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Two non-singular boundary element method (BEM) wigms for two-dimensional
potential problems have been implemented usingaisopetric quadratic, cubic and
quartic elements. The first one is based on theregllar potential boundary integral
equation (BIE) and the second on the self-regulac-BIE. The flux-BIE requires the'C
continuity of the density functions, which is natisfied by the standard isoparametric
elements. This requirement is remedied by adogtiegrelaxed continuity strategy. The
self-regular flux-BIE has presented some poor arstillatory results, mainly with
continuous quadratic elements. This odd behavios hampletely disappeared when
discontinuous elements, which satisfy the congngtjuirement, were applied, and this
suggests that the 'relaxed continuity hypothesishs to be the main cause of numerical
errors in the implementation of the self-regularxBIE. On the other side, the potential
algorithm has shown very reliable solutions.
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Introduction

Dealing with singular integrals, including stronglyngular
(Cauchy principal value type) and hypersingulardataard finite
part type) has been a daunting task in the devetapof boundary
element method (BEM) algorithms. A huge researébrieiias been
devoted to deal with singular integrals, numericalthd analytically,
in the development of BEM algorithms since the begig of the
method. However, during the last few years, sevesakarchers
have demonstrated that the boundary integral emuéBIE) can be
remodeled in weakly-singular or non-singular formbjch remove
all strongly or hypersingular integrals.

Self-regular forms of the Somigliana displacemedéntity
(SDI) and the Somigliana stress identity (SSI) hbgen presented
by Cruse and Richardson (1996) and Richardson. ¢1297). For
3-D potential theory, Cruse and Richardson (20@G)ehpresented
two self-regular formulations of the BIE, while deret al. (2001)
in a similar fashion have developed the correspondelf-regular
forms for 2-D problems.

The first formulation (potential-BIE) is achieveg bubtracting
a constant potential from the original BIE, whileet second
formulation (flux-BIE) is derived by taking the gliant of the
potential integral equation. The BIE obtained ifs ttvay has one
strongly singular and one hypersingular integratgarization is
then applied to both integrals by means of a lirgstential field.
Thus, this vector equation is projected in the radrmiirection,
which generates the flux scalar equation. Nevezislthe higher-
order of the singularities in the kernels requitese smoothness of
the densities for the given integral to be finipast like on the
standard hypersingular formulation. According tasknasamy et
al. (1992), a sufficient condition for the existenmf the
hypersingular integral is the'€continuity of the density function at
the source point. Standard isoparametric boundarpents do not
satisfy this requirement and for this reason, axiprate solution
techniques for solving hypersingular integral etpret by means of
the BEM require special consideration.
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In spite of the very successful numerical resuéigorted by
Richardson et al. (1997), Richardson and CruseQ)l 3hien et al.
(1991), Huang and Cruse (1994) using various foohghese
relaxed algorithms combined with piece-wisé®Gnterpolations,
Martin and Rizzo (1996), Krishnasamy et al. (198@ye concluded
that these algorithms could not be theoreticalbfified. This means
that, from a strictly mathematical point of viewnlp boundary
element implementations that ensur¥ 6r C** continuity at each
collocation point can be applied in the discretmas of the
standard, or the hypersingular boundary integraliadqgns,
respectively. Martin et al. (1998) renewed the aston between
the theoretical continuity requirements and the dyommerical
results reported by Cruse and his co-workers. Jergé (2003) and
Porto et al. (2005) presented a non-symmetric tianial approach
to enforce &* continuity requirement at inter-element nodes i@ th
self-regular traction-BIE and flux-BIE, discretizagsing relaxed
continuity approach with Lagrangian® @lements. They achieved
impressive improvements with this approach, mainkhen
quadratic boundary elements were used, while ontyalls
improvements were obtained when the degree of paotating
polynomial was increased to cubic and quartic. Taek of
smoothness of the displacement derivatives or piateterivatives
at inter-element nodes is shown to be an impogantce of errors
for the traction-BIE and flux-BIE formulation, resgtively,
especially for quadratic elements.

