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Evaluation of Non-Singular BEM 
Algorithms for Potential Problems  
Two non-singular boundary element method (BEM) algorithms for two-dimensional 
potential problems have been implemented using isoparametric quadratic, cubic and 
quartic elements. The first one is based on the self-regular potential boundary integral 
equation (BIE) and the second on the self-regular flux-BIE. The flux-BIE requires the C1,α 
continuity of the density functions, which is not satisfied by the standard isoparametric 
elements. This requirement is remedied by adopting the relaxed continuity strategy. The 
self-regular flux-BIE has presented some poor and oscillatory results, mainly with 
continuous quadratic elements. This odd behavior has completely disappeared when 
discontinuous elements, which satisfy the continuity requirement, were applied, and this 
suggests that the 'relaxed continuity hypothesis' seems to be the main cause of numerical 
errors in the implementation of the self-regular flux-BIE. On the other side, the potential 
algorithm has shown very reliable solutions. 
Keywords: boundary element method, non-singular BEM, self-regular formulations, 
relaxed continuity, hypersingular formulation 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
1Dealing with singular integrals, including strongly-singular 

(Cauchy principal value type) and hypersingular (Hadamard finite 
part type) has been a daunting task in the development of boundary 
element method (BEM) algorithms. A huge research effort has been 
devoted to deal with singular integrals, numerically and analytically, 
in the development of BEM algorithms since the beginning of the 
method. However, during the last few years, several researchers 
have demonstrated that the boundary integral equation (BIE) can be 
remodeled in weakly-singular or non-singular forms, which remove 
all strongly or hypersingular integrals. 

Self-regular forms of the Somigliana displacement identity 
(SDI) and the Somigliana stress identity (SSI) have been presented 
by Cruse and Richardson (1996) and Richardson et al. (1997). For 
3-D potential theory, Cruse and Richardson (2000) have presented 
two self-regular formulations of the BIE, while Jorge et al.  (2001) 
in a similar fashion have developed the correspondent self-regular 
forms for 2-D problems.  

The first formulation (potential-BIE) is achieved by subtracting 
a constant potential from the original BIE, while the second 
formulation (flux-BIE) is derived by taking the gradient of the 
potential integral equation. The BIE obtained in this way has one 
strongly singular and one hypersingular integral. Regularization is 
then applied to both integrals by means of a linear potential field. 
Thus, this vector equation is projected in the normal direction, 
which generates the flux scalar equation. Nevertheless, the higher-
order of the singularities in the kernels requires more smoothness of 
the densities for the given integral to be finite, just like on the 
standard hypersingular formulation. According to Krishnasamy et 
al. (1992), a sufficient condition for the existence of the 
hypersingular integral is the C1,α continuity of the density function at 
the source point. Standard isoparametric boundary elements do not 
satisfy this requirement and for this reason, approximate solution 
techniques for solving hypersingular integral equations by means of 
the BEM require special consideration.  
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In spite of the very successful numerical results reported by 
Richardson et al. (1997), Richardson and Cruse (1999), Chien et al. 
(1991), Huang and Cruse (1994) using various forms of these 
relaxed algorithms combined with piece-wise C1,α interpolations, 
Martin and Rizzo (1996), Krishnasamy et al. (1992) have concluded 
that these algorithms could not be theoretically justified. This means 
that, from a strictly mathematical point of view, only boundary 
element implementations that ensure C0,α or C1,α continuity at each 
collocation point can be applied in the discretizations of the 
standard, or the hypersingular boundary integral equations, 
respectively. Martin et al. (1998) renewed the discussion between 
the theoretical continuity requirements and the good numerical 
results reported by Cruse and his co-workers. Jorge et al. (2003) and 
Porto et al. (2005) presented a non-symmetric variational approach 
to enforce C1,α continuity requirement at inter-element nodes in the 
self-regular traction-BIE and flux-BIE, discretized using relaxed 
continuity approach with Lagrangian C0 elements. They achieved 
impressive improvements with this approach, mainly when 
quadratic boundary elements were used, while only small 
improvements were obtained when the degree of interpolating 
polynomial was increased to cubic and quartic. The lack of 
smoothness of the displacement derivatives or potential derivatives 
at inter-element nodes is shown to be an important source of errors 
for the traction-BIE and flux-BIE formulation, respectively, 
especially for quadratic elements. 

