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Static and Free Vibration Studies on a 
Pulley-Belt System with Ground 
Stiffness 
The static and free vibration behavior of a pulley-belt system with ground stiffness is 
investigated using a nonlinear model based on Hamilton’s principle. In the equilibrium 
analysis a computational method based on boundary value problem solvers is adapted to 
obtain the numerical solution, whereas for free vibration analysis spatial discretization is 
done using the Galerkin’s method to evaluate the natural frequencies and vibration modes. 
The study indicates that there is a considerable decrease in equilibrium deflection due to 
ground stiffness, especially when it is larger than the belt bending stiffness and this effect 
is more pronounced for higher values of belt bending stiffness. Equilibrium deflections 
change reasonably with static span tension variation, but are more sensitive to variations 
of speed and longitudinal stiffness. The natural frequencies of the pulley-belt system 
increase with ground stiffness, but this is primarily restricted to the lower modes; higher 
modes are insensitive to ground stiffness. 
Keywords: pulley-belt, ground stiffness, static equilibrium, free vibration 
 
 
 

Introduction 
1Since belt drives are widely used in many industrial 

applications, their vibration is of concern to the designer. Belt drive 
systems exhibit both transverse vibrations in the belt spans as well 
as rotational vibration of the pulleys. In reality, most of the belt 
drives are supported on elastic foundation. So in such cases the 
effect of ground stiffness must be considered in addition to the 
other parameters. 

A number of devices involve transverse vibration of axially 
moving materials. Thread lines, band saw blades and belts belong 
to this class. Numerous researchers have examined the dynamic 
response of such systems. A review of these systems is given by 
Wickert and Mote (1988). Most studies consider only the pulley 
rotational motion with the belt only acting as a longitudinal 
stiffness (Hawker, 1991 and Mote, 1972). In contrast, Beikmann 
(1992) and Beikmann, Perkins and Ulsoy (1996a and 1996b) 
treated the belt as a continuum string and developed a model 
consisting of three pulleys and a tensioner. They captured a linear 
coupling mechanism between the tensioner rotation and the 
transverse vibrations of the two spans adjacent to the tensioner. 
This coupling results from the tensioner’s rotation moving the 
boundary points of the two adjacent spans. Zhang and Zu (1999) 
and Zhang, Zu and Hou (2001) further refined this linear model by 
incorporating belt damping and carried out a complex modal 
analysis of the hybrid model for the serpentine belt drive system. 
Parker (2004) developed a spatial discretization of this model 
extended to an arbitrary number of pulleys. 

Oz et al. (1998) examined the transition from axially moving 
string to beam for an axially accelerating material. Ozkaya and 
Pakdemirli (2000) investigated the transverse vibrations of an 
axially accelerating beam with small flexural stiffness. In order to 
account for the effect of non-zero bending rigidity, Abrate (1992) 
defined a correction factor. This parameter shows that the effect of 
bending rigidity is more pronounced on the higher natural 
frequencies. Jha and Parker (2000) examined the spatial 
discretization of axially moving media eigenvalue problems in 
configuration space as well as state space forms. 

Kong and Parker (2003) performed equilibrium analysis of 
serpentine belt drives with belt bending stiffness and studied the 
pulley-belt vibration coupling. They presented a numerically exact 
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solution for span and tensioner equilibrium and defined a coupling 
factor based on the equilibrium for quantifying vibration coupling. 
As a continuation of this work, Kong and Parker (2004) performed 
free vibration analysis, about non trivial equilibrium motions, that 
result from belt bending stiffness. They reformulated the governing 
equations to the extended operator form which has the structure of a 
conservative gyroscopic system. The Galerkin method was used for 
spatial discretization and was applied to the extended operator 
form. 

Parker (1999) investigated the stability of trivial equilibrium of 
an axially moving string on an elastic foundation. He concluded 
that whereas an unsupported string has a single critical speed, an 
elastic foundation introduces additional critical speeds, all of them 
greater than the one for an unsupported string. Perkins (1990) 
examined the free and forced response of a string translating across 
an elastic foundation. The results illustrate the dependence of the 
string natural frequencies and mode shapes on the foundation 
stiffness, foundation geometry and string translation speed. Bhat et 
al. (1982) investigated the dynamic behavior of a moving belt 
supported on an elastic foundation. They formulated the problem 
including nonlinear terms arising from large amplitude oscillations, 
material damping and tension variation along the belt. The spatial 
response variations with time are presented for different belt 
velocities. These results indicate that in the absence of damping, the 
system is unstable for any belt velocity larger than the wave 
velocity in the belt material. The results are useful in investigating 
the stability of large continuous conveyor systems supported on 
elastic foundations. However, they have not examined the effect of 
foundation stiffness on equilibrium deflections and natural 
frequencies. 

