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Order of Accuracy Study of 
Unstructured Grid Finite Volume 
Upwind Schemes 
A detailed numerical study is presented of the order of accuracy of some proposed cell 
centered, finite volume schemes used for the solution of the 2-D gasdynamic equations on 
triangular unstructured grids. The schemes studied are based on a MUSCL-type linear 
reconstruction of interface properties, which seeks to achieve 2nd-order accuracy in 
space. They are also nominally flux-vector splitting-type schemes, and the results here 
presented use Liou’s AUSM+ algorithm. The basic aspects effecting the scheme’s order of 
accuracy are the form in which the reconstruction process is designed and the form in 
which the limiting process is performed. Two basic concepts are tested with regard to the 
reconstruction process, namely the use of 1-D-type and gradient-based reconstruction. The 
limiter can also be constructed as a 1-D-type limiter or as a truly multi-dimensional 
limiter. The schemes are tested on a linear convection-like model equation and the 
numerical solutions are compared to the analytical solution, for different mesh sizes, in 
order to assess the scheme’s order of accuracy. For comparison purposes, the results 
obtained with a centered scheme are also presented. Second-order accuracy is shown to be 
only obtained for the centered scheme. The nominally 2nd-order upwind algorithms lead 
to actual orders of accuracy, which vary from 0.9 to 1.5. 
Keywords: CFD, unstructured grid methods, finite volume, upwind schemes, order of 
accuracy. 
 
 
 

Introduction 
1Since the pioneering work of Barth and Jespersen (1989), 

various upwind, nominally second order accurate, finite volume 
schemes have been proposed in the literature (see, for instance, 
Durlofsky, Engquist and Osher, 1992; Lin, Wu and Chin, 1993; 
Venkatakrishnan, 1995; Aftosmis, Gaitonde and Tavares, 1995; 
Sleigh et al., 1998; Figueira da Silva, Azevedo and Korzenowski, 
1999). In these papers, spatial second order accuracy is sought by 
some form of gradient evaluation within the control volume, 
followed by extrapolation of the cell centered properties up to the 
cell interfaces. Upwinding is achieved via flux vector splitting or 
flux difference splitting techniques. Limiting procedures are, then, 
used in order to guarantee solution monotonicity. 

Assessment of the effective order of accuracy for unstructured 
finite volume methods is not a straightforward task, when compared 
to classical structured finite difference/volume techniques. In these 
latter cases, an order of accuracy study may be performed via Taylor 
series expansions of the difference scheme (Hirsch, 1988). Such a 
study is not applicable when the mesh point connectivity is variable, 
as it is the case for finite volume unstructured grid methods. 
Therefore, numerical computations of model problems seem to be 
the only avenue to pursue, if one seeks to determine the order of 
accuracy of such methods. For instance, Aftosmis, Gaitonde and 
Tavares (1995) studied the convergence and accuracy of different 
cell vertex, unstructured mesh, and finite volume algorithms by 
comparison with a steady analytical solution of the Euler equations. 
Another model problem that can be used for these purposes is the 
two-dimensional linear advection problem (Durlofsky, Engquist and 
Osher, 1992), which also allows the assessment of the unsteady 
behavior of the solution. 

The present work presents a detailed numerical study of the 
order of accuracy of some proposed cell centered, finite volume 
schemes typically used for the solution of the 2-D gasdynamic 
equations on triangular unstructured grids (Barth and Jespersen, 
1989; Figueira da Silva, Azevedo and Korzenowski, 1999). The 
schemes studied are nominally second order accurate, based on a  
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MUSCL-type linear reconstruction of interface properties, and they 
are also nominally flux-vector splitting schemes. The basic aspects 
effecting the scheme’s order of accuracy are the form in which the 
reconstruction process is designed and the form in which the 
limiting process is performed. Most of the results here presented 
consider the minmod limiter, although the superbee limiter is also 
used (Hirsch, 1990). 

Two basic concepts are tested with regard to the reconstruction 
process. The first concept essentially attempts to create a one-
dimensional stencil normal to the control volume edge of interest 
and, then, it uses this 1-D stencil in a very straightforward fashion in 
order to reconstruct interface properties. The other approach is based 
on computing cell averaged property gradients and using these in 
order to obtain linear reconstructed interface properties. The limiter 
can also be constructed as a 1-D-type limiter or as a truly multi-
dimensional limiter. The schemes are tested on the linear 
convection-like model equation (Durlofsky, Engquist and Osher, 
1992) and the numerical solutions are compared to the analytical 
solution, for different mesh sizes, in order to assess the scheme’s 
order of accuracy. The results obtained with the upwind schemes are 
also compared to those computed with a centered scheme (Jameson 
and Baker, 1983; Jameson and Mavriplis, 1986). 

Nomenclature 

a = constant advection velocity for model problem  
ax, ay = cartesian components of constant advection velocity 
C = convection operator 
CFL = Courant number 
d = vector position 
D = artificial dissipation operator 
e = specific internal energy 
ε = total energy per unit of volume 
E, F = flux vector for the Euler equations 
i, j = unit vectors in Cartesian coordinates 
l = length of control volume edge 
n = unit vector normal to control volume edge 
p = pressure 
Q = vector of conserved properties for the Euler equations  
r = ratio of consecutive gradients 
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S = boundary of control volume 
t = time 
u = conserved property for model problem 
u, v = velocity components in Cartesian coordinates 
V = area of control volume 
x, y = Cartesian coordinates 
Greek Symbols 
α1…α5 = coefficients in Runge-Kutta time marching scheme 
γ = time step value 
Δt = time step value 
Δr = vector position with respect to the cell centroid 
∇ = gradient operator 
ρ = density 
ψ = limiter 
ξ = 1-D type gradient of conserved variable 

Subscripts 
i current control volume 
ik interface between control volumes i and k 
k neighbor f i-th control volume 
L left state  

R right state  
Ω control volume for gradient calculation 
Superscripts 
l Runge-Kutta stage counter 
n current time level 
n1, n2 end points of ik-th edge 
+ right state  