The main purpose of this work is to investigate distuss the
ability and accuracy of two boundary element meth&EM)
algorithms based on the self-regular forms of tbeeptial and the
flux boundary integral equations (BIE), respectyvdlhis paper also
attempts to answer the claim by Liu and Rudolp®i9d) about the
need for a convergence study of the relaxatiortegjyaon the self-
regular flux-BIE. The validity of the 'relaxed camiity' hypothesis
in the self-regular flux-BIE implementation is irstgated by
comparing the numerical results of two benchmarkbfams
analyzed with continuous and discontinuous quadratibic and
quartic boundary elements.
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Nomenclature

A =vectorial mapping function

B = vectorial mapping function

h = hydraulic potential (Example 2)

K = coefficient of permeability (Example 2)

J = Jacobian of the transformation from global cdorates
to the intrinsic coordinates in the element

M = number of element nodes

Ne = number of boundary elements

N; = Lagrangian interpolation function

N’; = tangential derivative of the function N

n(s) = exterior normal to the boundary at point s

Q =flux

r(y,s) = distance between points y and s

= boundary point

= boundary of the domain R

= potential

= potential at the boundary point s
= velocity (Example 2)

= auxiliary boundary node

= internal free point

<x<A440®
@

Greek Symbols

[7h = gradient of the hydraulic potential (Example 2)
[JT(s)=gradient of the potential at the boundary point s
& = intrinsic coordinate in the boundary element

Self-Regular BIE for 2-D Potential Problems

The process of remodeling the BIE using expressitrat
contain bounded and easily computable integrals cadled
regularization. A usual approach for regularizatioonsists in
subtracting and adding back certain terms to ttegal equations, a
process which is equivalent to imposing simple sohs to the BIE.
This process is performed so that at the boundainytqy where the
collocation and the field points coincide, the araly singular
integrands would be zero-valued by subtraction)eie remaining
added integrals are computable. This regularizgtimeess requires
that the corresponding density functions satisfstade continuity
requirements, which are the same continuity requergs for the
existence of the boundary integrals as representatf the original
boundary value problem. In this sense, no extratimcoity
requirements are added to the equations in ordexgalarize them.
Also, the result of the integrations has a physimekning and is
usually bounded for well-behaved problems. Thusth& integrals
in the BIE are in fact regular from the beginniathough they are
not numerically computable in the way they weregiodlly
presented. Regularization only shows the naturgllleg character
of these integrals, when the continuity conditidmisthe densities
are satisfied, and thus the process is in factahe of a self-
regularization, the integrals in the BIE havingealily a self-regular
nature, which is brought up by the self-regulai@aprocess.

A striking feature about these weakly singular and-singular
BIE formulations is that the two integrals are fagized to weakly
singular or non-singular integrals at the same tifiine properties of
the fundamental solution play an important roleathieving this
regularization. Weakly-singular, strongly-singular hypersingular
integrals are cancelled out completely and natufedim both sides
of the BIE formulations by exploiting these projest

In this section these formulations are shown amthén details
about the analytical development are presentedrigelet al. (2001)
and in Cruse and Richardson (2000). The first féaton is the
self-regular potential formulation wherein the urégpotential at an
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arbitrary boundary point is used to regularize $shrggular integral
identity. The self-regular approach emphasizesfabethat the use
of singular potentials for Laplace's equation @sgtity is naturally
formulated using either bounded or weakly singplatentials. The
domain of the potential problem is a finite plaegionR bounded

by a closed curv8& with a outward normai(s). The pointgy,s)are

taken to be the interior free point and the boupd#egration point,
respectively. The interior form of the Green's ititgris given by the
following combination of a double and a single lagetential.

(2/n)T(y)= —éT(s)D In[L/ r(s,y)|n (s)dS

(1)
+[0T(s)n(s)InfL/ r(s,y)]dS OyOR
S

The termOT(s) is the gradient of the potentiBevaluated at the
boundary points unless otherwise noted. The potential field T(y)
satisfies Laplace's equation and the boundary tiondi for the
finite region. Using the directional derivative ohition, then

Oliny/r)in(s) = (d/dn)infy/r (s.y)]

is the derivative of the fundamental solution ie tiormal direction
defined by the outward unit vectofs).