The main objective of this paper is to investigate the effects of 
ground stiffness on the equilibrium deflections and natural 
frequencies of a pulley-belt system. The span equilibrium is 
determined from the set of nonlinear equations. Computation of the 
natural frequencies and vibration modes is a central task. Based on 
the solutions thus obtained, the effects of ground stiffness on the 
system are investigated. 

Nomenclature 

EA  = Axial stiffness of belt, N  
EI  = Bending stiffness of belt, 2N.m  

iJ  = Rotational inertia of pulley i , 2kg.m  

iM  = Static torque on pulley i , N.m  
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iP  = Belt static tension for span i , N  

îP  = Non-dimensional belt static tension for span i  

0P  = Initial tension without accessory torques, N  
c  = Steady state belt speed, m/s  
k  = Ground stiffness, (N/m)/m  

k̂  = Non-dimensional ground stiffness 
il  = Length of belt span i , m  
m  = Belt mass density, kg/m  

im  = Non-dimensional rotational inertia of pulley i  

ir  = Radius of pulley i , m  
s  = Non-dimensional belt speed 

iu  = Longitudinal displacement of span i  

iw  = Transverse displacement of span i  
ˆ iw  = Normalized transverse displacement of span i  

ix  = Coordinate along span i  
ˆix  = Normalized coordinate along span i  
ε  = Non-dimensional bending stiffness of belt 
γ  = Non-dimensional axial stiffness of belt 
ω  = Non-dimensional natural frequency 

iθ  = Rotation of pulley i , rad  

Modeling of the System 

A model of a two pulley-belt drive system with ground stiffness 
is shown in Fig. 1. The ground stiffness k  represented in figure is 
considered per unit length of the span. The individual spans are 
modeled as Euler-Bernoulli beams translating with constant speed 
c . Each individual span is subjected to constant end moments 
arising from the bending of the continuous belt around the pulleys. 
Accessory torques ( )1M t  and ( )2M t  are also present and there is 
no translation associated with the pulleys. 

 

 
Figure 1. Two pulley-belt drive system on an elastic foundation. 

 
The dynamic motions are the pulley rotations ( )i tθ , the 

transverse and longitudinal displacements, ( ),i iw x t  and ( ),i iu x t  

respectively, for each belt span. The belt modulus EA  and mass 
density m  are assumed to be constant. Damping either at the belt-
pulley interface or belt-ground interface has not been considered. 
Slip is not considered at the belt-pulley interface. It is also assumed 
that belt-pulley contact points do not differ substantially from those 
defined at equilibrium. The approach used here is similar to that of 
Kong and Parker (2003, 2004). 

All motions are measured relative to a reference state, which 
corresponds to the equilibrium for a stationary belt with no bending 

stiffness, that is, the equilibrium for the system with the belt 
modelled as a string. Since steady accessory torques are present in 
the reference state, different spans may have different reference state 
tensions. 

Hamilton’s principle (Meirovitch, 1967) is used to derive the 
equations of motion. In its mathematical this principle is expressed 
as 

 
0Jδ =  (1) 

 

( )
2t

t

J T V W dtδ δ δ δ= − +∫
 (2) 

 
where T  is the total kinetic energy of the system, V  is the total 
potential energy of the system and Wδ  is virtual work of non 
conservative forces and torques. The following notation is used to 
represent the partial derivatives. 

• ,i xu  and ,i tu : first order partial derivatives of iu  with 
respect to ‘ x ’ and time ‘ t ’, respectively; 

• ,i xxu  and ,i ttu : second order partial derivatives of iu  with 
respect to ‘ x ’ and time ‘ t ’, respectively; 

• ,i xtu : mixed second order partial derivative of iu  with 
respect to time ‘ t ’ and ‘ x ’. 

 
Similarly, higher order derivatives can be defined. Also, 

substitution of iw  in place of iu  gives the derivatives corresponding 
to iw . The expressions for T , V  and Wδ  are given by 
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2

2 2 2
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where the term 
2

2

1

1
2 i i

i i

cJ
r

θ
=

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑ &  represents total kinetic energy of 

the two pulleys, ( )
2 2

, ,
1 0

1
2

il

i t i x i
i

m w cw dx
=

−∑∫  represents total kinetic 

energy of the belt mass in bending and ( )
2 2

, ,
1 0

1
2

il

i t i x i
i

m u cu c dx
=

− −∑∫  

represents total kinetic energy of the belt mass in translation. 
 