The main purpose of this work is to investigate and discuss the 
ability and accuracy of two boundary element method (BEM) 
algorithms based on the self-regular forms of the potential and the 
flux boundary integral equations (BIE), respectively. This paper also 
attempts to answer the claim by Liu and Rudolphi (1999) about the 
need for a convergence study of the relaxation strategy on the self-
regular flux-BIE. The validity of the 'relaxed continuity' hypothesis 
in the self-regular flux-BIE implementation is investigated by 
comparing the numerical results of two benchmark problems 
analyzed with continuous and discontinuous quadratic, cubic and 
quartic boundary elements.  
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Nomenclature 

A = vectorial mapping function 
B = vectorial mapping function 
h = hydraulic potential (Example 2)  
K = coefficient of permeability (Example 2) 
J = Jacobian of the transformation from global coordinates 

to the intrinsic coordinates in the element 
M = number of element nodes 
Ne = number of boundary elements 
Ni = Lagrangian interpolation function 
N í = tangential derivative of the function Ni 

n(s) = exterior normal to the boundary at point s  
Q = flux 
r(y,s) = distance between points y and s 
s = boundary point 
S = boundary of the domain R 
T = potential 
T(s)  = potential at the boundary point s 
v = velocity (Example 2) 
x = auxiliary boundary node 
y = internal free point 
 

Greek Symbols 

∇ h = gradient of the hydraulic potential (Example 2)  
∇ T(s)= gradient of the potential at the boundary point s 
ξ = intrinsic coordinate in the boundary element 

Self-Regular BIE for 2-D Potential Problems 

The process of remodeling the BIE using expressions that 
contain bounded and easily computable integrals is called 
regularization. A usual approach for regularization consists in 
subtracting and adding back certain terms to the integral equations, a 
process which is equivalent to imposing simple solutions to the BIE. 
This process is performed so that at the boundary points, where the 
collocation and the field points coincide, the originally singular 
integrands would be zero-valued by subtraction, while the remaining 
added integrals are computable. This regularization process requires 
that the corresponding density functions satisfy certain continuity 
requirements, which are the same continuity requirements for the 
existence of the boundary integrals as representations of the original 
boundary value problem. In this sense, no extra continuity 
requirements are added to the equations in order to regularize them. 
Also, the result of the integrations has a physical meaning and is 
usually bounded for well-behaved problems. Thus, all the integrals 
in the BIE are in fact regular from the beginning, although they are 
not numerically computable in the way they were originally 
presented. Regularization only shows the natural regular character 
of these integrals, when the continuity conditions for the densities 
are satisfied, and thus the process is in fact the one of a self-
regularization, the integrals in the BIE having already a self-regular 
nature, which is brought up by the self-regularization process.  

A striking feature about these weakly singular and non-singular 
BIE formulations is that the two integrals are regularized to weakly 
singular or non-singular integrals at the same time. The properties of 
the fundamental solution play an important role in achieving this 
regularization. Weakly-singular, strongly-singular or hypersingular 
integrals are cancelled out completely and naturally from both sides 
of the BIE formulations by exploiting these properties. 

In this section these formulations are shown and further details 
about the analytical development are presented in Jorge et al. (2001) 
and in Cruse and Richardson (2000). The first formulation is the 
self-regular potential formulation wherein the unique potential at an 

arbitrary boundary point is used to regularize the singular integral 
identity. The self-regular approach emphasizes the fact that the use 
of singular potentials for Laplace's equation or elasticity is naturally 
formulated using either bounded or weakly singular potentials. The 
domain of the potential problem is a finite plane region R bounded 
by a closed curve S with a outward normal n(s). The points (y,s) are 
taken to be the interior free point and the boundary integration point, 
respectively. The interior form of the Green's identity is given by the 
following combination of a double and a single layer potential. 
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The term ∇∇∇∇T(s) is the gradient of the potential T evaluated at the 

boundary point s unless otherwise noted. The potential field T(y) 
satisfies Laplace's equation and the boundary conditions for the 
finite region. Using the directional derivative definition, then 
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is the derivative of the fundamental solution in the normal direction 
defined by the outward unit vector n(s). 