The Green's identity for problems in which the ptit field is
C% continuous in the Hélder sense can be regulariZete
procedure of regularization is shown in Jorge et(2001) and
consists in subtracting and adding back the integra

@

T(x)j0In[L/ r(s,y)]n (s)XS 3
S

This integral has the value of T(X)R as the swept angle
integral of the two-dimensional closed surfacedsd@ any pointy
[JR. The self-regular form of the potential-BIE is thgiven by

(27 )T(y)=(2/m)T(x)- ! [T(s)-T(X)Jonf 7 r(s,y)]n (s)ds

(4)
+[OT(s)n(s)In[L/ r(s,y)|dS
S

The result is the natural form of Green's identdy all
unbounded terms are naturally canceled out. Tkeifitegral in Eq.
(4) is regular and bounded for all points, while #econd is weakly
singular but also bounded. The result is calledregiularized in
that the mathematical properties of the doublerlpaential and
the Hdélder continuity of the harmonic functidrfy) are all that is
required to modify the original formulation. Sindeg. (4) is
continuous fory — x, 7x /7S including at corners, by taking the
limit to the boundary, the boundary integral equatis obtained for
all boundary points, and is given by

0= —é[T(s)—T(x)](d/dn)ln[l/ r(s,y)| ds

®)
+[(dT/dn) g InfL/ r(s.y)]dS
S

The self-regular form of the flux-BIE is derived Ibgking the
gradient of the integral representation for theeptiil at the interior
pointy, followed by subtracting and adding back a linpatential
field given by

T4 (9)=T()+ T b (6) - (] ®
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The gradient of this linear field is given ByT"(s)= OT(X). This
use of a linear field is the analogous operation tfee gradient
equation as the constant field is for the regulastemptial
representation. Rudolphi (1991) has presentedaime segularization
for the hypersingular integral equation by usinmpde solutions' of
the potential problem while Muci-Kichler and Rudul1993) have
extended the formulation to elastostatics in tmeesavay.

According to the detailed procedure shown in Cruse
Richardson (2000) and Jorge et al. (2001), theotig expression
is obtained:

(2/7)T(y); = (@m)T(x);
+£[T(s)—TL(s)]In[1/ r(sy)l; nj (s\s

- J[0T(s)-OT(x)]n(s)InfL / r(s,y)]; ds
S

()

This equation is the self-regular form of the pdiedrgradient at
an interior pointy, which is regular for all interior point limits tie
boundary, where the continuity condition T(y)C'* is satisfied.

By taking the limits to the boundary, — x, at all boundary
points satisfying the conditiof(y) O C'“, at any given poins=x,
the following regular boundary integral equatiomigained:

O:é[T(s)—TL(s)JIn[ll r(s,y)]’i]- n; (s)ds

(8)
- 1[0T(s)-OT(x)]n(s)InfL/ r(s,y)]; dS
S

This vector equation is called the gradient-BIE &r'e identity
for potential theory. This equation is overspedifand it is usual to
operate on it with the local normal(x). The resulting scalar
equation is called the flux-BIE, and this is theuaisscalar form
which produces the best numerical results. The -BIK is
expressed by

0=n; (x)é[T(s)—TL(s)Jln[ll r(s,y)]’ij n; (syds

9
-ni (x)J [OT ()~ OT(x)]n(s)In[L/ r(s.y)]; dS ©
S

It is worth noting that the above self-regular fotations, the
potential-BIE in Eq. (5) and the flux-BIE in Eq.)(%ere obtained
through manipulation and limit to the boundary bk tintegral
equations before discretization. The 'self-regufarm of these
equations and their limit to the boundary are praiid on the same
continuity requirements that went into the derieatdf the singular
integrals in the original problem, before regulatian. Thus, the
regularized integrals contain no strong or nongrable singularity
only if the density is sufficiently continuous &tetlimit as the field
point goes to the boundary, as assumed in theatems. The next
section discusses the discretization of these nategquations,
where the boundary is discretized into standardpasametric
elements, which satisfy all the continuity requiesns for the
potential-BIE, but do not satisfy the continuityjugrements for the
flux-BIE at a finite humber of inter-element nodascase standard
continuous isoparametric boundary elements are.Siede these
continuity requirements refer only to collocationiqts, a ‘relaxed
continuity' approach is introduced for the caseafocation at an
inter-element node according to Huang and Crus@4), ruse and
Richardson (1996), Richardson et al. (1997), Ridban and Cruse
(1999), and different alternatives are discusseuchveither allow
or avoid the collocation at such nodes. Numeriesalults obtained
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from these alternatives, as well as from the ssdfitar potential
BIE are presented.