22 2
2 2

, , ,
1 10 0

1 1 1
2 2 2

i il l
i

i x i x i i xx i
i i

PV EA u w dx EIw dx
EA= =

⎛ ⎞= + + +⎜ ⎟
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2
2

1 0

1
2

il

i i
i

kw dx
=

+ ∑∫  (4) 

 
represents the total potential energy, where the term 

22
2

, ,
1 0

1 1
2 2

il
i

i x i x i
i

PEA u w dx
EA=

⎛ ⎞+ +⎜ ⎟
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∑∫  represents total strain energy of 

the belt as a resultant of stretching, linear and non-linear strains, 
2

2
,

1 0

1
2

il

i xx i
i

EIw dx
=
∑∫  represents total strain energy of the belt in 

k

1θ
1M

2θ
2M

2J 1J

c

1u

1w

2u

2w

Ground line 
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bending and 
2

2

1 0

1
2

il

i i
i

kw dx
=
∑∫  represents total strain energy due to 

stiffness of the ground acting on spans. 
Note that 0k =  for 1i = , which means there is no ground 

stiffness ( k ) associated with belt span 1. 
 

( ) ( )
2 2 2

, ,
1 1 1

0, ,i i
s i x e i x i i i

i i i

W M w t M w l t Mδ δ δ δθ
= = =

= + −∑ ∑ ∑  (5) 

 

where the term ( )
2

,
1

0,i
s i x

i
M w tδ

=
∑  represents total virtual work at the 

start of the spans, 

( )
2

,
1

,i
e i x i

i
M w l tδ

=
∑  represents total virtual work at the end of the 

spans and 
2

1
i i

i
M δθ

=
∑  represents total virtual work done by the accessory 

torques. 
i

sM , i
eM  are the end moments of i -th span start and end points 

respectively. 
The kinematic constraints are 
 

( )1 0, 0w t = , ( )1 1, 0w l t = , ( )1 1 10,u t rθ= − , ( )1 1 2 2,u l t rθ= −  (6) 
 

( )2 0, 0w t = , ( )2 2 , 0w l t = , ( )2 2 20,u t rθ= − , ( )2 2 1 1,u l t rθ= −  (7) 
 
The positive direction of iw  is always oriented towards the 

inner side of the loop, that of iu  is counterclockwise and that of c  
is clockwise; iθ  is positive if its rotation is in the direction of belt 
travel. The pulleys and spans are numbered sequentially in 
counterclockwise direction in Fig. 1. Applying Eq. (1), one can get 
the equations of motion for the spans: 

 

( )2 2
, , , , , ,

,

12
2i tt i xt i xx i x i x i i x

x

m w cw c w EA u w P w
⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞− + − + +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 

, 0i i xxxxkw EIw+ + = , 1,2i =  (8) 
 

( )2 2
, , , , ,

,

12 0
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x

m u cu c u EA u w P⎡ ⎤⎛ ⎞− + − + + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
,  

1,2i =  (9) 
 

The term 2
, ,

1
2i i x i xP EA u w⎛ ⎞= +⎜ ⎟

⎝ ⎠
%  is a dynamic tension term and 

includes a nonlinear term due to transverse slope. For practical 
purposes one can adopt the quasistatic assumption. Under this 
assumption, the inertia terms associated with axial motion are 
neglected in Eq. (9) and the dynamic tension iP%  becomes uniform 
throughout the span, 

 

( ) ( ) ( )2
,

0

1( ) , 0, ,
2

il

i i i i i x i i
i

EAP t u l t u t w x t dx
l

⎡ ⎤
= − +⎢ ⎥
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∫% , 1,2i =  (10) 

 

Eq. (8) then becomes 
 

( ) ( )2
, , , ,2i tt i xt i xx i i i xx im w cw c w P P w kw− + − + +%  

, 0i xxxxEIw+ = , 1,2i =  (11) 

The kinematic constraints and end moments remain the same as 
above. The equations for the pulleys are 

 

1 1 1 1 2 1 0J Pr P rθ + − =&& % % ; 2 2 1 2 2 2 0J Pr P rθ − + =&& % %   (12) 
 

where 
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l
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∫%  (13) 

 
The reference equilibrium equations (for stationary condition 

with no belt bending) are: 
 

1 1 2 1 1 0Pr P r M− + = ; 2 2 1 2 2 0P r Pr M− + =   (14) 
 
Introducing non-dimensional variables, the above equations can 

be converted into the non-dimensional form. The variables 
introduced are: 
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2
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i
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2

0
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2

2

0

mcs
P
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2
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2

ˆ P tt
ml
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where 0P  is the initial tension (uniform) of the string model at rest 
with no accessory torques and l  is the characteristic length taken as 
the average span length. 