The Green's identity for problems in which the potential field is 
C0,α continuous in the Hölder sense can be regularized. The 
procedure of regularization is shown in Jorge et al. (2001) and 
consists in subtracting and adding back the integral  
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This integral has the value of T(x)(-2π), as the swept angle 

integral of the two-dimensional closed surface is 2π for any point y 
∈ R. The self-regular form of the potential-BIE is then given by 
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The result is the natural form of Green's identity as all 

unbounded terms are naturally canceled out. The first integral in Eq. 
(4) is regular and bounded for all points, while the second is weakly 
singular but also bounded. The result is called self-regularized in 
that the mathematical properties of the double-layer potential and 
the Hölder continuity of the harmonic function T(y) are all that is 
required to modify the original formulation. Since Eq. (4) is 
continuous for y → x, ∀ x ∈ S, including at corners, by taking the 
limit to the boundary, the boundary integral equation is obtained for 
all boundary points, and is given by 

 

( )[ ]( ) [ ]

( ) [ ]dS)y,s(r/lndndT

dS)y,s(r/lndndxT)s(T

S
S

S

1

10

∫

∫

+

−−=
 (5) 

 
The self-regular form of the flux-BIE is derived by taking the 

gradient of the integral representation for the potential at the interior 
point y, followed by subtracting and adding back a linear potential 
field given by 
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The gradient of this linear field is given by ∇TL(s) = ∇T(x). This 
use of a linear field is the analogous operation for the gradient 
equation as the constant field is for the regular potential 
representation. Rudolphi (1991) has presented the same regularization 
for the hypersingular integral equation by using 'simple solutions' of 
the potential problem while Muci-Küchler and Rudolphi (1993) have 
extended the formulation to elastostatics in the same way.  

According to the detailed procedure shown in Cruse and 
Richardson (2000) and Jorge et al. (2001), the following expression 
is obtained: 
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This equation is the self-regular form of the potential gradient at 

an interior point y, which is regular for all interior point limits to the 
boundary, where the continuity condition T(y) ∈ C1,α is satisfied.  

By taking the limits to the boundary, y → x, at all boundary 
points satisfying the condition T(y) ∈ C1,α, at any given point s≡ x, 
the following regular boundary integral equation is obtained: 
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This vector equation is called the gradient-BIE Green's identity 

for potential theory. This equation is overspecified and it is usual to 
operate on it with the local normal ni(x). The resulting scalar 
equation is called the flux-BIE, and this is the usual scalar form 
which produces the best numerical results. The flux-BIE is 
expressed by 
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It is worth noting that the above self-regular formulations, the 

potential-BIE in Eq. (5) and the flux-BIE in Eq. (9) were obtained 
through manipulation and limit to the boundary of the integral 
equations before discretization. The 'self-regular' form of these 
equations and their limit to the boundary are predicated on the same 
continuity requirements that went into the derivation of the singular 
integrals in the original problem, before regularization. Thus, the 
regularized integrals contain no strong or non-integrable singularity 
only if the density is sufficiently continuous at the limit as the field 
point goes to the boundary, as assumed in the derivations. The next 
section discusses the discretization of these integral equations, 
where the boundary is discretized into standard isoparametric 
elements, which satisfy all the continuity requirements for the 
potential-BIE, but do not satisfy the continuity requirements for the 
flux-BIE at a finite number of inter-element nodes in case standard 
continuous isoparametric boundary elements are used. Since these 
continuity requirements refer only to collocation points, a 'relaxed 
continuity' approach is introduced for the case of collocation at an 
inter-element node according to Huang and Cruse (1994), Cruse and 
Richardson (1996), Richardson et al. (1997), Richardson and Cruse 
(1999), and different alternatives are discussed, which either allow 
or avoid the collocation at such nodes. Numerical results obtained 

from these alternatives, as well as from the self-regular potential 
BIE are presented. 