− left state  

The Model Problem 

In order to be able to analyze the order of accuracy of 
unstructured finite volume methods, one needs to numerically solve 
a model problem, the choice of which is dictated by several 
constraints. Obviously, the model problem must have a known 
analytical solution at all times. Another desirable feature is that this 
solution should be continuous, so that the order of accuracy can be 
measured by comparison with the computed result via successive 
refinements of the computational mesh. Moreover, it is essential that 
the numerical results are not influenced by the conditions arising at 
the boundaries of the computational domain. With these restrictions 
in mind, and following the work of Durlofsky, Engquist and Osher 
(1992), the authors have chosen as model problem the two-
dimensional, periodic, linear advection problem, using as initial 
conditions for the scalar quantity a sine curve in both directions. The 
computational domain is a square with unity side and the mesh is 
composed of regular triangles. A sketch of the computational 
domain and of the analytical solution to the model problem at the 
initial condition and, thus, also at the end of a full period of 
integration is shown in Fig. 1. 

The procedure starts with a coarse mesh, in which the 
computations are run through one advection period and the L1 norm 
of the error is calculated. The mesh is halved successively, and the 
computations rerun. The slope of the best line fit, in a least squares 
sense, through a plot of the logarithm of the L1 norm as a function of 
the logarithm of the characteristic size of the mesh, gives a measure 
of the actual order of accuracy of the method. 

 

 
Figure 1. Sketch of the computational domain and of the model problem 
solution. 

Mathematical Formulation 

For the classes of problems of interest to the authors, the 
appropriate theoretical formulation for the fluid dynamic problems 
would be based on the 2-D Euler equations. For the present paper, 
however, a two-dimensional linear advection problem is considered. 
The authors emphasize that the paper maintains a parallel between 
the problem actually being solved in the present case and the 2-D 
Euler equations as an attempt to facilitate the interpretation of the 
procedures developed. Clearly, the motivation for the development 
here discussed is the solution of the Euler equations for aerospace 
applications. The authors, however, are applying the methodology to 
a model advection equation as a form of performing a deeper 
analysis of order of accuracy of the proposed approaches. Therefore, 
the governing differential equation for the present case can be 
written as 

 

( ) 0u au
t

∂
+∇⋅ =

∂
. (1) 

 
Here, u(x, y, t) is the dependent variable, ∇ · ( ) is the divergent 

operator and the constant advection velocity, a, can be written as 
 

x ya= +a i a j , (2) 
 

where i and j represent the unit vectors in the Cartesian directions. 
As previously discussed, the scalar problem is subjected to an initial 
condition of the form  

 
( ) ( ) ( ), , 0 sin 2 sin 2u x y x yπ π= , (3) 

 
and the boundary conditions are periodic on all four sides of the 
square computational domain. 

For the sake of completeness, the Euler equations are presented, 
since the same general nomenclature is used when dealing with the 
model problem. The 2-D Euler equations for an ideal gas can be 
written in integral form for a 2-D Cartesian coordinate system as:  
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( ) 0
V S

dxdy dy dx
t
∂

+ −
∂ ∫∫ ∫Q E F =

⎫
⎪

⎭

e

.    (4) 

 
Here, V represents the area of the control volume and S is its 
boundary. For a stationary mesh, the vector of conserved quantities 
Q and the convective flux vectors are given by 

 

( ) ( )

2

2,  ,  

u v
u p uvu

uv v pv
p u p v

ρ ρρ
ρ ρρ
ρ ρρ

ε εε

⎧ ⎫ ⎧⎧ ⎫
⎪ ⎪ ⎪⎪ ⎪ +⎪ ⎪ ⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬+⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ +⎩ ⎭ ⎩ ⎭ ⎩

Q E F
.    (5) 

 
The nomenclature used here is the standard one, such that ρ is 

the density, u and v are Cartesian velocity components, p is the 
pressure and ε is the total energy per unit of volume. Equation (4) 
must be supplemented by the equation of state for ideal gases, which 
can be written as 

 
( )1p γ ρ= − , (6) 

 
where γ is the ratio of specific heats and e is the specific internal 
energy, which can be obtained from the total energy by the 
expression 

 

( 2 21
2

e u vε ρ ⎡= +⎢ ⎥⎣ ⎦
)⎤ . (7) 

 
The governing equations are discretized in a cell centered context, 

in which the discrete vector of conserved variables for the i-th cell is 
defined as 

 
1

i
i V

i

dxdy
V

= ∫∫Q Q , (8) 

 
where Vi is the volume of the i-th cell. The Euler equations can, 
then, be rewritten for each i-th control volume as 

 

( ) ( ) 0
i

i i S
V dy dx

t
∂

+ −
∂ ∫Q E F = . (9) 

 
It should be observed that, for a cell centered approach, the 

control volume used for the integration of the governing equations is 
formed by each triangular cell itself (Batina, 1991). The role of the 
spatial discretization algorithm is to approximate the surface integral 
in Eq. (9). This aspect is discussed in detail in the forthcoming 
paragraphs. For now, it is sufficient to define the convective 
operator, C(Qi), which is responsible for this spatial discretization. 
Hence, the Euler equations, fully discretized in space and assuming 
a stationary mesh, can be written as 

 

( ) ( )1i
i i

i

d
dt V

= − −⎡⎣ ⎦
Q C Q D Q ⎤

,
.

