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Application of the Topological 
Optimization Technique to the Stents 
Cells Design for Angioplasty 
Restoring the internal lumen of arteries by employing an expandable mesh (stent) of 
metallic or polymeric material, known as angioplasty, is one of the most common 
procedure for treatment of the obstructive cardiovascular diseases. The stent for 
angioplasty have been extensively used in the treatment of the cardiovascular diseases. 
They should be flexible during the implant procedure and stiff when implanted into the 
blood vessel. These design criteria depend on the material, geometry and the technology 
used in the stents manufacturing. The objective of this work is to provide the optimized 
geometry of a stainless steel stent by means of the topological optimization technique. The 
general idea of this methodology is to simulate the implant process of a stent using the 
finite elements method, extract the sensitivities of its flexibility and stiffness and update its 
material distribution or topology in an iterative procedure. The algorithm for the 
numerical computation of the stent material distribution is based on the heuristics and in 
the Lagrangian of the optimization problem. The results show that the stent optimal 
topologies provided by this methodology have some advantages when compared with the 
traditional geometries of commercial stents. 
Keywords: biomechanics, mechanical design, nonlinear finite elements, stents, topological 
optimization 
 
 
 

Introduction 
1The accumulation of substances in the coronary arteries, such 

as the cholesterol, is one of the causes of death among adults around 
the world. In the past, most of cardiovascular diseases just were 
treatable through a by-pass surgery (Serruys and Kutryk, 1998). 
Nowadays, a minimally invasive catheter-based procedure has been 
extensively used to unblock the diseased artery. In this procedure, a 
thin wall metallic tube known as stent is also implanted in the region 
of the unblocked artery in order to prevent restenosis or re-closure 
of the blood vessel. 

There are several criteria to be considered in the stent design 
(Serruys and Kutryk, 1998). In this paper, it will be emphasized 
only the flexibility and the stiffness as the stents mechanical design 
criteria. During the implant procedure, the stent should be able to 
track the catheter into the vessel until the stenosed artery region is 
reached. Thus, the stent should be flexible enough to bend while 
attached to the catheter. Conversely, the stent should also be 
sufficiently stiff to maintain the artery opened and to support the 
pressure applied by the blood vessel wall after the implant. 

Analytical prediction of the flexibility and stiffness of a stent 
only is possible in the linear elastic range (Duerig et al., 2000). 
Indeed, the structural analysis of a stent is highly nonlinear due to 
the complexity of its geometry and the large plastic strain that occur 
during the implant. In this way, the analysis of the design criteria 
above mentioned has been studied using nonlinear finite elements 
models or experimental observations of stents implanted in patients 
(Serruys and Kutryk, 1998; Ahmad and Barrett, 1999; Borgersen 
and Sadeghi, 2000; Duerig et al., 2000; McClean and Eigler, 2002). 
On the other hand, the design techniques used in the definition of 
the stents geometry are not usually described in the literature. It is 
supposed that the designers use the intuition, experience and the 
results of the stent analysis to improve their performance (Borgersen 
and Sadeghi, 2000). However, although these are valuable design 
tools, they do not guarantee that the obtained stent geometry is 
optimum. In this context, the structural optimization tools available 
in the literature provide an automated methodology to obtain the 
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optimum geometry of stent with maximum flexibility and stiffness 
(Vanderplaats, 1999). 

Topological optimization is a particularly useful design tool to 
be used in the definition of the best material distribution of a stent 
(Guimarães, 2005). An advantage of this technique is that problems 
concerning the maximization of flexibility and stiffness of structures 
subjected to the large strains are well established in the literature 
(Yin and Anathasuresh, 2001; Nishiwaki et al., 2001; Mayer et al., 
1996; Maute et al., 1998). Then, the same formulation used in the 
algorithms of topology optimization of stiff and flexible structures 
can also be applied and adapted to the stents design problem. 
Therefore, the objective of this work is to employ topology 
optimization as a mechanical design tool of stainless steel stents by 
simulating the implant procedure. In the following, it will be 
described the structural models used in the study of stents, the 
formulation of the optimization problem and the methodology used 
in the numerical computation of the stent optimal topology. Finally, 
the stent optimal material distribution will be shown and compared 
qualitatively with the geometry of commercial stents. 