Computational BEM Algorithms

The main features of the two non-singular BEM ailipons
implemented in this work are described bellow. Thst one is
based on the self-regular potential-BIE (Eq. () ahe second
algorithm is based on the self-regular flux-BIE (E()). By
dividing the boundang of the domain intd\Ne elements, Eq. (5) is
rewritten in its discretized form. As in the resfpee continuous
form (Eq. (5)), in the discretized potential-BlHet first integral,
which was originally singular is self-regularizeadabounded, while
the second remains weakly singular and needs ndamézation to
be evaluated. Thus, the first integral is numeljcalvaluated by
applying a standard Gaussian quadrature with tweltegration
points. Due to the logarithmic nature of the fundatal solution in
2-D, the second integral in Eqg. (5) is numericgllgrformed by
means of the logarithmic quadrature when the catioo point is
placed on the element under integration. Quadratid)ic and
quartic boundary elements based on standatdisGparametric
representation have been implemented and testedg usie
potential-BIE formulation.

The BEM algorithm based on the flux-BIE follows tkame
basic assumptions used for the potential-BIE foatioh, but some
special features should be emphasized if the sdarenaentioned
interpolation schemes are adopted. These boundiameats do not
preserve the £ continuity of the potential that is required fbiet
mathematical validity of the self-regular flux-BIEEqQ. (9)).
However, in Richardson et al. (1997) and Richardaod Cruse
(1999) the authors claim that this BEM algorithmtchas the
bounded nature of the BIE in a two-sided senseowitinvalidating
the underlying continuity requirements for the fliormulation,
which is the essence of relaxed continuity approfukcewise
smoothness). Unlike the potential-BIE, on the fBiE all integrals
in Eqg. (9) are regular and a standard numericals€an quadrature
scheme is used to evaluate these integrals.

The self-regular flux-BIE formulation requires arxpécit
representation of potential gradient at the bound&he gradient
vector is univocally obtained for each boundaryredat in terms of
the local tangential derivative and the normal wiive (flux). The
tangential derivatives of the potential are comgufer each
boundary element in terms of the intrinsic coortirga according to
the following expression:

dT/ds=(1/I)E Ni(€)T,  where Ni =dN/dé (10)
i=1

where the functions K) are the Lagrangian interpolations of order
(m-1) in terms of the intrinsic coordinate m is the number of
nodes per element, and the Jacobidnig obtained in the usual
manner for the isoparametric model of the elememnetry. The
gradient of the potential at any boundary poingiieen in terms of
mapping function#\ andB, as

OT(s)=0T(&) = A(fs)gN;(f)T‘ ' B(fs)glwid (11)

where Qs the nodal value of the flux. The mapping fuoot A

andB are given by
Ny
B =
€) [”2]

- J
A(f)=( "2/ ] (12)
July-September 2009, Vol. XXXI, No. 3 /263
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where & and n; are respectively the intrinsic coordinate and the
components of the normal unit vector at the integnapoint&.
The regularizing terms for a given element, whitctares the D22 . = = 2 = ®w 1w (

collocation pointX', are expressed as follows: B ' C g ' ' i
o |7
THs) =TIx' |+ Ofx' | {sM - X! =7
9=k ol ) w 2
oTh(s)=oTx ~
: . . = T=500 0 0 15
Therefore, the gradient for thé-th element is evaluated using ; . ' B

Eq. (11). The potential is continuous and it mayhecked that the L I 23 4senswU 12 1 14 4
density functions_'l'(s)-'l"(s) and [T(s) -T-(s) are O[r(s,x)’] and T bid T
O[r((s)’r)%]’gg:;ifél\iﬂgbnam source of error when usilgrsgular Figure 1. Geometry and boundary conditions of the M otz Problem.
flux formulation is that due to the evaluation/@T (&) at some point
on the boundary, both normal and tangential dexigatof T(x) are _ )
required at this point. As the flux-BIE does nopkitly contain the The problem was firstly analyzed using the coarsessh
tangential derivative, it is obtained in this cobg taking the Shownin Fig. 1, where only the element numbergepeesented. A
derivatives of the shape functions that are appratingT(é) in an non-hler_archlcal p-reflnemgnt is performed by iasiag the order
element. Therefore, tangential derivatives in tisisheme are Of the interpolation functions by means of the &mgion of
obtained from polynomials that are one degree lowem the guadratic, cubic and quartic boundary elements.

polynomials used to obtain normal derivatives a #ame point. In case discontinuous elements are applied, théaation

Thus the gradient is obtained in a somewhat unbel‘amanner. pOintS are moved from both ends to pOSitionS infdeelement at a
On the other hand, the regularizing gradients in @) are distance of 5% of the length of the element.