 (10) 

 
Here, D(Qi) represents the artificial dissipation operator which is 

required when a centered scheme is used, and it is identically zero, if an 
upwind spatial discretization is employed. In order to use the 
formulation developed for the Euler equations in the analysis of the 
scalar problem, one must identify the vector of conserved variables and 
the flux vectors with their appropriate definitions for the present case. 
Hence, the definition of these “vectors” in the scalar case becomes 

 

    ,
    
    

x

y

u
a u
a u

←
←
←

Q
E
F

 (11) 

 
It is, probably, important to further emphasize that the test case, 

which is actually being solved in the present work, is linear and 
smooth. However, the numerical methods that are implemented rely 
on limiters in order to achieve the desired behavior for real life 
problems. These limiters, on the other hand, are typically non-
smooth and non-differentiable nonlinear functions. Therefore, it 
would be correct to state that the present study is actually assessing 
how such nonlinearities affect the order of accuracy of the resulting 
schemes. As the work in the paper demonstrates, they clearly have a 
detrimental effect. However, one cannot do away with such 
nonlinearities, because they are precisely the ingredients, which 
allow the resulting schemes to perform adequately for the 
gasdynamic problems of interest in aerospace engineering. 

Time Discretization Algorithm 

The present work uses a well-tested, fully explicit, 2nd-order 
accurate, 5-stage Runge-Kutta time-stepping scheme (Mavriplis, 
1988) to advance the governing equations in time. The time 
integration scheme can be written as 

 
( )

( ) ( ) ( )( )
( )

0

0 1

51

 ,

 ,   1,...,5 ,

 ,

n
i i

l l
i i l i

i

n
i i

t l
V

α −

+

=

Δ
= − =

=

Q Q

Q Q C Q

Q Q

 (12) 

 
where the superscripts n and n+1 indicate that these are property 
values at the beginning and at the end of the n-th time step. The 
values used for the αl coefficients are (Mavriplis, 1988) 

 

1 2 3 4 5
1 1 3 1,  ,  ,  ,  1.
4 6 8 2

α α α α α= = = = =  (13) 

Spatial Discretization Schemes 

The primary interest in the present work is to discuss order of 
accuracy issues associated with unstructured upwind schemes. In 
particular, the emphasis is on triangular grids and flux-vector 
splitting schemes. Hence, a scalar version of Liou’s AUSM+ scheme 
(Liou, 1996) is presented both as a nominally 1st-order scheme and 
as a nominally 2nd-order scheme. The 2nd-order version uses a 
MUSCL reconstruction (van Leer, 1979), and the reconstruction 
process options implemented are discussed in detail in the 
forthcoming sections. For comparison purposes, a centered scheme 
is also implemented and its details are presented in the next section. 
Note that all schemes presented are implemented using an edge 
based data structure (Azevedo and Mitchell, 1995; Azevedo and 
Korzenowski, 1996). 

Centered Scheme 

The spatial discretization procedure used is equivalent to a 
central difference scheme. The convective operator, C(Qi), which 
approximates the surface integral in Eq. (9), is defined as 
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( ) ( )( )
( )( )

2 1

2 1

3

1

                 

i ik ik
k

ik ik ik

C Q y y

x x
=

⎡= −⎣

⎤− − ⎦

∑ E Q

F Q

ik −
 (14) 

 
In this expression, Qik is the arithmetic average of the conserved 

properties in the cells, which share the ik interface (Jameson and 
Mavriplis, 1986), i.e., 

 

(1
2ik i k= +Q Q Q ) . (15) 

 
Moreover, in the previous expression ( )1 1

,ik ikx y  and ( )2 2
,ik ikx y  

are, as shown in Fig. 2, the coordinates of the vertices, which define 
the interface between cells i and k. These points are always ordered 
in the counterclockwise direction for each i-th control volume. Note 
that, in the case of the Euler equations, artificial dissipation terms 
must be added in order to control nonlinear instabilities (Mavriplis, 
1990). In the present linear scalar case, artificial dissipation terms 
are not required and they were not used in the simulations here 
reported. 

 

 
Figure 2. Sketch of the extrapolation stencil used for primitive variable 
linear reconstruction in the 2nd-order upwind scheme. 

AUSM+ Scheme 

The convective operator for the AUSM+ scheme, in the present 
unstructured grid context (Azevedo and Korzenowski, 1998), and 
for the scalar advection problem, can be written as 

 

( ) ( )
3

1
i ik

k
l

=

=∑C Q F ik
, (16) 

 
where 

 

( ) ( )1 1    
2 2

ik ik L ik R

ik L R ik R L

a u a u

a u u a u u

+ −= + =

= + − −

F  (17) 

 
and lik denotes the length of the ik interface. The current 
nomenclature considers that i is the triangle “to the left” of the ik 
interface (see Fig. 2), since all interface segments are assumed 
oriented as previously indicated. Therefore, for a 1st-order scheme, 
the left state, L, is identified with the properties of the i-th triangle 
whereas the right state, R, is identified with those of the k-th 
triangle. 

The AUSM+ scheme performs a splitting of the u ± a 
eigenvalues of the Euler equations using the M ± 1 base functions. 
Using the nomenclature previously introduced, one can write the 
convective velocity in the direction normal to the edge under 
consideration as 

 

ik ikik x x y ya a n a n= ⋅ = +a n . (18) 
 
The above equation clearly uses the fact that, in the present 

case, a is a constant. Actually, if one follows the usual 
nomenclature of using subscripts L and R to denote left and right 
states, respectively, at a given interface, it is also possible to write 
that, in the present case, 

 

ik L Ra a a= = . (19) 
 

Hence, the split convective speeds at the ik interface can be defined as 
 

(1
2ik ik ika a a± = ± ) . (20) 

 
In order to obtain second order accuracy, and keeping with a 

MUSCL approach, the left and right states at the interface must be 
somehow linearly reconstructed at the interface. As previously 
mentioned, the extension to 2nd-order accuracy is obtained in the 
present work with the application of the MUSCL approach (van 
Leer, 1979; Anderson, Thomas and van Leer, 1986). Therefore, the 
second order scheme follows exactly the same formulation, except 
that the left and right states are obtained by a MUSCL extrapolation 
described in the following section. 