Equilibrium Analysis 

Now by substitution of dimensionless variables and eliminating 
time derivative terms, one can get the following non-dimensional 
equilibrium equations and boundary conditions. It is to be 
mentioned here that the hats on the dimensionless variables have 
been dropped after substitution: 

 
2

2 2
, , 0i xxxx i i i xx i

i

l w P s T w kw
l

ε
⎛ ⎞
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1,2i =  (17) 
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1

0xx
lw
r
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2

1xx
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( )2 0 0w = , ( ) 2
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2

0xx
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r

= , ( )2 1 0w = , ( ) 2
2,

1

1xx
lw
r
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1 2 0T T− = ; 2 1 0T T− =   (20) 
 
The dimensionless dynamic tensions are given by 
 

1
21 2
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Equations (17) to (21) represent a mixed differential-integral-
algebraic system. The unknowns are iw  and iθ . The design 
variables that affect the equilibrium span deflections are the non-
dimensional quantities: ground stiffness k , bending stiffness 2ε , 
initial span tensions iP , speed s , longitudinal belt stiffness γ  and 
drive geometry. 

From Eq. (20) one can get: 
 

1 2T T T= =  (22) 
 
Now Eq. (21) can be rearranged as follows: 
 

1
21 1 1 2 1

1 2 1,
0

1
2 x

T l r r l w dx
l l l l

θ θ
γ

= − + ∫ ; 

1
22 2 2 1 2

2 1 2,
0

1
2 x

T l r r l w dx
l l l l

θ θ
γ

= − + ∫  (23) 

 
Addition of Eqs. (23) and substitution of Eq. (22) gives: 
 

1 1
2 21 2 1 2

1, 2,
0 0

1 1 0
2 2x x

l l T l lw dx w dx
l l lγ
+⎛ ⎞ − − =⎜ ⎟

⎝ ⎠ ∫ ∫   (24) 

 
Similarly, substitution of Eq. (22) in Eq. (17) gives the 

following equations for span 1 and span 2, which are acted upon by 
the stiffness of ground. 
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0xxxx xx
l w P s T w
l

ε
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2

2 2
2, 2 2, 2

2

0xxxx xx
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l

ε
⎛ ⎞
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Equations (24) to (26) and boundary conditions (18) and (19) 

represent an equivalent system to the original system (17) to (21), 
with the unknowns being iw  and T , 1,2i = . 

Solution Procedure 

The above system consists of partial differential equations: Eqs. 
(25) and (26), and an algebraic equation, Eq. (24). Employing 
ordinary differential equation (ODE) conversion techniques, the 
above system can be transformed into a standard form defined on 
the interval [ ]0,1 . This can then be readily implemented in 
boundary value problem (BVP) solvers. Here and onwards the 
acronym BVP is used instead of boundary value problem. The 
standard form of most BVP solvers is 

 

( ) ( )( )1 ,y x f x y x= , a x b< < ; ( ) ( )( ), 0g y a y b =  (27) 
 

where f , y  and g  are n-dimensional vectors and f  and g  may 
be nonlinear. This standard form does not contain integral terms or 
algebraic equations. So, for transforming the equilibrium equations 
to standard form, the following conversion techniques are used. 
Since the non-dimensional tensions iT T=  are constant, one can 
write: 

 
( ) 0

dT x
dx

= , 0 1x< <  (28) 

For the integral terms one can define ( ) 2
,

0

1
2

x

i iI x w dσ σ= ∫ , which 

yields the following differential equation: 
 

( ) 2
,

1
2

i
i x

dI x
w

dx
= , 1,2i =  (29) 

 

with ( )0 0iI = , and ( )
1

2
,

0

11
2i i xI w dx= ∫ , which is equivalent to 

integral terms in Eq. (24). 
 