Nomenclature 

A = factor used in the updating of the flexible topology, 
dimensionless 

Bw = factor used in the updating of the hardened topology, 
dimensionless 

C2U1 = mutual strain energy density, J/m3  
dV = differential element of volume, m3 

E = Young’s modulus,N/m2  
Ep = plastic modulus, N/m2 

Et = tangent modulus, N/m2 

 f = volume fraction of the optimal topology, dimensionless 
F = body force, N 
Fs = surface (normal) force, N 
I = index used in the summation of the finite elements, 

dimensionless  
K = global stiffness matrix, N/m 
m = move limit, dimensionless 
N = number of finite elements from the design space, 

dimensionless 
p = power of penality of the SIMP model, dimensionless  
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P(x) = objetive function used in the maximization of the stent 
cell flexibility, dimensionless 

U = displacement field of the structure, m 
V = volume of the design space, m3 

V(x) = volume of the stent cell optimal topology, m3 

W = elastic-plastic strain energy density, J/m3 

x = relative density, dimensionless 
Greek Symbols 
∆u = prescribed displacement applied to the design space of 

the structure, m 
ε = total strain, dimensionless 
εe  = elastic strain, dimensionless 
εp = plastic strain, dimensionless 
η = numerical damping coefficient, dimensionless 
Ζ = load factor, dimensionless 
σr = yield stress, N/m2 

Γ = region of surface, m2 

Subscripts 
e relative to elastic range 
min relative to the minimum value  
o relative to properties from the solid material 
p relative to plastic range 
r relative to yield stress 
t relative to tangent  
1 relative to force applied by the vessel wall 
2 relative to direction of the flexibility 
3 relative to reaction force applied by the vessel wall 
Superscripts 
e relative to finite element 
j relative to iteration index  
T relative to transpose 

Definition, Characteristics and Models of Stents 

A stent can be defined as any device with circular section used 
to reinforce the wall of a vessel (Serruys and Kutryk, 1998). As can 
be seen in Fig. 1, the stent structure is cylindrical and is formed by a 
repetitive geometrical pattern, known as cells. In applications for 
angioplasty, the stent diameter before the implant varies of 1.5mm 
to the 2.5 mm. In this phase, the stent should only track the catheter 
into the vessel. To open arteries where deposits restrict the blood 
flow, cardiologists use an inflated balloon to push the obstruction 
aside. When the pressurized balloon inflates, the stent expands, that 
is, it increases its diameter until it contacts the inner surface of the 
artery wall (some stents are auto-expansive). After the implant 
process, the final diameter of the stent implanted in the artery may 
reach until five times its original diameter (Serruys and Kutryk, 
1998; Borgersen and Sadeghi, 2000). The importance of this contact 
between stent and blood vessel is to prevent any diameter reduction 
of the artery wall after the implant and also to prevent thrombus 
formation. 

 

 
Figure 1. Model of finite elements of a three-dimensional stent (Guimarães 
et al., 2006).  

 
Figure 2 shows the plane model of a stent with several cells 

before the expansion process (Guimarães et al., 2006). The 
expanded stent has some regions where the stress level exceeds the 
yield stress. The hardening of these regions and the stiffness of the 
cells maintain the artery wall and the stent with the expanded 
diameter. In the longitudinal direction of the cell, it can be observed 
the presence of sinusoidal structures. The role of these structural 
elements is to improve the flexibility of the stent during the implant, 
in order to achieve best mobility.  

 

 
Figure 2. Plane model of the stent with several cells (Guimarães et al., 
2006). 