single-valued in the analytical model at the cadkban pointx', but The potential results on edge OB obtained in thizkware

these values are not unique in the "relaxed coitin BEM  compared to the results presented by Jaswon andnS{@77),
algorithm. Therefore, the element based valuesuseel locally for Paris and Cafas (1997) using standard BEM with rqtiad
integrals in the elements that contain the coliocapoint, while the boundary elements and Whiteman and Papamichael2f19he
average nodal value of the gradient at the colionais used to numerical results achieved by the application o #elf-regular
regularize the integrals that do not share theocation point. As a Potential BIE formulation (SRPF) and the resultsnirJaswon and
difference exists between the gradients evaluatemyatwo sharing Symm (1977), Paris and Cafias (1997) and Whitemath an
elements at a node, this causes some error irothéom. Even in a Papamichael (1972) are in very good agreement, eldlsas those

smooth section of the boundary, the origin of tifference is the from the self-regular flux-BIE formulation with dientinuous
tangential derivative of the potential, which isitten as the €lements (SRFF-disc.). The maximum errors were%.fet SRPF

derivative of the different interpolating functignene for each @and 0.09% for SRFF with discontinuous elementstt@rother side,
element sharing the collocation point. When théooaltion point is the results from the self-regular flux-BIE with ctmnuc_;us_quadratlc
placed at an intra-element node or discontinuoemehts are used, eléments have been shown to be very poor, osojaround the
the regularizing gradient is unique, and this kafcerror does not reference answer. The SRFF results with cubic awertig
occur because:l@ Continuity requirement is met. continuous elements also have sufficient accuracy.

In order to investigate which of these sourcesrafrés dominant The flux results obtained by means of the three BEM
in this algorithm, discontinuous elements were anmnted in the @approaches (SRPF, SRFF, SRFF-disc.) over the edgevbere it
discretization of the self-regular flux-BIE formtitan. Such procedure iS known that the flux is singular at point O, hasteown good
allows the split of the sources of errors introdliby the SRFF. If agreement to each other for points far enough ftben singular
discontinuous elements are employed, the tangetdiafative of the POint. Again some significant differences have bedserved for
potential is still evaluated through the derivatigé the element the SRFF results using continuous quadratic elesndfdr points
interpolation function. However, there is no neeadopt the "relaxed Very close to the singular point O, the SRPF hasqrted some
continuity" hypothesis, since the smoothness requént is met at Very inaccurate results. The results obtained floenSRFF seem to
each collocation point’ which is a|WayS an intrareent node. fit the flux behavior better than the pOtentialrfmﬂation. Among
Therefore, for discontinuous elements, the potegtidient is single the flux results for the SRFF approach, the redoltsliscontinuous
valued at each collocation point. elements and quartic continuous elements appegiveothe best
approximation for the singular tendency of the faiypointO as the
normalized distanced/L goes to zero.

The poor results using the SRFF combined with oootiis
guadratic element motivated a convergence studyguacreasingly
refined meshes. Starting from the mesh shown in Ejgseven
additional refined meshes were generated by dogiittie number of

A steady state heat conduction problem, called Mtz €lements consecutively. In each of the straiglesi®A and OB, the
problem, was analyzed using the BEM algorithms joresty ratio of the longest element to the shortest eléneid0, and the
explained in the previous section. This is a ctassproblem in grading process follows a geometric progression.
potential theory, used as a benchmark problem timparison Again, the oscillatory behavior has been obsenadall the
between different approaches to evaluate how atmlyrthey deal numerical potential results achieved using the SRWkh
with singular fields (Jaswon and Symm, 1977). Tkergetry and continuous quadratic boundary elements for allgtesled meshes,
boundary conditions are represented in Fig. 1. &ler singularity While this did not happen in the correspondent amsvobtained
at point O resulting from the existence of a fluscdntinuity at this Using quadratic discontinuous elements. The higesherical
point. errors for each mesh are presented in Fig. 2.