Now using the above two conversion techniques, the algebraic 

equation (24) can be treated as a boundary condition. This process 
results in the following differential equations: 

 

, 0xT = , 2
, ,

1
2i x i xI w= , 1,2i = , 0 1x< <  (30) 
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2
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with additional boundary conditions 
 
( )1 0 0I = , ( )2 0 0I = , 

( ) ( )1 2 1 2
1 2

1 (1) 1 1 0l l l lT I I
l l lγ
+⎛ ⎞ − − =⎜ ⎟

⎝ ⎠
 (32) 

 
Now the total number of boundary conditions is 11. The total 

order of the differential equations is also 11. Hence, the problem can 
be solved. Equations involving higher derivatives can be converted 
to standard first order form [Eq. (27)] by defining suitable variables. 
Now the problem is cast entirely on the interval [ ]0,1x∈  
irrespective of the length of the different spans. This standard form 
is readily implemented in BVP solvers. Here a BVP solver from 
MATLAB (bvp4c) is used. 

Free Vibration Analysis 

In equilibrium analysis ( )i tθ  and ( ),i iw x t  are measured 
relative to the reference state corresponding to a stationary system 
subjected to steady accessory torques. Linearization for small 
motions about the steady state configuration yields the following 
non-dimensional equations of motion. Now ( )i tθ  and ( ),i iw x t  
represent small vibrations about the steady motion. The hats on the 
dimensionless variables have been dropped. Steady motion 
quantities are denoted by cross symbol ( × ). They can be obtained 
from equilibrium analysis. The span vibration equations become 
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∫  (33) 
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∫  (34) 
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Where 
 

2
1 1 1P P s P×= − + , ( )

1
21 1 2 2

1 1,
1 1 0

1
2 x

r rP w dx
l l
θ θγ

× ×
× ×⎡ ⎤
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2
2 2 2P P s P ×= − + , ( )

1
22 2 1 1
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2 2 0

1
2 x

r rP w dx
l l
θ θγ

× ×
× ×⎡ ⎤
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⎣ ⎦
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The boundary conditions are 
 

( )1 0, 0w t = , ( )1 1, 0w t = , ( )1, 0, 0xxw t = , ( )1, 1, 0xxw t =  (37) 
 

( )2 0, 0w t = , ( )2 1, 0w t = , ( )2, 0, 0xxw t = , ( )2, 1, 0xxw t =  (38) 
 
In this case, note that the boundary conditions pertaining to the 

bending moments are trivial. The pulley vibration equations are: 
 

1
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tt x x
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1
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0x x
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l l
θ θγ ×⎛ ⎞
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⎝ ⎠

∫  (40) 

 
It is obvious from the above equations of spans and pulleys that 

the transverse vibrations of spans are coupled with pulley rotational 
motions. From Eq. (33) of span 1, if 1, 0xxw × = , then the motion is 
completely decoupled from the rest of the system, which is true for 
any other spans between fixed centre pulleys. 

Extended Operator Formulation 

The above system of equations can be expressed in the extended 
operator form 

 
MW+GW+KW = F&& &  (41) 
 

where the vectors W  and F  are given by 
 

{ }1 2 1 2
Tw w θ θ=W    , {0 0 0 0}T=F     (42) 

 
Consider a vector U  similar to the vector W  defined as follows: 
 

{ }1 2 1 2
Tu u σ σ=U     (43) 

 
Then, the inner product of W  and U  is given by 
 

12 2

1 10

, i i i i
i i

w u dx θ σ
= =

= +∑ ∑∫W U  (44) 

 
The overbar means complex conjugate. The differential 

operators M  and K  are symmetric, while G  is skew-symmetric. 
Therefore, the above linear model constitutes a conservative 
gyroscopic system. The operators are given below: 

 

1

2

1 0 0 0
0 1 0 0
0 0 0
0 0 0

m
m

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M  (45) 

 
( )

( )

2 0 0 0

0 2 0 0

0 0 0 0
0 0 0 0

s
x

s
x

⎡ ∂ ⎤
−⎢ ⎥∂⎢ ⎥
⎢ ⎥∂

= −⎢ ⎥∂⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

G  (46) 

 
[ ]K = a b c  (47) 

 
where 

( ) ( ) ( )

( )

( )

2 4 1
2

1 1, 1,2 4
0

1

1,
0
1

1,
0

0

x xx

x

x

P w dxw
x x x

w dx
x

w dx
x

ε γ

γ

γ

× ×

×

×

⎡ ⎤∂ ∂ ∂
− + −⎢ ⎥

∂ ∂ ∂⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥∂
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂⎢ ⎥−

∂⎢ ⎥⎣ ⎦

∫

∫

∫

a    (48) 

 

( ) ( ) ( )

( )

( )