Reconstruction Methods 

Two basic reconstruction procedures are tested in the present 
work. The first one defines a one-dimensional stencil normal to the 
control volume edge of interest and, then, it uses this 1-D stencil in a 
very straightforward fashion in order to reconstruct interface 
properties. The other approach is based on computing cell averaged 
property gradients, and using these in order to obtain linear 
reconstructed interface properties. It is still important to note that the 
latter approach is also implemented in two quite different forms in 
the present work. This difference is associated with the gradient 
calculation, which is computed in the standard finite volume fashion 
in which the derivatives are transformed into integrals along the 
boundaries of the control volume. Hence, in one approach, the 
control volumes used for the cell averaged gradient calculations are 
the triangles themselves, while the other approach uses an extended 
control volume (Barth and Jespersen, 1989). 

One-Dimensional Reconstruction 

This procedure is based on building a 1-D calculation stencil 
normal to a particular edge under consideration. Once this stencil is 
defined, linear reconstruction is performed in the most 
straightforward way as if one were dealing with a 1-D problem. This 
approach is inspired in the work of Lyra (1994), which is based on a 
finite element technique. The major difference between the present 
construction and the one used in Lyra (1994) lies in the direction in 
which the one-dimensional stencil is constructed. In the cited 
reference (Lyra, 1994), the stencil for extrapolation is constructed 
along the direction of the edge. Here, since a cell centered finite 
volume method is of interest, the extrapolation stencil is constructed 
in a direction normal to the edge. 

In an attempt to reinterpret the 1-D ideas in the present 
unstructured grid context, a line is drawn normal to the edge passing 
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through the center of the inscribed circle to that triangle. As 
illustrated by the sketch shown in Fig. 2, a third point is located over 
this line, and away from the edge under consideration, at a distance 
from the center of the inscribed circle equal to the diameter of the 
circle. The control volume within which this 3rd point lies is 
identified, and the properties of this triangle used in the linear 
reconstruction.  

In order to make the nomenclature clear, the two triangles, 
which are adjacent to the edge under consideration, are denoted as i 
and k. The second triangle identified by the previously described 
process and associated with triangle i is denoted as l. The 
corresponding one associated with k is denoted as triangle m. This is 
also illustrated in Fig. 2. Once triangles l and m are identified, the 
reconstruction of left, L, and right, R, states at the ik interface can be 
performed as a limited extrapolation of u in the form 

 

( )

( )

1
2
1
2

L i i l

R k m

u u u u

u u u u

ψ

ψ

−

+

= + −

= − − k

 (21) 

 
In these expressions, ψ± represent the limiter, which is discussed in 
the next section. Note that the search of l and m triangles constitutes 
a pre-processing operation. Therefore, although this can be a costly 
operation, it is performed only once during a given run, provided 
that the grid topology remains fixed. Clearly, if grid adaptation is 
performed, the operation would have to be repeated. The additional 
information regarding the l and m triangles, on the other hand, must 
be added to the edge-based data structure, which implies in the need 
for extra storage. 

Gradient Reconstruction 

The approach followed in this case consists on attributing cell 
averaged properties and gradients to the control volume centroid, 
which allows the linear reconstruction of properties at any point 
within the cell. The basic expression can be written as 

 
( ) ( ), ,i iu x y u x y= +∇u r⋅ Δ , (22) 

 
where (x, y) denotes the coordinates of a generic point within the 
control volume, (xi, yi) is the position of the i-th cell centroid, ∇u is 
the gradient of the u property and Δr is the vector position of the (x, y) 
point with respect to the cell centroid. Therefore, there are two aspects 
that need to be discussed. The first one concerns the fact that it is 
necessary to include a limiter in order to avoid the creation of new 
extrema. The limiter construction is discussed in the next section. The 
other aspect concerns the calculation of the gradient itself. 

Gradients are computed in the present work using Green’s 
theorem (Swanson and Radespiel, 1991) and, therefore, transforming 
derivative calculations into line integrals around appropriate control 
volumes (in the 2-D case). In this context, the cell averaged 
derivatives for the i-th control volume can be written as 

 
1 1

1 1

V S
i

V S
i

u u dV udy
x V x V

u u dV udx
y V y V

Ω Ω

Ω Ω

Ω Ω

Ω Ω

∂ ∂⎛ ⎞ = =⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
= = −⎜ ⎟∂ ∂⎝ ⎠

∫ ∫

∫ ∫

 (23) 

 
The basic question that remains is: which control volume, VΩ, is 

used for this integration? The present work uses two different forms 
of defining this control volume. The first approach consists in 
defining VΩ = Vi, i.e., the triangles themselves are used as the 

control volumes for the gradient calculation. This is the simplest 
approach possible, but it is usually criticized in the literature (Barth 
and Jespersen, 1989) because it cannot recover the correct gradient 
of a linear function. 

The second option consists in defining the control volume for 
the gradient calculation as the polygon formed by connecting the 
centroids of all triangles which have an edge or a vertex in common 
with the i-th triangle. This is the approach recommended by Barth 
and Jespersen (1989), since it satisfies the criteria enforced by these 
authors for gradient calculations: 

1. One must obtain the exact solution for the gradient of the 
function when the function has a linear variation; 

2. The gradient must be defined for arbitrary meshes. 
However, this approach requires more memory usage to store 

the new extended control volume areas and it also requires 
additional computational time, because more complicated control 
volume yields additional operations in order to form the gradients. 

Once the cell averaged gradients have been computed, the ik 
interface properties can be linearly reconstructed in the standard 
fashion as 

 

L i

R k

u u

u u

ψ

ψ

−

+

= + ∇ ⋅Δ

= − ∇ ⋅Δ
i i

k k

u r

u r
 (24) 

 
Here, ∇ui and ∇uk are the gradients computed for triangles i and k, 
respectively, ψ± are the limiters, and Δri and Δrk are the vector 
positions of the interface midpoint with respect to the centroid of 
each of the two triangles which share the interface. 

Limiting Procedures 

In order to avoid oscillations, the extrapolated states must be 
limited (Hirsch, 1990). The majority of the results discussed here 
uses the minmod limiter. Another aspect concerns the fact that the 
limiter construction is clearly connected to the approach used for the 
linear reconstruction. Hence, the form used to define the limiter 
associated with the one-dimensional approach for property 
reconstruction is different from the one used when the gradient 
reconstruction is adopted. 