Computational BEM Algorithms 

The main features of the two non-singular BEM algorithms 
implemented in this work are described bellow. The first one is 
based on the self-regular potential-BIE (Eq. (5)) and the second 
algorithm is based on the self-regular flux-BIE (Eq. (9)). By 
dividing the boundary S of the domain into Ne elements, Eq. (5) is 
rewritten in its discretized form. As in the respective continuous 
form (Eq. (5)), in the discretized potential-BIE, the first integral, 
which was originally singular is self-regularized and bounded, while 
the second remains weakly singular and needs no regularization to 
be evaluated. Thus, the first integral is numerically evaluated by 
applying a standard Gaussian quadrature with twelve integration 
points. Due to the logarithmic nature of the fundamental solution in 
2-D, the second integral in Eq. (5) is numerically performed by 
means of the logarithmic quadrature when the collocation point is 
placed on the element under integration. Quadratic, cubic and 
quartic boundary elements based on standard C0 isoparametric 
representation have been implemented and tested using the 
potential-BIE formulation. 

The BEM algorithm based on the flux-BIE follows the same 
basic assumptions used for the potential-BIE formulation, but some 
special features should be emphasized if the same aforementioned 
interpolation schemes are adopted. These boundary elements do not 
preserve the C1,α continuity of the potential that is required for the 
mathematical validity of the self-regular flux-BIE (Eq. (9)). 
However, in Richardson et al. (1997) and Richardson and Cruse 
(1999) the authors claim that this BEM algorithm matches the 
bounded nature of the BIE in a two-sided sense without invalidating 
the underlying continuity requirements for the flux formulation, 
which is the essence of relaxed continuity approach (piecewise 
smoothness). Unlike the potential-BIE, on the flux-BIE all integrals 
in Eq. (9) are regular and a standard numerical Gaussian quadrature 
scheme is used to evaluate these integrals. 

The self-regular flux-BIE formulation requires an explicit 
representation of potential gradient at the boundary. The gradient 
vector is univocally obtained for each boundary element in terms of 
the local tangential derivative and the normal derivative (flux). The 
tangential derivatives of the potential are computed for each 
boundary element in terms of the intrinsic coordinate ξ, according to 
the following expression: 
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where the functions Ni(ξ) are the Lagrangian interpolations of order 
(m-1) in terms of the intrinsic coordinate ξ, m is the number of 
nodes per element, and the Jacobian (J) is obtained in the usual 
manner for the isoparametric model of the element geometry. The 
gradient of the potential at any boundary point is given in terms of 
mapping functions A and B, as 
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where Qj is the nodal value of the flux. The mapping functions A 
and B are given by 
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where ξ and ni are respectively the intrinsic coordinate and the 
components of the normal unit vector at the integration point ξ. 

The regularizing terms for a given element, which shares the 
collocation point xI, are expressed as follows: 
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Therefore, the gradient for the M-th element is evaluated using 

Eq. (11). The potential is continuous and it may be checked that the 
density functions T(s)-TL(s) and ∇∇∇∇T(s) -∇∇∇∇TL(s) are O[r(s,x)2]  and 
O[r(s,x)], respectively. 

One possible important source of error when using self-regular 
flux formulation is that due to the evaluation of ∇∇∇∇T(ξ) at some point 
on the boundary, both normal and tangential derivatives of T(x) are 
required at this point. As the flux-BIE does not explicitly contain the 
tangential derivative, it is obtained in this code by taking the 
derivatives of the shape functions that are approximating T(ξ) in an 
element. Therefore, tangential derivatives in this scheme are 
obtained from polynomials that are one degree lower than the 
polynomials used to obtain normal derivatives at the same point. 
Thus the gradient is obtained in a somewhat unbalanced manner. 

On the other hand, the regularizing gradients in Eq. (9) are 
single-valued in the analytical model at the collocation point xI, but 
these values are not unique in the "relaxed continuity" BEM 
algorithm. Therefore, the element based values are used locally for 
integrals in the elements that contain the collocation point, while the 
average nodal value of the gradient at the collocation is used to 
regularize the integrals that do not share the collocation point. As a 
difference exists between the gradients evaluated at any two sharing 
elements at a node, this causes some error in the solution. Even in a 
smooth section of the boundary, the origin of this difference is the 
tangential derivative of the potential, which is written as the 
derivative of the different interpolating functions, one for each 
element sharing the collocation point. When the collocation point is 
placed at an intra-element node or discontinuous elements are used, 
the regularizing gradient is unique, and this kind of error does not 
occur because C1,α continuity requirement is met. 