2 4 1
2

2 2, 2,2 4
0

1

2,
0

1

2,
0

0

x xx

x

x

P k w dxw
x x x

w dx
x

w dx
x

ε γ

γ

γ

× ×

×

×

⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥− + + −⎢ ⎥∂ ∂ ∂
⎢ ⎥

= ⎢ ⎥∂
−⎢ ⎥∂⎢ ⎥

⎢ ⎥∂⎢ ⎥
∂⎢ ⎥⎣ ⎦

∫

∫

∫

b   (49) 

 

1 2
1, 1,

1 2
2, 2,

1 2

1 2

2 2

2 2

xx xx

xx xx

r rw w
l l
r rw w
l l

r r
l l

r r
l l

γ γ

γ γ

γ γ

γ γ

× ×

× ×

−⎡ ⎤
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

c  (50) 

Galerkin Discretization 

Now one can apply classical Galerkin discretization to the 
extended operator form, Eq. (41). The extended variable W  is 
expanded in a series of basis functions given by the vector Y : 

 

( ) ( )
10

1
k k

k
a t x

=

= ∑Y ψ  (51) 

 
Four basis functions for each span are considered which results 

in a 10 term vector summation of extended vector Y . Here, kψ  are 
the global comparison functions, where each one describes a 
deflection of the entire system and satisfies all boundary conditions. 
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The global comparison functions which form a complete set are 
given below: 

( ){ }sin 0 0 0
T

k k xπ=ψ    , 1,2,3,4k =  

( ){ }0 sin 0 0
T

k m xπ=ψ    , 5,6,7,8k = , 4m k= −  

{ }0 0 1 0 T
k =ψ    , 9k =  

{ }0 0 0 1 T
k =ψ    , 10k =  (52) 

 
Now, substitute Eq. (51), using Eq. (52), into Eq. (41) and 

constrain the residual error to be orthogonal to each kψ  using the 
inner product of Eq. (44). This results in a 10 10×  matrix system of 
equations of motion which is given by 

 
+ + =1 1 1M A G A K A 0&& & , i te ω=A ρ  (53) 

 
where ρ  is given by 
 

{ }1 2 10....... Ta a a=ρ   (54) 
 
The corresponding eigenvalue problem is 
 

2- iω ω+ + =1 1 1M ρ G ρ K ρ 0  (55) 
 
The elements of the matrices 1M , 1G  and 1K  are given by 
 

1 ,ij j iM = Mψ ψ , 1 ,ij j iG = Gψ ψ , 1 ,ij j iK = Kψ ψ , 

, 1,2,.......10i j =  (56) 
 
The inner products of Eq. (56) are similar to that in Eq. (44). 

The matrices 1M , 1G  and 1K  possess the symmetry/skew-
symmetry of the corresponding differential operators. These 
properties ensure that the eigenvalues are purely imaginary, as 
required for a conservative gyroscopic system. 

Solution of the Eigenvalue Problem 

The matrices 1M , 1G  and 1K  having been evaluated, the next 
task is to solve the eigenvalue problem Eq. (55). Meirovitch (1974) 
has developed a method to solve eigenvalue problem of gyroscopic 
systems. To use this method, one needs to convert Eq. (53) into a 
state-space form. Introduce two matrices 1I  and 1G  and a vector 
X : 1I  is real symmetric matrix and 1G  is real skew-symmetric 
matrix: 

 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

1

1 1

M o
I

o K
, 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1 1

1 1

G K
G

-K o
, 

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

AX
A

&
 (57) 

 
Eq. (57) gives the following new matrix form of equations of 

motion: 
 

=1 1I X+G X 0& , i te ω=X x  (58) 
 

where X  is a constant vector with complex elements and iω  is a 
constant complex number. 

 
The corresponding eigenvalue problem becomes 
 
iω =1 1I x+G x 0  (59) 

 
Consider a solution riω  (eigenvalue) and rx  (eigenvector) of 

the eigenvalue problem Eq. (59). Substitution of this solution into 
Eq. (59) gives 

 

r r riω =1 1I x +G x 0 , 1,2,...10r =  (60) 
 
Introduce r r ri= +x y z : the vectors ry  and rz  represent real 

and imaginary parts of rx  respectively. The corresponding 
eigenvalue problems for real part and imaginary parts become 

 
2

r r rω =1 1I y L y ; 2
r r rω =1 1I z L z  (61) 

 
where 1L  is a real symmetric matrix given by 

 

( ) ( ) ( ) ( )
( ) ( )

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

T -1 T -11 1 1 1 1 1 1

T -1
1 1 1 1 -1 -11 1 1 1 1 1

G M G +K G M K
L G I G

K M G K M K
 (62) 

 
Observe that the equations (61) represent two real symmetric 

generalized eigenvalue problems. The solutions of these two 
problems are obtained from MATLAB. 