For the 1-D reconstruction case, the limiter is also constructed 
as a one-dimensional limiter, since the stencil for the calculation is 
already set up. Hence, the ψ± functions that appear in Eqs. (21) can 
be written as 

 

( )rψ ψ± ±= , (25) 

 
where the ratios of consecutive gradients are given by 

 

,k i k i

i l m k

u u u ur r
u u u u

− +− −
= =

− −
. (26) 

 
For the minmod limiter, the ψ(r) function can be written as 

 

( ) ( )
0  ,  if  0      

min mod 1,   ,  if  0 1
1  ,  if   1      

r
r r r

r
rψ

<⎧
⎪= = ≤⎨
⎪ ≥⎩

<
 (27) 

 
Corresponding expressions could be written for the other limiters, 
e.g., the superbee limiter, and these expressions can be easily found 
in the literature (Hirsch, 1990). 

For the cases in which the reconstruction process uses gradients, 
two limiter designs are used. The first one attempts to build a limiter 
which is also sort of one-dimensional, whereas the other approach 
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follows the work of Barth and Jespersen (1989) and considers a 
truly multidimensional limiter. In order to make the nomenclature 
clear for the discussion of the 1-D-type limiter with gradient 
reconstruction, the centroids of the i and k triangles are assumed to 
have coordinates (x, y)i and (x, y)k, respectively, and the ik interface 
midpoint has coordinates (x, y)h. The following vector positions can 
be defined 

 
( ) ( )
( ) ( )
( ) (

ik k i k i

ih h i h i

hk k h k h

x x y y

x x y y

)x x y y

= − + −

= − + −

= − + −

d i

d i

d i

j

j

j

 (28) 

 
and it is also convenient to define 

 
,   ,   ik ik ih ih hk hkd d d= = =d d d . (29) 

 
With these definitions, the following one-dimensional-type 
gradients can be computed: 
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The r± ratios are, then, defined as 
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and the limiters can be written as in Eq. (25). In this case, instead of 
using equations (24) for the actual reconstruction, it would be more 
appropriate to use 
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since the various terms are available due to the limiter calculation. 

This form of limiter has both theoretical and practical 
drawbacks, although it is very straightforward to implement and 
quite inexpensive from a computational cost point of view. The 
theoretical concern is associated with the fact that the property 
gradients are computed using information from all neighbors of a 
given triangle whereas the limiter only uses information along a 
pseudo-one-dimensional stencil normal to the particular edge. In 
other words, the reconstruction process uses information, which is 
multi-dimensional, whereas the limiter is one dimensional. 
Nevertheless, for the model problem, this limiter construction does 
not cause any difficulties and the results obtained, in terms of order 
of spatial accuracy for the scheme, are the best the authors were able 
to achieve throughout this investigation. Unfortunately, and this is 
the practical drawback, when the authors attempted to use this 
limiter for inviscid flow simulations at high Mach numbers, the 
numerical solutions invariably diverged for all cases tested. 
Numerical solutions could actually be obtained for the Euler 
equations at low supersonic Mach numbers, of the order of 2 or 3, 
for flows over a wedge. However, the computations would fail if 
one attempted the higher Mach numbers of interest to the authors 
(Figueira da Silva, Azevedo and Korzenowski, 1999). Since the 

same high Mach number cases could be computed with the other 
combinations of limiter and type of reconstruction, which are 
discussed here, the authors concluded that this 1-D-type limiter is 
not the most adequate for the sake of simulating compressible flows. 
The results with this limiter for the model problem are, however, 
presented here for completeness. 

The problems observed with the 1-D-type limiter together with 
the gradient reconstruction prompted the use of a truly multi-
dimensional limiter. This procedure closely follows the work of 
Barth and Jespersen (1989). The limiter definition starts by 
attributing the cell averaged value of the conserved variable, ui, to 
the i-th triangle centroid. In other words, it assumes that the property 
at the centroid has a value ui = u(xi, yi). Then, the values  and 

 are defined such that  

min
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where uk, k = 1, 2, 3, denote the neighbors of the i-th triangle. 
For each j-th vertex of the i-th triangle, the procedure computes 
uij = u(xj,yj) , j = 1, 2, 3, using Eq. (22), i.e., 

 

ij iu u= +∇ ⋅Δi iju r  (34) 
 

where Δrij = (xj − xi) i + (yj − yi) j. For each node of the i-th control 
volume, a preliminary limiter value is defined as 
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Finally, the value of the limiter, which will be used for the 
reconstruction using properties of the i-th triangle, is 

 

( )1 2 3min , ,i i iiψ ψ ψ ψ= . (36) 

 
This limiter construction is essentially equivalent to a multi-

dimensional version of the minmod limiter. In principle, one could 
design multi-dimensional limiter constructions, which would mimic 
the van Leer, superbee or other limiters. However, this is not 
attempted in the present work and the only version of a multi-
dimensional limiter tested is the one indicated in the previous 
equations. Furthermore, when defining the uij node values, the 
authors use the gradients already calculated for the control volumes. 
However, one could also think of defining such node values simply 
by a weighted averaged of the centroid values of all triangles, which 
share that particular node. The authors, however, have not 
experimented with this form of defining property node values. 

Mesh Generation and Boundary Treatment 

The model problem considered involves an extremely simple 
geometry and, therefore, one would think that triangular mesh 
generation in this case would be a trivial task. This would indeed be 
true, but some additional information, beyond the usual unstructured 
grid information, is necessary in order to implement the periodic 
boundary conditions. Furthermore, there is interest in having control 
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over the orientation of the triangles, because the work also 
investigates the grid orientation effect on the order of accuracy of 
the schemes tested. One should observe that, since the 
computational domain is a square with unit side length, it is natural 
to divide the domain into squared control volumes based on the 
number of subdivisions in each side of the domain. Hence, the 
triangular grid could be obtained by dividing each quadrilateral 
volume by one of its diagonals, yielding two triangles. The 
implementation adopted allows the user to select the division with 
diagonals oriented with +45 deg. and −45 deg. with respect to the x 
axis or a “truly” unstructured grid (Lo, 1985), in which the 
orientation of the diagonals is somewhat random. Examples of the 
possible grid types are shown in Fig. 3. 