In order to investigate which of these sources of error is dominant 
in this algorithm, discontinuous elements were implemented in the 
discretization of the self-regular flux-BIE formulation. Such procedure 
allows the split of the sources of errors introduced by the SRFF. If 
discontinuous elements are employed, the tangential derivative of the 
potential is still evaluated through the derivative of the element 
interpolation function. However, there is no need to adopt the "relaxed 
continuity" hypothesis, since the smoothness requirement is met at 
each collocation point, which is always an intra-element node. 
Therefore, for discontinuous elements, the potential gradient is single 
valued at each collocation point. 

Numerical Results 

Example 1 

A steady state heat conduction problem, called the Motz 
problem, was analyzed using the BEM algorithms previously 
explained in the previous section. This is a classical problem in 
potential theory, used as a benchmark problem for comparison 
between different approaches to evaluate how accurately they deal 
with singular fields (Jaswon and Symm, 1977). The geometry and 
boundary conditions are represented in Fig. 1. There is a singularity 
at point O resulting from the existence of a flux discontinuity at this 
point. 

 
 

 
Figure 1. Geometry and boundary conditions of the M otz Problem. 

 
 
The problem was firstly analyzed using the coarsest mesh 

shown in Fig. 1, where only the element numbers are represented. A 
non-hierarchical p-refinement is performed by increasing the order 
of the interpolation functions by means of the application of 
quadratic, cubic and quartic boundary elements. 

In case discontinuous elements are applied, the collocation 
points are moved from both ends to positions inside the element at a 
distance of 5% of the length of the element. 

The potential results on edge OB obtained in this work are 
compared to the results presented by Jaswon and Symm (1977), 
París and Cañas (1997) using standard BEM with quadratic 
boundary elements and Whiteman and Papamichael (1972). The 
numerical results achieved by the application of the self-regular 
potential BIE formulation (SRPF) and the results from Jaswon and 
Symm (1977), París and Cañas (1997) and Whiteman and 
Papamichael (1972) are in very good agreement, as well as those 
from the self-regular flux-BIE formulation with discontinuous 
elements (SRFF-disc.). The maximum errors were 0.44% for SRPF 
and 0.09% for SRFF with discontinuous elements. On the other side, 
the results from the self-regular flux-BIE with continuous quadratic 
elements have been shown to be very poor, oscillating around the 
reference answer. The SRFF results with cubic and quartic 
continuous elements also have sufficient accuracy. 

The flux results obtained by means of the three BEM 
approaches (SRPF, SRFF, SRFF-disc.) over the edge OA, where it 
is known that the flux is singular at point O, have shown good 
agreement to each other for points far enough from the singular 
point. Again some significant differences have been observed for 
the SRFF results using continuous quadratic elements. For points 
very close to the singular point O, the SRPF has presented some 
very inaccurate results. The results obtained from the SRFF seem to 
fit the flux behavior better than the potential formulation. Among 
the flux results for the SRFF approach, the results for discontinuous 
elements and quartic continuous elements appear to give the best 
approximation for the singular tendency of the flux at point O as the 
normalized distance d/L goes to zero. 

The poor results using the SRFF combined with continuous 
quadratic element motivated a convergence study using increasingly 
refined meshes. Starting from the mesh shown in Fig. 1, seven 
additional refined meshes were generated by doubling the number of 
elements consecutively. In each of the straight lines OA and OB, the 
ratio of the longest element to the shortest element is 10, and the 
grading process follows a geometric progression. 

Again, the oscillatory behavior has been observed for all the 
numerical potential results achieved using the SRFF with 
continuous quadratic boundary elements for all the graded meshes, 
while this did not happen in the correspondent answers obtained 
using quadratic discontinuous elements. The highest numerical 
errors for each mesh are presented in Fig. 2. 
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Figure 2. Magnitude error potential in the edge OB using the self-regular flux-BIE. 

 
 

Analogous behavior is observed for the flux results obtained 
near to the singular point O by means of the SRFF with continuous 
quadratic boundary elements for all the graded refined meshes, 
which for the sake of brevity are not presented here. As previously 
pointed out, the poor results for the SRFF with continuous quadratic 
elements could be related to inaccuracies in the evaluation of the 
tangential derivative of the potential or the assumption of the 
"relaxed continuity" hypothesis, implying in non-single valued 
potential gradient at inter-element nodes. Therefore, in order to 
investigate the main source of inaccuracies, five meshes with 
quadratic discontinuous boundary elements similar to meshes R1 to 
R5 were taken using discontinuous elements instead of continuous 
elements. Similar meshes with cubic and quartic discontinuous 
elements were also analyzed. The potential results along the edge 
OB for the SRFF with discontinuous elements are compared to the 
solutions presented by Jaswon and Symm (1977). The highest 
magnitude errors along the edge OB for both continuous and 
discontinuous SRFF are shown in Fig. 2. 