Validation 

The present formulation is validated for the equilibrium 
deflections with the results available in the literature. Kong and 
Parker (2003) have developed a numerical solution for the case of 
two pulley-belt system with a tensioner pulley (see Fig. 2) and 
also obtained an approximate solution using perturbation method. 
They compared both the solutions. But, for the purpose of 
validation the equilibrium deflections are plotted for different 
spans based on the data available and compared with the plots in 
Kong and Parker (2003). 

 

 
Figure 2. Two pulley-belt drive system with tensioner. 

 
Figures 3 and 4 show the equilibrium deflections of the spans 1 

and 3. The data corresponds to non-dimensional parameters: 
bending stiffness 0.01ε = , speed 0.6s = , tensioner stiffness 

4sk = , axial stiffness 400γ =  with belt static tensions 

1 2 3 1P P P= = = . Comparison of the present results with the results 
of Kong and Parker (2003) shows that the results are in good 
agreement. 
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Figure 3. Equilibrium deflection of span 1. 

 

 
Figure 4. Equilibrium deflection of span 3. 

 

Table 1. Physical properties of the system. 

Pulley radius 1r  0.0889 m  Rotational inertia 1J  0.07248 2kg.m  

Pulley radius 2r  0.0889 m  Rotational inertia 2J  0.0028992 2kg.m  

Span length 1l  0.5518 m  Belt modulus EA  120000 N  

Span length 2l  0.5518 m  Initial tension 0P  300 N  

  Belt mass density m  0.1029 kg/m  

Results and Discussion 

In this section, numerical results of equilibrium and free 
vibration results are presented for a two pulley-belt drive system 
(Fig. 1). Equilibrium deflections are plotted for the span 2, which is 
acted upon by the stiffness of ground. Natural frequencies are 
computed for different parameters. It is to be mentioned here that all 
the variables and parameters related to plots are non-
dimensionalized. Hence, if a variable or parameter is referred it is 
understood that it is non-dimensional (see Table 1 for simulation 
parameters). 

Comparison between Figs. 5 and 6 shows that there is a 
considerable decrease in equilibrium deflections due to ground 
stiffness, when it is larger than bending stiffness (assumed to be 
100 ε ). This effect is larger for higher values of bending stiffness 
due to larger curvature of span at higher bending stiffness. 
Moreover, the deflections are symmetric about mid span because of 
equal radii of the pulleys, which is a practical case of belt drives 
supported on elastic foundation. Also, it is observed that with the 
increase of bending stiffness the equilibrium deflection increases. It 
is contradictory to physical intuition, which says that equilibrium 
deflection should decrease with increase of bending stiffness. The 
reason for this behavior can be explained readily. Since the 

curvature caused by the span bending around the pulleys increases 
with bending stiffness, the equilibrium deflection also increases. 
Other parameters in the study are 0s = , 400γ =  with 1 2 1P P= = . 

 

 
Figure 5. Equilibrium deflections of span 2 with ground stiffness being 
100 ε . 

 

 
Figure 6. Equilibrium deflections of span 2 without ground stiffness. 

 
Figure 7 illustrates the effect of ground stiffness k  on the 

equilibrium deflections of span 2. It can be seen from Fig. 7 that the 
curve corresponding to 2 1P =  has more decrement because of 
relatively low tension, which is expected. Variations corresponding 
to the other curves are also considerable. It can be seen from Figs. 7 
and 8 that the equilibrium deflections increase considerably with 
decreasing tension. The other parameters used are 0.05ε = , 5k = , 

0s =  and 400γ = . 
 

 
Figure 7. Equilibrium deflections of span 2 with ground stiffness. 
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Figure 8. Equilibrium deflections of span 2 without ground stiffness. 

 
Figure 9 shows that, compared to the above two cases, the effect 

of ground stiffness on the equilibrium deflections is much more 
significant in the present case. The reason is that, in addition to the 
reduced effective tension, ground stiffness reduces the equilibrium 
deflections rapidly with the increase of speed. Figures 9 and 10 
show that with the increase of speed the equilibrium deflections 
increase. Again, this is contradictory to physical intuition which 
says that equilibrium deflection has to be decreased with increase of 
speed. When the speed increases, the effective tension decreases 
and, hence, the equilibrium deflections increase. The other 
parameters for the study are 0.05ε = , 5k = , 400γ =  with 

1 2 1P P= = . 
 