The grids shown in Fig. 3 have the coarsest resolution used in 
the present work, namely with 10 subdivisions along each side of 
the squared domain or a characteristic length of 0.1. This yields a 
grid with 200 triangular control volumes, regardless of the mesh 
topology adopted. The investigation also considers grids with 20 × 20, 
40 × 40 and 80 × 80 divisions. These yield, respectively, a total of 800, 
3200 and 12800 control volumes and characteristic lengths of 0.05, 
0.025 and 0.0125 in dimensionless units. 

Regardless of the grid topology adopted, enough information is 
stored in order to allow an exact implementation of periodic 
boundary conditions. For each segment along the boundary, the 
identification of the corresponding segment along the boundary “on 
the other side” of the computational domain is stored. Boundary 
conditions are implemented through the use of ghost volumes in the 
present code, and the procedure adopted consists in forcing the 
ghost volume associated with a given triangle at the boundary to 
receive the property values of the other previously identified internal 
triangle of the pair. 

Results and Discussion 

Test Cases and General Information 

The work considers a simple 2-D, linear, scalar advection 
problem, as previously described. Even in such a simple situation, 
there are quite a few parameters, which can influence the results. 
Clearly, the main objective of the work is to identify how the error 
in the computed solution decreases as the mesh is refined. Hence, all 
simulations compute the model problem for one period of the 
solution and, then, compare the numerical solution with the exact 
solution for the problem. The global error is measured in terms of 
the L1 norm of the difference between exact and numerical results. 
This can be expressed as 

 

 
Figure 3. Grid topologies used in the present investigation: (a) truly 
unstructured grid; (b) diagonals oriented with −45 deg.; and (c) diagonals 
oriented with +45 deg. 

 

 
Figure 3. (Continued). 
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where the point with coordinates (xi, yi) indicates the centroid of the i-th 
control volume. One should observe that this is the natural definition of 
the error for a cell centered finite volume scheme. However, one might 
obtain somewhat different results, in terms of order of accuracy, if some 
form of averaging of the computational results is performed prior to 
computing the error (Durlofsky, Engquist and Osher, 1992). 

Hence, a calculation of the L1 norm of this averaged error is also 
performed. In the present case, this averaging is performed by 
obtaining (averaged) numerical results at the nodes of the control 
volumes. Therefore, the L1 norm of this averaged solution at the nodes 
is computed using an expression similar to Eq. (37), but with exact 
and numerical values of u evaluated at the nodal point locations. The 
averaged numerical values of the function at the nodes are obtained 
simply by an arithmetic average of the discrete properties of all 
control volumes, which share a given node. This is sufficient for the 
present case, since all control volumes have the same area. 

The procedure used here to verify the order of accuracy of the 
proposed schemes consists in running the problem for the four 
meshes previously defined, with increasing refinement, and plotting 
the logarithm of the L1 norm of the error as a function of the 
logarithm of the mesh spacing. A best fit straight line, in the least 
square sense, is passed through these points and the line slope 
determines the order of accuracy of the method. Thus, theoretically, 
a 1st-order method should yield a line with unit slope, whereas a 
2nd-order method should yield a line with slope equal to 2. 

Four major cases for the nominally 2nd-order upwind scheme are 
considered. These could be classified as (a) one-dimensional 
reconstruction with a 1-D-type limiter, (b) gradient reconstruction 
with a simplified integration control volume and a 1-D-type limiter, 
(c) gradient reconstruction with a simplified integration control 
volume and a multi-dimensional limiter, and (d) gradient 
reconstruction with an extended integration control volume and a 
multidimensional limiter. These results are compared to the nominally 
1st-order upwind scheme, described in the section that discusses the 
AUSM+ scheme, and to the standard 2nd-order centered scheme, also 
previously discussed. It should be emphasized that the four cases 
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listed above test the most relevant aspects discussed in the paper, 
which are the form in which reconstruction is performed, the process 
used to define the limiter and, for the case of gradient reconstruction, 
the control volume used for property gradient evaluation. 

All tests are performed for a constant CFL of 0.1, except for a 
single test for which the CFL is 0.01 in order to make sure the order 
of time accuracy of the scheme has no effect in the results. It should 
be emphasized that such small CFL numbers are used in order to 
guarantee that the time integration method has no effect in the 
subject matter of the present study, which is to assess the spatial 
accuracy of the schemes under investigation. Both the cases with 
linear advection in the x-direction as well as advection along a 45 
deg. direction with the x-axis are considered, which correspond to 
the advection velocity a = (ax,ay) = (1, 0) and (1, 1), respectively. 
The importance of testing these two cases is associated with an 
evaluation of the effect of the mesh orientation on the final order of 
accuracy for the schemes. For some of the triangular grids 
considered in this investigation, an advection velocity a = (1, 1) is 
either aligned with or perpendicular to a large number of grid edges. 