It can be noticed from Fig. 2 that there is a significant 
improvement in result accuracy when discontinuous quadratic 
elements are employed instead of continuous quadratic elements. 
Moreover, the oscillatory convergence behavior for continuous 
quadratic elements becomes monotonic for discontinuous elements 
of the same order. Although there is some improvement in result 
accuracy when discontinuous cubic and quartic elements are 
applied, the improvement rate is not as noticeable as for quadratic 
elements. 

It seems that the different improvement rates obtained for 
quadratic, cubic and quartic interpolations are in someway related 
with the proportion of inter-element to intra-element nodes. Based 
on the fact that when adopting the "relaxed continuity" approach the 
regularizing gradient is not single-valued at inter-element nodes, and 
that this kind of error is not introduced when the collocation point is 
placed at an intra-element node in a closed boundary; when using 
continuous quadratic elements, for each equation related to a 
collocation point shared by two elements there is an equation related 
to an intra-element node, which is a proportion of 1:1, for cubic 
elements this proportion is 1:2 and in the case of quartic elements 
1:3. So the analysis using quadratic element is the most critical with 
regard to regularizing gradient. 

Example 2 – Ground Excavation 

The second problem represents the study of the influence of an 
excavation in the ground water flow according to the Darcy's law, 
which relates the flux of water through the soil and the gradient of 
the hydraulic potential. For the isotropic case, this law assumes the 
form 

 

hK∇−=ν  (14) 
 

where ν is the velocity field, h the hydraulic potential and K the 
coefficient of permeability. The excavation is large enough to allow 
a plane study of the ground water flow problem and it is also 
assumed that there is no influence of the excavation at a distance of 
100 m from its center. The dimensions and boundary conditions are 
shown in Fig. 3, which also includes the assumed thickness of the 
dry and wet layers as well as the existence of a waterproof layer on 
the edge EF. There is an axis of symmetry coincident with the edge 
AF. Under the hypothesis of incompressible soil and water, this 
problem is governed by Laplace's equation, with a singularity in flux 
solution at point B. 
 
 

 
Figure 3. Geometry and boundary conditions – Exampl e 2. 
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At first, three different meshes have been analyzed using 
quadratic, cubic and quartic elements, respectively, and the two self-
regular algorithms have been applied. These meshes are referred 
respectively as M1-quadratic, M1-cubic and M1-quartic, and the 
boundary points are evenly spaced on all edges except on the edges 
AB and BC, where the mesh is graded following a geometric 
progression, being the ratio of the longest element to the shortest 
element equal 10. 

The numerical results for the potential in the edge BC using the 
meshes M1 were compared to finite element (FE) results for a very 
fine mesh (18432 degrees of freedom) taken as a reference solution, 
which has been accomplished using ANSYS®, version 11.0. The 
potential results obtained from the SRPF with continuous quadratic, 

cubic and quartic elements and the SRFF with discontinuous 
elements and continuous quartic elements are in very close 
agreement with the FE results and with the numerical solution 
presented by París and Cañas (1997). Some numerical flux results 
on the edge AB are plotted in Fig. 4. On the edge AB, the flux 
results are very close to each other for points far enough from the 
singular point B, while near this singular point the local results 
obtained using the SRPF with all continuous elements and the SRFF 
algorithm with continuous quadratic and cubic elements are 
significantly different from the FE results. The results obtained in 
this example even using coarse meshes show that the SRFF 
algorithm provides sufficiently accurate results when either 
discontinuous elements or continuous quartic elements are used. 

 

 
 

Figure 4. Flux on edge AB near to the singular poin t. 