 

Topology Optimization as a Stent Design Tool 

Topology optimization can be defined as a structural design tool 
that generates automatically the best layout of the elements or 
components of a structure (Rozvany, 1997). This procedure must 
locate the structure elements that will be either solid or void. Solid 
elements have relative density equal to 1 (one) and void elements 
have relative density equal to 0 (zero). For example, Fig. 3 shows 
the optimal topology of a cantilever beam with minimal strain 
energy. In this case, the volume of the optimal topology is 40% of 
the original design space volume (rectangular beam). 

 

 
Figure 3. Optimal topology of a cantilever beam. 

 
In this paper, the design problems of the stent cell subjected to 

the plastic strain provided by the expansion of the balloon and the 
elastic bending due to the curvature imposed by the catheter will be 
treated separately using topology optimization. First off all, the 
topology of the stiff region from the plastically deformed stent cell, 
shown in the Fig. 2, will be optimized by maximizing the hardening. 
Subsequently, the elastic strain energy of the flexible longitudinal 
structure from the stent cell will be maximized and its optimal 
topology computed. All topologies shown in this paper have a 
volume equals to 20% of the total design space volume. This value 
is recommended and used by the manufacturers in order to avoid the 
rejection of the stents implanted in the vessel (Serruys and Kutryk, 
1999). In fact, the less the metallic surface area of a stent contacts 
the artery wall, the less is the probability of rejection. 
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Stent Cell with Maximum Hardening 

The stent cell should be subjected to plastic strain only during 
the balloon expansion process. The plastic strain energy absorbed by 
the stent during the implantation increases the yield strength of the 
stainless steel. Thus, after the hardening, it will be necessary to 
increase the stress level in order to expand or compress the diameter 
of the expanded stent placed in the artery. The purpose of this is to 
ensure that the stent diameter produced by the angioplasty is 
maintained.  

It is desired to maximize the hardening of the stent to improve 
the performance during the balloon expansion. One way of 
maximizing the hardening is to maximize the toughness or total 
strain energy in the elastic and plastic ranges (Mayer et al., 1996; 
Maute et al., 1998): 
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where dV is the volume differential element of a continuous solid 
body, {ε} represents the total strain defined by the sum of the elastic 
and plastic strains, {εe} and {εp}, given by (Karasudhi, 1991): 
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and [Ep] is the plastic modulus, that is a linear approximation of the 
stress-strain curve for the elastic and plastic ranges of the stainless 
steel (Karasudhi, 1991; Mayer et al., 1996). This material model, 
known as Bilinear Isotropic Hardening (BISO) model, is usually 
used for large strain analysis of ductile materials, such as a stainless 
steel stent (Karasudhi, 1991). Another advantage of the BISO model 
is the fast computation of the stress components of a structure 
subjected to plastic strain, which is particularly useful in the finite 
element analysis (Mayer et al., 1996; Ahmad and Barrett, 1999). 

The plastic modulus, Ep, is defined by (Karasudhi, 1991; Mayer 
et al., 1996): 

 

t
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where E is the Young’s modulus and Et is the linear approximation 
of the plastic range, called tangent modulus. It should be noted that 
in the Eq. (1), the variable Ep denotes the plastic modulus matrix 
that correlates the equivalent stress tensor with the plastic strain 
tensor (Mayer et al., 1996). On the other hand, the Eq. (3) is a scalar 
relation that represents each component of the plastic modulus 
tensor as a function of the components of the tangent and Young’s 
modulus tensors. 

In the BISO model, the definition of the plastic strain 
increments, dεp, is based on the flow rule (Karasudhi, 1991; Maute 
et al., 1998). Geometrically, dεp is a normal vector to the yield 
surface representing the stress state of the structure. For large strain 
of ductile materials, the Von Mises elliptical yield surface provides 
the distortion energy caused by any stress combination. Physically, 
the plastic strain of a ductile material is produced by its distortion 
energy (Norton, 1996).   