One-Dimensional Reconstruction Results 

The initial tests use the one-dimensional-type of property 
reconstruction at interfaces for the nominally 2nd-order scheme. The 
first test case considers a “truly” unstructured mesh and the 
convection velocity a = (1, 0). The results are shown in Fig. 4 for the 
nominally 1st-order scheme and the 2nd-order scheme with the 
minmod and superbee limiters. The actual orders of accuracy obtained 
numerically in each case are 0.82, 0.94 and 0.65, respectively. The L1 
norm of the error for these results is calculated without any averaging 
procedure, i.e., the error is calculated for properties evaluated at the 
actual control volume centroid. It is clear from these results that none 
of nominally 2nd-order case is even close to true 2nd-order accuracy. 
Actually, calculations with the superbee limiter yield results with an 
order of accuracy smaller than that of the 1st-order scheme. Moreover, 
the 1st-order scheme is also somewhat worse than true 1st order, and 
the 2nd-order scheme with the minmod limiter gives a slightly better 
order of accuracy than the 1st-order scheme. It is also intriguing that 
calculations with the minmod limiter give better order of accuracy 
than those with the superbee limiter, since the former is supposed to 
be much more dissipative. Note that all 1st-order results presented 
hereafter do not achieve actual 1st-order accuracy. This is also 
observed by Aftosmis, Gaitonde and Tavares (1995), who attributed 
such a discrepancy to the non-ortogonality of the cell interfaces with 
respect to the computed fluxes. 

 

 
Figure 4. L1 norm of the error for unstructured grid with one-dimensional 
reconstruction for the case ax = 1 and ay = 0. Lines are least square fits. 

A similar analysis for a grid with diagonals oriented −45 deg. with 
respect to the x-axis, and still considering a = (1, 0), is presented in 
Fig. 5. The 2nd-order scheme uses the minmod limiter. Moreover, 
both cases in which the error is calculated with and without averaging 
of numerical property values are presented in this figure. The slopes of 
the least square fits for these cases are indicated in Table 1. One can 
see that the grid orientation has essentially no effect on the 1st-order 
scheme in this case, and it has a small effect on the 2nd-order scheme. 
Moreover, the solution averaging prior to the error calculation 
improves the measured order of accuracy for the 2nd-order scheme, 
which is consistent with the results reported in Durlofsky, Engquist 
and Osher (1992). However, it has a small detrimental effect in the 
measured order of accuracy for the 1st-order scheme. In any event, it 
is clear from these results that the nominally 2nd-order scheme is 
quite far from yielding true 2nd-order accuracy. 

 

 
Figure 5. L1 norm of the error for grid with diagonals oriented −45 deg., 
with one-dimensional reconstruction, for the case ax = 1 and ay = 0. Lines 
are least square fits. 

 

Table 1. Order of accuracy for grid with diagonals oriented −45 deg., with 
one-dimensional reconstruction, for the case ax = 1 and ay = 0. 

Method L1 Norm  
without Averaging 

L1 Norm  
with Averaging

AUSM+ – 1st order 0.82 0.77 

AUSM+– 2nd order 0.91 1.03 
 
Although these results are discouraging and the authors did not 

analyze any other cases using the one-dimensional reconstruction 
procedure, it is interesting to try to understand what caused such 
poor performance. The first idea that comes to mind is the fact that 
there are reasons to attribute cell averaged values of the properties to 
the cell centroid. However, the same is not true for attributing cell 
averaged values to the center of the inscribed circle, which is 
essentially what the present procedure does. Moreover, the order of 
accuracy of the scheme could probably be improved if an 
interpolation is performed in order to obtain the properties at the 
second points used for the reconstruction, i.e., the points that lie in 
triangles l and m, as indicated in Fig. 2. The current procedure 
simply attributes to these points the cell averaged values of the 
properties. It seemed, at the time, that it was more effective to invest 
in the reconstruction process using gradients and, hence, no other 
tests with the one-dimensional reconstruction were performed. As 
an a posteriori thought, however, the one-dimensional 
reconstruction technique probably deserves further investigation. 
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Results for Simplified Gradient Calculation with 1-D Limiter 

The results discussed in this section use property gradient-based 
reconstruction, but the limiter is still constructed using 1-D-type 
ideas. Moreover, property gradients are calculated using the 
triangular cells themselves as control volumes for integration. The 
plots for the L1 norm of the error for a test case with advection 
velocity given by ax = 1 and ay = 0, and using the grid with 
diagonals oriented with −45 deg., are presented in Fig. 6 both for the 
cases in which no averaging of the results is performed before 
computing the error and for the cases in which averaging of the 
numerical results is made prior to the error calculation. This figure 
shows results for the 1st-order upwind scheme and for the 2nd-order 
upwind scheme with the minmod limiter and without any limiter at 
all. Moreover, for comparison purposes, the figures also show the L1 
norm of the error for the calculations with a 2nd-order centered 
scheme. The orders of accuracy actually obtained in each case are 
summarized in Table 2. Obviously, the 1st-order upwind scheme 
results are the same reported in the previous section, since the form 
of reconstruction does not affect the 1st-order scheme. 

The actual order of accuracy obtained with the nominally 2nd-
order upwind scheme should be compared, for instance, with the 
results in Table 1. It is clear from this comparison that the use of 
gradient reconstruction yields better orders of accuracy than the 1-D 
reconstruction process. However, there are some strange features in 
the results shown in Table 2. For instance, it is not clear why the 
calculation without any limiter at all yields an actual order of 
accuracy which is smaller than that obtained when the calculations 
are performed with the minmod limiter. The model problem has a 
smooth solution, which means that a limiter should, in the worst 
case, be clipping the smooth peaks and valleys of the smooth model 
function, if it perceives the gradients as too high. But, in any case, 
there is no apparent reason to obtain better results with the minmod 
limiter than without any limiter. Moreover, the actual values of the 
L1 norm of the error for the calculations with the minmod limiter are 
smaller than those for the unlimited extrapolation case. Furthermore, 
attempts to run this case with the superbee limiter resulted in 
numerical instability for the finer grids, although a solution could be 
obtained with the coarsest grid considered. 

 

 
Figure 6. L1 norm of the error without (top) and with (bottom) averaging 
for grid with diagonals oriented −45 deg., simplified gradient 
reconstruction and 1-D-type limiter, for the case ax = 1 and ay = 0. Lines 
are least square fits. 

 
Figure 6. (Continued). 

 

Table 2. Order of accuracy for grid with diagonals oriented −45 deg., with 
simplified gradient and 1-D-type limiter, for the case ax = 1 and ay = 0. 