Numerical Results

Example 1
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Figure 2. Magnitude error potential in the edge OB

Analogous behavior is observed for the flux resultdained
near to the singular point O by means of the SRRR @ontinuous
quadratic boundary elements for all the gradedneefi meshes,
which for the sake of brevity are not presenteceh@s previously
pointed out, the poor results for the SRFF withtoarous quadratic
elements could be related to inaccuracies in tteuation of the
tangential derivative of the potential or the asgtiom of the
"relaxed continuity" hypothesis, implying in nomgle valued
potential gradient at inter-element nodes. Theesfon order to
investigate the main source of inaccuracies, fivesmes with
quadratic discontinuous boundary elements simidanéshes R1 to
R5 were taken using discontinuous elements instéambntinuous
elements. Similar meshes with cubic and quarticaignuous
elements were also analyzed. The potential resdidisg the edge
OB for the SRFF with discontinuous elements arepgamed to the
solutions presented by Jaswon and Symm (1977). Aipbest
magnitude errors along the edge OB for both comwtisuand
discontinuous SRFF are shown in Fig. 2.

It can be noticed from Fig. 2 that there is a digant
improvement in result accuracy when discontinuousdgatic
elements are employed instead of continuous queadetéments.
Moreover, the oscillatory convergence behavior &mmtinuous
quadratic elements becomes monotonic for discoatiaelements
of the same order. Although there is some improvenie result
accuracy when discontinuous cubic and quartic eksneare
applied, the improvement rate is not as noticeaBldor quadratic
elements.

It seems that the different improvement rates olethi for
quadratic, cubic and quartic interpolations aresémeway related
with the proportion of inter-element to intra-elemhaéodes. Based
on the fact that when adopting the "relaxed corityi@pproach the
regularizing gradient is not single-valued at irg@@ment nodes, and
that this kind of error is not introduced when todlocation point is
placed at an intra-element node in a closed boynaéren using
continuous quadratic elements, for each equatidate to a
collocation point shared by two elements therenig@uation related
to an intra-element node, which is a proportionldf, for cubic
elements this proportion is 1:2 and in the casguartic elements
1:3. So the analysis using quadratic element isrtast critical with
regard to regularizing gradient.
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using the self-regular flux-BIE.

Example 2 — Ground Excavation

The second problem represents the study of theeinfle of an
excavation in the ground water flow according te arcy's law,
which relates the flux of water through the soitlahe gradient of
the hydraulic potential. For the isotropic casés thw assumes the
form

v =-K0Oh (14)
wherev is the velocity field,h the hydraulic potential and K the
coefficient of permeability. The excavation is largnough to allow
a plane study of the ground water flow problem ands also
assumed that there is no influence of the excavatica distance of
100 m from its center. The dimensions and boundangitions are
shown in Fig. 3, which also includes the assumécktiess of the
dry and wet layers as well as the existence of @ngeoof layer on
the edge EF. There is an axis of symmetry coindidéth the edge
AF. Under the hypothesis of incompressible soil avater, this
problem is governed by Laplace's equation, witgugarity in flux
solution at point B.

Groesd Water
La a3 3
o |c i i
r 3 T =-4
:|= ~
Lo
B =
|
= E
:|= L e
x q=0 il
E|_ 10 .IF
Figure 3. Geometry and boundary conditions — Exampl e 2.
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At first, three different meshes have been analymsthg
guadratic, cubic and quartic elements, respectiaig the two self-
regular algorithms have been applied. These meategeferred
respectively as M1-quadratic, M1-cubic and M1-gigarand the
boundary points are evenly spaced on all edgespéxcethe edges
AB and BC, where the mesh is graded following a ngetoic
progression, being the ratio of the longest elementhe shortest
element equal 10.

The numerical results for the potential in the eBgzusing the
meshes M1 were compared to finite element (FE)lte$or a very
fine mesh (18432 degrees of freedom) taken aseaerafe solution,
which has been accomplished using ANSYS®, versibrd.1The
potential results obtained from the SRPF with aomtius quadratic,

G. O. Ribeiro et al.

cubic and quartic elements and the SRFF with distoous

elements and continuous quartic elements are iry \@ose

agreement with the FE results and with the numkerscdution

presented by Paris and Cafias (1997). Some numétigalesults

on the edge AB are plotted in Fig. 4. On the edd® the flux

results are very close to each other for pointsefasugh from the
singular point B, while near this singular poinetlocal results
obtained using the SRPF with all continuous elesant the SRFF
algorithm with continuous quadratic and cubic eletse are
significantly different from the FE results. Thesudts obtained in
this example even using coarse meshes show thatSRIEF

algorithm provides sufficiently accurate results ewh either
discontinuous elements or continuous quartic elésnare used.