Following the topology optimization nomenclature, the 
mathematical definition of the stent cell design problem with 
maximum hardening is: 
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such that f is the percentage of the optimal topology volume, V(x), 
with respect to the total volume, V, of the initial design domain. 
Equation (5) describes the equilibrium of the topology to be 
satisfied during the optimization. The left side of the Eq. (5) is the 
total strain energy accumulated by the stent cell. The right one 
represents the external work of the prescribed displacement, {∆u}T, 
applied in some region of the surface, Γ, in the design space. In the 
surface integral of the Eq. (5), {Fs} is an unit and fictitious normal 
force applied to the design space and ζ, called load factor, represents 
the magnitude of {Fs} that has the same effect of the prescribed 
displacement, {∆u}T. Equation (6) are the minimum and maximum 
values (side constraints) that the relative density or design variables, 
x, can assume. The maximum value, x=1, is the relative density of 
the solid material and the minimum value, xmin = 0.001, of the 
relative density close to zero is used in order to avoid a singularity 
of the global stiffness matrix of finite elements. 

Stent Cell with Maximum Flexibility 

The stent cell should be flexible as well, since it will be 
subjected to large deflections in the elastic range when the catheter 
bends in the blood vessel before the balloon expansion (Serruys and 
Kutryk, 1998; Borgersen and Sadeghi, 2000). A measure commonly 
used in the topology optimization field of the structural flexibility, is 
the mutual strain energy, C2U1, defined as follows (Nishiwaki et al, 
2001; Yin and Ananthasuresh, 2001):  

 

2
T
112 KUU=UC  (7) 

 
where U1

T denotes the displacements of the structure caused by the 
force F1, U2 is the displacement field due to the force F2 and K 
represents the global stiffness matrix of the elastic solid body 
illustrated in the Fig. 4. Indeed, Eq. (7) measures the displacement 
or flexibility of the structure in the direction of the unit dummy load, 
F2, when the force F1 is applied. Thus, the larger is the mutual strain 
energy, the larger is the flexibility of the structure. 

 
 

 
Figure 4. Concept of flexibility of an elastic body. 

 
 
By considering the flexible stent cell structural model, the force 

F1 may be interpreted as the bending load applied by the blood 
vessel wall at the same plane of the stent cell. The location of the 
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load F2 represents the point of contact of the bent stent cell with the 
vessel wall. Usually, the stent material is stiffer than the vessel wall 
material (Serruys and Kutryk 1998). Therefore, it is expected that 
the contact strain is preferentially located in the vessel wall. 

Mathematically, the stent cell with maximum flexibility is 
obtained from the maximization of the Eq. (7). However, the simple 
maximization of Eq. (7) does not guarantee that the structure will 
not deform indefinitely. In this case, the problem is ill conditioned 
and the Eq. (7) will tend to the infinite. The solution for this 
inconvenient is to limit the mutual strain energy to a finite value 
during the maximization of the Eq. (7). Most papers dealing with the 
flexible structures topology optimization introduces a lumped 
stiffness at the point of application of the forces F1 or F2 to restrict 
the flexibility of the structure in the desired direction, (e.g. 
Nishiwaki et al. 2001; Yin and Ananthasuresh 2001).  

In this work, it will be adopted the traditional approach used in 
the formulation of objective function, P(x), of a flexible topology. It 
is defined by the ratio between the mutual strain energy and the 
compliance of the structure (Yin and Ananthasuresh 2001): 

 

33
T
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UKU
KUU-=P(x)  (8) 

 
where the numerator and the denominator represent the structural 
flexibility and stiffness measures respectively. In this formulation, 
the user does not need know the values of the weighting coefficients 
of the flexibility and stiffness of the structure. When the Eq. (8) is 
maximized, the mutual strain energy is maximized and the 
compliance is minimized simultaneously. The global stiffness 
matrix, K3, in the denominator of Eq. (8) is obtained by restricting 
the degree of freedom of the point of application of the forces F1 or 
F2, shown the in Fig. 4. The displacement field, U3, is derived from 
this condition.  