 
As can be noticed in both examples, when using SRFF with 

quadratic elements the results have shown to be very poor and 
oscillatory. In order to check the convergence of the problem, each 
of the three basic meshes (M1) has been successively refined 
splitting each element in two new ones with the same length in all 
edges except at edges AB and BC, where the nodes were also 
relocated according to the geometric progression previously 
explained for Example 1. Basically the same oscillatory behavior 
observed in the quadratic-SRFF results of the Example 1 has been 
observed in Example 2. The possible error introduced by the 
assumption of the 'relaxed continuity' hypothesis on the self-regular 
flux formulation was analyzed following the same procedure 
adopted in Example 1. BEM solutions for potential and flux along 
the edges AB and BC, respectively, for meshes M1-M4 using 
quadratic, cubic and quartic interpolation functions are compared to 
FE solution to determine the maximum relative error. The results for 
the magnitude of the error are plotted in Fig. 5 and Fig. 6 for the 
SRFF with both continuous and discontinuous quadratic, cubic and 
quartic boundary elements. 

Again, it is observed that the accuracy of the results for the 
SRFF is improved when discontinuous elements are implemented. 
Also, the improvement rate is higher for quadratic interpolation than 
for cubic and quartic interpolations. In fact, the use of discontinuous 
quartic elements on the SRFF algorithm instead of continuous 
elements of the same order presents the smallest gain in accuracy of 
the potential and flux. 

Based on this example, it seems that the assumption of the 
'relaxed continuity' hypothesis has indeed a great influence on the 

accuracy of the results from the SRFF with continuous elements, 
despite some good results achieved with quartic elements. The 
discontinuity of the gradient of the potential has greater influence in 
results accuracy when cubic and especially quadratic elements are 
used, since as previously explained, the proportion of inter-element 
to intra-element nodes is lower in these cases than for quartic 
elements. These results therefore strengthen the conclusions drawn 
for the first example. 

Conclusions  

The self-regular potential formulation has shown very accurate 
and stable answers even to treat singular problems. On the other 
hand, self-regular flux formulation has presented some very poor 
and oscillatory results, especially when continuous quadratic 
elements are adopted, even for highly refined meshes. The influence 
of discontinuity of the regularizing gradient at inter-element nodes, 
of which value depends upon the element to be integrated, seems to 
be the main cause, which contributes to some odd results using the 
SRFF algorithm with continuous boundary elements. Previous work 
of the authors with the self-regular gradient-based BIE formulations 
(SRFF and self-regular traction-BIE) for 2-D problems pointed out 
to the tangential derivative interpolation as the dominant error 
source, for various degrees of the interpolating functions. The 
current results show otherwise that the tangential derivatives 
introduced in this formulation by deriving the interpolation schemes 
might not be the dominant error source for all cases. 
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Figure 5. Magnitude error potential using the SRFF.  

 
 

 
 

Figure 6. Magnitude error flux using the SRFF. 

 
 

The explanation for better SRFF results achieved with higher 
order continuous elements is that when using quadratic elements, for 
each equation related to an inter-element node there is one equation 
related to an intra-element node, which represents a proportion of 
1:1, whereas for cubic and quartic elements this proportion is lower, 
being 1:2 and 1:3 respectively. The oscillatory behavior completely 
disappeared when the SRFF with discontinuous elements have been 
applied and the BEM solutions are very accurate. In this case, all 
collocation points are restricted to intra-element nodes where the 
densities are always C1,α Hölder continuous. The comparison 
between the SRFF results based on continuous elements and the 
correspondent ones obtained by means of discontinuous elements 
leads to conclusion that the relaxed continuity is not reliable and that 

the smoothness requirements assumed in the derivation of the BIE 
formulations must be preserved. This kind of error does not happen 
when the source point is located at an intra-element node, where the 
smoothness requirement is met and the present numerical results 
clearly bring this fact out. Although the use of standard continuous 
elements is more appealing and easier than continuous elements 
based on C1 interpolation functions or even discontinuous elements, 
from the results obtained so far, it seems that the use of this kind of 
element on the SRFF is not reliable. It seems that the smoothness 
requirement for the SRFF should be satisfied in order to guarantee 
results accuracy and convergence. 



G. O. Ribeiro et al. 

268 / Vol. XXXI, No. 3, July-September 2009 ABCM  

Acknowledgements 

The authors gratefully acknowledge the support received from 
the following Brazilian agencies of research funding: CNPq – 
Conselho Nacional de Desenvolvimento Científico e Tecnológico; 
FAPEMIG – Fundação de Amparo à Pesquisa do Estado de Minas 
Gerais and CAPES – Coordenação de Aperfeiçoamento de Pessoal 
de Nível Superior. 

