,t dt / T⎡ ⎤Γ = ⋅⎢ ⎥⎣ ⎦∫ & &  is used to 

generate a three-dimensional stability surface for two parametric 
equations example. The value of the function can be determined 
numerically and compared to zero for a parametric equation such as 

( ) ( ), , , , 0x f x g x x t a b+ + =&& & . The Energy-Rate method may be used 
to investigate the stability of the parametric equations. Procedure of 
searching for periodic curves in the parameter space is presented as 
an algorithm.  

To validate the algorithm, it was applied to the Mathieu 
equation, and its stability chart was developed. The results are in 
agreement with a previously reported results. In the second example, 
the method was applied to a forced and parametrically excited 
equation, which is based on the model of a physical system. 
Multiple time scale, and Poincaré-Lindstad perturbation methods 
were applied and periodic curves for small values of parameters 
were found. The stability surface and stability diagram of the system 

are also found by applying the Energy-Rate method. Three-
dimensional illustration of stability surface shows a sense of relative 
stability of parameter plane. The intersection of a zero plane with 
stability surface determines the periodic and transition curves of the 
system. The procedure is sometimes time consuming, but it 
generates a more efficient and more accurate stability diagram. 
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