Using the objective function model defined above, the topology 
optimization problem of the flexible stent cell will be: 
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From the stent design point of view, F3 is the reaction force of the 
vessel wall on the stent cell due to the contact that occurs when the 
catheter bends. In fact, F3 is equal to F2 but in opposite direction. In 
this situation, the degrees of freedom of the point of application of 
F1 are restricted for the computation of the U3 from the Eq. (11). 
 
 
 

Algorithm for the Generation of the Optimal Topologies 

The stent volume fraction is the only active constraint of both 
formulations above described. Furthermore, the maximization of the 
hardening and flexibility has a large number of design variables. 
These design variables are the relative density of each finite element 
from design space. For problems of this nature, the optimality 
criteria method is the optimizer more efficient to obtain the optimal 
solution (Mayer et al., 1996; Maute et al., 1998; Sigmund, 2001; 
Yin and Ananthasuresh, 2001). Therefore, it will be used in this 
work to provide the stent cell optimal topologies. 

The optimality criteria method is based on the Kuhn-Tucker 
conditions applied to the Lagrangian of the objective function and 
constraints. It can be demonstrated that the stationary condition of 
the Lagrangian of the elastic-plastic strain energy defined by the Eq. 
(1) subjected to the constraints (4), (5) and (6) of the hardening 
maximization problem of the stent cell is given by (Guimarães, 
2005): 
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where λ is the Lagrangian multiplier of the volume constraint, N is 
the number of finite elements used in the discretization of the design 
space, η is a numerical damping coefficient to decrease the 
convergence rate in the computation of the optimal topology, j 
denotes the iteration index used in the updating of the topology and i 
is an index which represents the summation of all finite elements 
from the design space. Equation (12) depends on the sensitivity of 
the plastic modulus, which is the derivative of the Eq. (3) with 
respect to the xe.  
In this work, it will be employed the SIMP (solid isotropic material 
with penalization) approach as an interpolation model of relative 
density of the stent cell. In this case, the optimal topology is totally 
defined and free of porous (Sigmund, 2001) and the sensitivity of 
the plastic modulus in the Eq. (12) is easily computed.    

In the case of the flexibility maximization problem of the stent 
cell, the stationary condition of the Lagrangian applied to the Eq. 
(8), (4), (9), (10), (11) and (12) is defined by (Guimarães, 2005):   
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where the relative density in the iteration j+1 was updated based on 
the gradient of the Lagrangian multiplied by -1, which represents the 
steepest descent direction of this optimization problem. Once again, 
the SIMP model defined for the flexible stent cell will be used in the 
updating of the topology.  

Unfortunately, Eq. (13) and Eq. (15) does not guarantee a stable 
convergence since abrupt changes may occur in the formation of the 
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topology. In order to stabilize the formation of the topology, the 
following procedure was used in this work (Maute et al., 1998; 
Sigmund, 2001; Yin and Ananthasuresh, 2001):  

 

]m)x(,min[)x(])x(,.max[ jejeje +≤≤ + 10010 1m-   (16) 
 

where m is the move limit that represents a maximum permissible 
value of the change of relative density in each iteration. The role of 
this parameter is to avoid the formation of discontinuities in the 
topology during the optimization. The choice of the value of this 
parameter depends on the behavior of objective function to be 
optimized. In the present paper, the value of m for each problem will 
be chosen observing the convergence process of the optimal 
topology. If the objective function begins to oscillate, the value of m 
is reduced so that the convergence process became stable.  