100
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- o
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-
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=
P
=
l.*
——FEM = SRFF-MI-quadmtic
'l H
¥ SRFF-M 1-cubic —— SRFF-M1-quartic Fil
& SRFF-Ml-quadmticdisc. & SRFF-MIl-cubic-disc.
0 SRFF-M l-quartic-dise. O SRPF-MI-quadratic
£ SRFF-M l-cubic = = = SRPF-MI-gquartic
0

001

0,10

NOMINAL DISTANCE FROM SINGULAR POINT (log)

Figure 4. Flux on edge AB near to the singular poin

As can be noticed in both examples, when using SRFERF
quadratic elements the results have shown to bg peor and
oscillatory. In order to check the convergencehef problem, each
of the three basic meshes (M1) has been successieéhed
splitting each element in two new ones with the esdemgth in all
edges except at edges AB and BC, where the nodes also
relocated according to the geometric progressioevipusly
explained for Example 1. Basically the same ogoitha behavior
observed in the quadratic-SRFF results of the Exartiphas been
observed in Example 2. The possible error introduby the
assumption of the 'relaxed continuity' hypothesigtte self-regular
flux formulation was analyzed following the sameogedure
adopted in Example 1. BEM solutions for potentiadl dlux along
the edges AB and BC, respectively, for meshes M1-ihg
quadratic, cubic and quartic interpolation functiare compared to
FE solution to determine the maximum relative erfidre results for
the magnitude of the error are plotted in Fig. 8 &Mg. 6 for the
SRFF with both continuous and discontinuous quagratibic and
quartic boundary elements.

Again, it is observed that the accuracy of the Itesfor the
SRFF is improved when discontinuous elements apeimented.
Also, the improvement rate is higher for quadratterpolation than
for cubic and quartic interpolations. In fact, thee of discontinuous
quartic elements on the SRFF algorithm instead aftinuous
elements of the same order presents the smallgstrgaccuracy of
the potential and flux.

Based on this example, it seems that the assumptiotine
‘relaxed continuity' hypothesis has indeed a gigfatence on the
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accuracy of the results from the SRFF with contimielements,
despite some good results achieved with quartiecnehés. The
discontinuity of the gradient of the potential lgesater influence in
results accuracy when cubic and especially quadedéments are
used, since as previously explained, the propomibimter-element
to intra-element nodes is lower in these cases floanquartic

elements. These results therefore strengthen thelugions drawn
for the first example.

Conclusions

The self-regular potential formulation has showmyvaccurate
and stable answers even to treat singular probl@nsthe other
hand, self-regular flux formulation has presentethe very poor
and oscillatory results, especially when continuoggadratic
elements are adopted, even for highly refined neshee influence
of discontinuity of the regularizing gradient aténelement nodes,
of which value depends upon the element to be iated, seems to
be the main cause, which contributes to some osldtseusing the
SRFF algorithm with continuous boundary elementsvidus work
of the authors with the self-regular gradient-baBé# formulations
(SRFF and self-regular traction-BIE) for 2-D prabke pointed out
to the tangential derivative interpolation as theméhant error
source, for various degrees of the interpolatingcfions. The
current results show otherwise that the tangendativatives
introduced in this formulation by deriving the irgelation schemes
might not be the dominant error source for all sase
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Figure 5. Magnitude error potential using the SRFF.
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Figure 6. Magnitude error flux using the SRFF.

The explanation for better SRFF results achievetth Wwigher the smoothness requirements assumed in the derivafithe BIE
order continuous elements is that when using quiadeements, for formulations must be preserved. This kind of edoes not happen
each equation related to an inter-element node tiseone equation when the source point is located at an intra-elémede, where the
related to an intra-element node, which represangsoportion of smoothness requirement is met and the present maheesults
1:1, whereas for cubic and quartic elements thap@rtion is lower, clearly bring this fact out. Although the use ddredard continuous
being 1:2 and 1:3 respectively. The oscillatorya&abr completely elements is more appealing and easier than conth@bements
disappeared when the SRFF with discontinuous elestferve been based on Einterpolation functions or even discontinuous elats,
applied and the BEM solutions are very accuratethla case, all from the results obtained so far, it seems thaugeof this kind of
collocation points are restricted to intra-elemanties where the element on the SRFF is not reliable. It seems tiatsmoothness
densities are always '€ Holder continuous. The comparison requirement for the SRFF should be satisfied ireptd guarantee
between the SRFF results based on continuous etenagd the results accuracy and convergence.
correspondent ones obtained by means of discontgnetements
leads to conclusion that the relaxed continuitydsreliable and that
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