 
Figure 9. Equilibrium deflections of span 2 with ground stiffness. 

 

 
Figure 10. Equilibrium deflections of span 2 without ground stiffness. 

 
Comparison of Figs. 11 and 12 shows that the ground stiffness 

k  influences the equilibrium deflections significantly. Also, the 
equilibrium deflections decrease considerably with the increase of 

longitudinal stiffness. Other parameters are 0.05ε = , 5k = , 0s =  
and 1 2 1P P= = . 

 

 
Figure 11. Equilibrium deflections of span 2 with ground stiffness. 

 

 
Figure 12. Equilibrium deflections of span 2 without ground stiffness. 

 
It can be seen by comparing Figs. 13 and 14 that the first natural 

frequency is split into two with the second frequency becoming 
significantly higher due to ground stiffness. Mode shapes for this 
study are shown in Fig. 15. Other natural frequencies and mode 
shapes are not shown, since the effect of ground stiffness is not 
significant. Only four basis functions per span are considered here, 
but more basis functions are required for higher natural frequencies. 
Other parameters in the study are 10k = , 0s = , 400γ =  with 

1 2 1P P= = . 
 

 
Figure 13. Natural frequency variation with belt bending stiffness for s = 0 
and k = 10. 

 



Static and Free Vibration Studies on a Pulley-Belt System with Ground Stiffness 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright © 2010 by ABCM January-March 2010, Vol. XXXII, No. 1 / 69 

 
Figure 14. Natural frequency variation with belt bending stiffness for s = 0 
and k = 0. 

 

 
(a) 0s =  

 

 
(b) 0s =  

Figure 15. First mode for bottom span. 

 
Figure 16 shows that there is an increase in the natural 

frequencies with ground stiffness primarily in the lower modes. It is 
also observed from Figs. 16 and 17 that for lower speeds the 
frequencies do not vary much, but for higher speeds the first three 
frequencies decrease, while the fourth increases. This can be 
interpreted with mode shapes (see Fig. 18). At higher speeds, there 
is a contribution from the other coefficients ia  of the corresponding 
span for the fourth eigenvector. The change in mode shape is 
observed clearly from the third mode onwards, where the amplitude 
level of corresponding shape started decreasing due to the presence 
of other non-zero coefficients ia , while the first and second modes 
are strictly sine waves, which are not shown here. The other 
parameters used are 0.1ε = , 10k = , 400γ =  with 1 2 1P P= = . 

 

 
Figure 16. Natural frequency variation with belt speed for ε = 0.1 and k = 10. 

 

 
Figure 17. Natural frequency variation with belt speed for ε = 0.1 and k = 0. 

Conclusions 

A mathematical model of a pulley-belt system with ground 
stiffness is presented. Equilibrium analysis is performed, which 
includes a numerical solution to determine the span equilibrium 
configuration. Dynamic analysis, which consists of the extended 
operator formulation, the Galerkin’s discretization and the 
eigenvalue problem solution, is conducted and free vibration about 
steady motions is examined. The formulation is validated with the 
results of Kong and Parker (2003). The effect of various parameters 
on the equilibrium and free vibration behavior has been examined. 
The major conclusions are summarized in the following paragraph. 

As bending stiffness varies, there is a considerable decrease in 
equilibrium deflections due to ground stiffness, when it is larger 
than bending stiffness and this effect is greater for higher values of 
bending stiffness. The effect of ground stiffness on the equilibrium 
deflections is considerable with static span tension variation, while 
it is much more significant with variation of speed and longitudinal 
stiffness. With bending stiffness variation, only first natural 
frequency is increased due to ground stiffness. There is an increase 
in the natural frequencies with ground stiffness primarily in the 
lower modes, as speed varies. For lower speeds the frequencies do 
not vary much, but for higher speeds the first three frequencies 
decrease while the fourth increases. For the fourth eigenvector there 
is a considerable contribution from the other coefficients ia  of the 
corresponding span, which leads to an increase in the natural 
frequency. The change in mode shape is observed clearly from the 
third mode onwards, where the amplitude level of corresponding 
shape started decreasing, while the first and second modes are 
strictly sine waves. 
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(a) 0.1ε =  

 

 
(b) 0.1ε =  

 

 
(c) 0.1ε =  

 

 
(d) 0.1ε =  

Figure 18. Fourth mode for upper curve (bottom span). 
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