Figure 5 illustrates the steps of the topology optimization 
algorithm to be used in both problems, maximization of the 
flexibility and hardening. Although they are different problems 
treated separately, it will be used the same methodology in the 
derivation of the optimal topologies based on the optimality criteria 
method. Initially, all finite elements from design space have relative 
density equal to volume fraction chosen by the user. For the 
maximization problem of the flexibility, the nodal displacement 
fields U1, U2 and U3 are obtained by solving the equilibrium 
equations (9), (10) and (11). These displacements will be extracted 
from a subroutine implemented in the Matlab® (Sigmund, 2001). 
For the hardening problem, it will be used the finite element 
software ANSYS® in order to extract the elastic and plastic strain 
field from the stent design space. Subsequently, the objective 
function sensibility is calculated. Finally, the Lagrangian multiplier, 
λ, from volume constraint is determined using a bi-sectioning 
algorithm and the topology of stent cell is updated. The subroutines 
of updating of the stent cell topology were implemented in Matlab® 
(Sigmund, 2001). 

 

 
Figure 5. Flowchart of the stent cell optimization topology algorithm. 

 
In topology optimization, there still exists a natural tendency to 

the formation of regions like checkerboards (Sigmund, 2001). In 
these regions, the optimal material distribution is not continuous and 
oscillates from solid to void. The more efficient approach for the 
treatment of this problem, to be used in this paper, is the relative 

density filtering of the finite elements of structure (Sigmund, 2001). 
In this approach, the relative density of each finite element will be 
computed according to the weighting average of the strain energy 
sensibility of the neighboring elements. Thus, before the updating of 
the topology using the Eq. (16), the sensitivity of the strain energy 
of each finite element is computed, as illustrated in the flowchart 
(Fig. 5). The objective of this procedure is to obtain a more uniform 
material distribution and without the checkerboard patterns. 

Structural Model for the Stent Cell Optimization 

Figure 6 shows the design space and the boundary conditions 
that simulate the balloon expansion for the hardening maximization 
problem (Ahmad and Barrett, 1999). Due to symmetry of the stent 
cell, it will only be considered the half of its design space. The 
traction displacements, ∆u, of same magnitude applied to the upper 
and lower corners from the right edge simulate the stent expansion 
process caused by the balloon. Nonlinear finite element analysis 
from software ANSYS® simulates this expansion process several 
times during the optimization. 

 

 
Figure 6. Structural model for the maximization of the hardening of the 
stent cell. 

 
 

Table 1. Parameters of the stent cell structural model subjected to the 
plastic strain. 

Parameters of the stent model Magnitude  
Young’s modulus 190x109N/m2 

Tangent modulus 1300x106N/m2 

Yield stress 250x106N/m2 

Poisson’s ratio 0.3 
Stent cell length 1.5x10-3m 
Stent cell height 1.25x10-3m 

Traction displacement 0.22x10-3m and 0.44x10-3m
 
 
 
Table 1 shows the geometrical parameters as well as the 

material properties to be used in the hardening maximization of the 
stent cell (Norton, 1996; Serruys and Kutryk, 1998). In this 
situation, it will be generated two hardened stent cell topologies 
corresponding to two different values of ∆u described in the Tab. 1. 
The smaller displacement, ∆u=0.22mm, models the expansion of a 
stent to be implanted in an artery with a small diameter. Similarly, 
the displacement, ∆u=0.44mm, simulates the expansion of the stent 
in a vessel with a larger diameter. 

The vertical load F1 simulates the force applied by the vessel 
wall on the stent when the catheter bends. The dummy load F2 is the 
desirable direction of the stent flexibility. It is applied at the middle 
of the bottom edge of the design spaces shown in the Fig. 7 and Fig. 
8. Moreover, the flexible stent cell should maintain its shape when 

∆u

∆u
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subjected to reaction force applied by the blood vessel wall, F3. 
Then, the stent cell stiffness should also be maximized due to the 
reaction force, F3.   

 
 

 
 
 
 
 
 
 
 
 

Figure 7. Structural model for the maximization of the flexibility of the 
stent cell with the fixed left edge. 

 
 

 
Figure 8. Structural model for the maximization of the flexibility of the 
stent cell with the left edge free to move in the horizontal direction. 