References 

Chien, C. C., Rajiyah, H. and Atluri, S. N., 1991, “On the evaluation of 
hyper-singular integrals arising in the boundary element method for linear 
elasticity”, Computational Mechanics, Vol. 8, pp. 57-70. 

Cruse, T. A. and Richardson, J. D, 1996, “ Non-singular somigliana 
stress identity in elasticity”, International Journal for Numerical Methods in 
Engineering, Vol. 39, pp. 3273-3304. 

Cruse, T. A. and Richardson, J. D., 2000, “Self-regularized 
Hypersingular BEM for Laplace’s Equation”, In: Matemathical Aspects of 
Boundary Element Methods, Ed. Chapman & Hall, Boca Raton. 

Huang, Q. and Cruse, T. A., 1994, “On the non-singular traction-BIE in 
elasticity”, International Journal for Numerical Methods in Engineering, 
Vol. 37, pp. 2041-2072. 

Jaswon, M. A. and Symm, G. T., 1977, “Integral Equation Methods in 
Potential Theory and Elastostatics”, Ed. Academic Press. 

Jorge, A. B., Cruse, T. A., Fisher, T. S. and Ribeiro, G. O., 2003, “A 
new variational self-regular traction-BEM formulation for inter-element 
continuity of displacement derivatives”, Computational Mechanics, Vol. 32, 
pp. 401-414. 

Jorge, A. B., Ribeiro, G. O., Cruse, T. A. and Fisher, T. S., 2001, “Self-
regular boundary integral equation formulations for Laplace’s equation in 2-
D”, International Journal for Numerical Methods in Engineering, Vol. 51, 
pp.1-29. 

Krishnasamy, G., Rizzo, F. J. and Rudolphi, T. J., 1992, “Continuity 
requirements for density funcions in the boundary integral equation method”, 
Computational Mechanics, Vol. 9, pp. 267-284. 

Liu, Y. J. and Rudolphi, T. J., 1999, “New identities for fundamental 
solutions and their applications to nonsingular boundary element 
formulations”, Computational Mechanics, Vol. 24, pp. 286-292. 

Martin, P. A. and Rizzo, F. J., 1996, “Hypersingular integrals: how 
smooth must the density be?”, International Journal for Numerical Methods 
in Engineering, Vol. 39, pp. 687-704. 

Martin, P. A., Rizzo, F. J. and Cruse, T. A., 1998, “Smoothness-
relaxation strategies for singular and hypersingular equations”, International 
Journal for Numerical Methods in Engineering, Vol. 42, pp. 885-906. 

Muci-Küchler, K. H. and Rudolphi, T. J., 1993, “Coincident collocation 
of displacement and tangent derivative boundary integral equations in 
elasticity”, International Journal for Numerical Methods in Engineering, 
Vol. 36, pp. 2837-2849. 

París, F. and Cañas, J., 1997, “Boundary Element Method: 
Fundamentals and Applications”,  Oxford University Press.  

Porto, P. A. C., Jorge, A. B. and Ribeiro, G. O., 2005, “Extension of the 
variational self-regular approach for the flux boundary element method 
formulation”, Computer Modeling in Engineering & Sciences, Vol. 10, pp. 
65-77. 

Richardson, J. D. and Cruse, T. A., 1999, “Weakly singular stress-BEM 
for 2D elastostatics”, International Journal for Numerical Methods in 
Engineering, Vol. 45, pp. 13-35. 

Richardson, J. D., Cruse, T. A. and Huang, Q., 1997, “On the validity of 
conforming BEM algorithms for hypersingular boundary integral equations”, 
Computational Mechanics, Vol. 20, pp. 213-220. 

Rudolphi, T. J., 1991, “Use of simple solutions in the regularization of 
hypersingular boundary integral equations”, Mathematical Computer 
Modelling, Vol. 15, pp. 269-278. 

Whiteman, J. R. and Papamichael, N., 1972, “Treatment of mixed 
boundary value problems by confromal transformation methods”, Journal of 
Applied Mathematics and Physics, Vol. 23, pp. 655-664. 

 