 
 

Table 2. Parameters of the flexible stent cell structural model subjected to 
the large elastic strain. 

Parameters of the stent model Magnitude 
Young’s modulus 1 

Poisson’s ratio 0.3 
Stent cell length 1 
Stent cell height 0.83 

F1 1 
F2 1 
F3 -1 

 
 
The physical models for the maximization of the flexibility of 

the stent cell are shown in the Fig. 7 and Fig. 8. The material 
properties, dimensions of the design space and the magnitude of the 
forces applied to both structural models are defined in the Tab. 2. In 
this situation, the parameters of the stent model were normalized. 
The difference between both models is the boundary condition 
applied in the left edge. The cantilever beam illustrated in the Fig. 7 
do not take account the movements in the interface of the flexible 
longitudinal structure with the stent cell design space subjected to 
the plastic strain. On the other hand, in the model shown in the Fig. 
8, all nodes from the left edge are free to move in the horizontal 
direction. In practice, the interface between the hardened and 
flexible structures of the stent cell is free to move as in the vertical 
direction as in the horizontal one. Thus, the structural model shown 
in the Fig. 8 is more realistic when compared to the model from Fig. 

7. However, both models will be used to provide the stent flexible 
topologies. 

Results and Discussion 

The deformed shape of the stent cell material distributions, with 
maximum hardening corresponding to the traction displacements of 
0.22x10-3m and 0.44x10-3m, are illustrated in the Fig. 9 and Fig. 10, 
respectively. As the traction displacement of magnitude ∆u is 
applied on the upper and lower right corners from the design space 
(Fig. 6), the total displacement of stent cell in the vertical direction 
after the expansion is equal to 0.44mm and 0.88mm (0.22x10-3m 
and 0.44x10-3m multiplied by two), respectively. Therefore, the 
percentual vertical displacements of the stent cell with respect to the 
design space height are 35% and 70% (0.44mm/1.25mm and 
0.88mm/1.25mm). For these situations, the stent diameter will also 
increase 35% and 70% since this is proportional to the 
circunferential length of the cross section. 

The structures shown in the Fig. 9 and Fig. 10 were provided 
from the contours of the optimal topologies generated by using the 
algorithm shown in the Fig. 5 (Guimarães, 2005). In both cases, the 
topologies were computed from a mesh with 30x25 finite elements. 
Since each finite elements analysis used in simulation of expansion 
of the stent cell is nonlinear, it was necessary to divide the total 
solution interval in 200 steps in order to solve the structural 
equilibrium equations set during the updating of the topologies. This 
value is recommended by the program ANSYS® to avoid the 
divergence of the nonlinear solution process (ANSYS Inc., 2002). 
Moreover, the program ANSYS® should select the best solver to be 
used in the solution of the nonlinear equilibrium equations. 

 

 
Figure 9. Stent cell optimal material distribution subjected to the 
expansion displacement of 0.22x10-3m. 

 

 
Figure 10. Stent cell optimal material distribution subjected to the 
expansion displacement of 0.44x10-3m. 
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There are significant differences between the stent cell material 
distributions shown in the Fig. 9 and 10. In the topology with 
maximum hardening subjected to the expansion displacement of 
0.22x10-3m (Fig. 9), the material is distributed in the vertical 
direction by connecting the upper and lower corners of the right 
edge from the design space. When this stent cell expands, the plastic 
strain distribution concentrates in this region (Guimarães, 2005). For 
the stent cell topology illustrated in the Fig. 10, it is not more seen 
the presence of this material distribution close to right edge. In 
addition, it can be also observed that the details of this topology are 
shifted to the left from the design space when compared to material 
distribution shown in the Fig. 9. In this case, the plastic strain field 
concentrates in a region close to the 3 holes of the stent cell material 
distribution shown in the Fig. 10 (Guimarães, 2005). 

Figures 11 and 12 illustrate the deformed shapes of the flexible 
stent cell topologies that were optimized from the structural models 
shown in the Fig. 7 and Fig. 8, respectively. In the reanalysis 
process, the force F1 was replaced by a displacement of normalized 
magnitude equals to 0.083 applied on the flexible stent optimal 
topologies. For these situations, it can be observed the presence of a 
material sudden variation in some regions of the topologies 
illustrated in the Fig. 11 and 12. The major role of these 
discontinuous regions placed in the stent topologies is to absorb the 
elastic deflection energy and to improve their flexibility. 

 

 
Figure 11. Flexible stent cell optimal material distribution with the left 
edge fixed.  

 
 

 
Figure 12. Flexible stent cell optimal material distribution with the left 
edge free to move in the horizontal direction. 

 
 
The topologies with maximum hardening shown in this paper 

have some differences when compared with the geometry of the 
commercial stents illustrated in the Fig. 2. The stent cell material 
distribution subjected to the expansion of 0.22x10-3m (Fig. 9) is 

similar to the topology of the compliance minimization problem 
(Sigmund, 2001). When the expansion displacement was increased 
to 0.44x10-3m, the relative density of the local material distribution 
in vertical direction close to the right edge was decreased. From this 
observation, it can be concluded that the stent cell topology 
subjected to the expansion of 0.44x10-3m is less stiff and more 
easily expanded when compared to the other example. Another 
difference is the size of the holes near the middle of the left edge in 
the two topologies. These details suggest that the stent cell design is 
based on the diameter of the artery where the stent will be 
implanted. On the other hand, in commercial stents, the cell 
geometry does not depend on the diameter of the blood vessel where 
the stent will be implanted.         

The flexible stent cell topologies provided in this paper have 
two features that are not found in commercial stents. The sudden 
variation of material distribution of the flexible topologies shown in 
this paper is not usually found in commercial stents.  As shown in 
the Fig. 2, commercial stents use continuous structural elements of 
curved geometry in the longitudinal direction in order to improve 
the flexibility of the cell. Moreover, commercial stents are designed 
only to absorb the elastic strain energy during the implant 
procedure. In the stent cells topologies illustrated in this work, the 
stiffness of point of application of the forces on the design space 
was also maximized. In commercial stents, only the material 
stiffness guarantees their structural integrity in large deflections.  

The figure 2 illustrates the plane model of the stent after the 
union of the flexible and stiff topologies shown in the Fig. 10 and 
Fig. 11. Subsequently, this plane model was wrapped into a 
cylindrical shape to generate the three-dimensional stent model. The 
diameter of this stent model before the angioplasty is 3mm 
(Guimarães et al., 2006). If the plane model shown in the Fig. 2 is 
subjected to the percentage displacement equals to 70%, the 
diameter of three-dimensional stent will increase 2.1mm. Thus, the 
final diameter of the expanded stent will be 5.1mm. In a typical 
angioplasty, this stent model could be used, for example, in a 
diseased vessel diameter into a range of 4mm to 6mm. 

Conclusions 

In the present paper, it was proposed a methodology for the 
optimal topology design of the plane model of stainless steel stent 
cells by considering separately their flexibility and hardening. The 
stent cell topologies were computed using an algorithm based on the 
heuristics and in the optimality criteria method. 

It was demonstrated that is possible to design stents cell using 
the topology optimization technique. Although there are significant 
differences between the topologies provided in the present work and 
in the commercial stents geometry, all examples met the flexibility 
and hardening criteria. The stent cells subjected to the plastic strain 
provided in this paper shown that the material distribution depends 
on the size of the artery diameter where they will be implanted. In 
commercial stents, the elastic deflection energy tends to distribute 
along the flexible structural element with curved geometry. In the 
flexible optimal topologies shown in the present paper, the elastic 
energy is concentrated in the regions with sudden variation of 
material distribution. Furthermore, the structural integrity of the 
flexible optimal topologies is preserved since the stiffness of the 
point of contact between the stent cell and the vessel wall is 
maximized. 
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