Method L1 Norm  
without Averaging 

L1 Norm  
with Averaging

AUSM+ – 1st order 0.82 0.77 
AUSM+ – 2nd order with minmod 1.37 1.55 
AUSM+ – 2nd order, no limiting 1.23 1.27 
2nd order centered scheme 2.01 1.87 

 
The calculations summarized in Table 2 also indicate that even the 

best results obtained with the 2nd-order upwind scheme were still 
quite far from true 2nd-order accuracy as displayed by the centered 
scheme. It is also interesting to observe that the averaging of the 
solution prior to the error calculation consistently improves the 
numerical order of accuracy of the 2nd-order upwind scheme. 
However, this is not true either for the 1st-order upwind scheme or for 
the 2nd-order centered scheme. These results are in contrast with 
those reported in Durlofsky, Engquist and Osher (1992), where the 
averaging always improves the computed order of accuracy. It should 
be emphasized, however, that the averaging is performed in a different 
fashion in the present work, when compared to the cited reference. 
Here, the averaged value of the solution is computed at the nodes of 
the mesh from the discrete cell-averaged values calculated at the cells 
by the present cell-centered scheme. In Durlofsky, Engquist and Osher 
(1992), this “averaged value” is computed at the center of the squared 
cells formed by two adjacent triangles. 

A study is also performed to investigate the effect of the CFL 
number on the present results. For that, a grid with diagonals 
oriented with +45 deg. is used, together with an advection velocity 
given by ax = 1 and ay = 0. The AUSM+ scheme with gradient 
reconstruction and the 1-D-type limiter, with the minmod limiter, is 
used and the test case is run with CFL = 0.1 and 0.01. The order of 
accuracy obtained in the various cases analyzed is presented in 
Table 3. For comparison purposes, the orders of accuracy indicated 
in Table 3 are calculated using only the results for the three coarsest 
meshes. This is done because the initial results already indicated that 
there was no CFL number influence in the order of accuracy of the 
methods and the cost of running the finest grid with CFL = 0.01 was 
very high, of the order of 10 CPU hours in the equipment being used 
by the authors at the time, namely HP-9000/720 workstations. 
Moreover, for the cases in which values of the L1 norm of the error 
are available for the four grids, i.e., for the cases with CFL = 0.1, the 
order of accuracy obtained using the results for the four grids is 
indicated within parentheses in Table 3. 
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Table 3. Effect of the CFL number on the order of accuracy. Calculations 
used grid with diagonals oriented +45 deg., with simplified gradient and  
1-D-type minmod limiter, for the case ax = 1 and ay = 0. 

Method CFL L1 Norm  
without Averaging 

L1 Norm 
with Averaging

1st order 0.1 0.77 (0.82) 0.69 (0.77) 
1st order 0.01 0.77 0.69 
2nd order 0.1 1.42 (1.37) 1.59 (1.55) 
2nd order 0.01 1.42 1.59 

 
The effect of grid orientation is investigated by considering 

grids with a +45 deg. and a −45 deg. orientation for the quadrilateral 
diagonals used to construct the triangular meshes. The AUSM+ 
scheme is used for these tests, with 2nd-order reconstruction using 
gradients computed on the triangular cell itself and with the 1-D-
type of limiter construction. The minmod limiter is also used in 
these cases. In order to make any grid effects more evident, the 
linear advection problem with ax = ay = 1 is selected for this test 
case. Moreover, a CFL number of 0.1 is used in the tests. The plots 
for the L1 norm of the error are presented in Fig. 7 both for the cases 
in which no averaging of the results is performed before computing 
the error and for the cases with averaging of the numerical solution 
prior to the error calculation. This figure shows results for both the 
1st-order and 2nd-order schemes. The orders of accuracy actually 
obtained in each case are summarized in Table 4. 

Figure 7 and Table 4 are indicating that, at least for the 2nd-
order scheme, this test case shows very little effect of the grid 
orientation on the scheme order of accuracy. Moreover, for the 
advection velocity with ax = ay = 1, there is also very little difference 
between the orders of accuracy obtained with and without averaging 
the solution before the error calculation for the nominally 2nd-order 
scheme. This situation is in direct contrast with what one sees for 
the 1st-order scheme. For the 1st-order scheme, there is clearly a 
mesh orientation effect on the results. One can observe that, for the 
mesh with +45 deg. orientation, the order of accuracy obtained is 
independent of averaging and its value is somewhat the average 
between those obtained with and without averaging for the grid with 
−45 deg. orientation. 

 

 
Figure 7. L1 norm of the error without (top) and with (bottom) averaging, 
simplified gradient reconstruction and 1-D-type minmod limiter, for the 
case ax = ay = 1. Lines are least square fits. 

 

 
Figure 7. (Continued). 

 

Table 4. Effect of grid orientation on the order of accuracy. Calculations 
used 2nd-order reconstruction with simplified gradient and 1-D-type 
minmod limiter, for the case ax = ay = 1. 

Method Grid 
Orientation 

L1 Norm  
without Averaging 

L1 Norm 
with Averaging

1st order  -45 deg. 0.50 0.41 
1st order  +45 deg. 0.45 0.45 
2nd order  -45 deg. 1.52 1.51 
2nd order  +45 deg. 1.49 1.50 

 
The overall conclusion one can draw from the results with 

gradient reconstruction with the simplified gradient calculation and 
with 1-D-type limiting procedures is that the orders of accuracy 
achieved are quite a lot better than those obtained with the one-
dimensional-type reconstruction discussed in the previous section. 
Moreover, even though the orders of accuracy achieved for the 
present cases are still far from true 2nd order, they are much higher 
than that delivered by the corresponding 1st-order scheme 
calculations. In particular, for the cases with advection along a 45 deg. 
direction with the x-axis, the 2nd-order results are about three times 
better than those with the 1st-order scheme in terms of the actual 
order of accuracy one can actually obtain in the numerical 
calculations. However, as discussed in connection with the results in 
Table 2, some aspects of the solution behavior with the procedure 
emphasized in this section are, at least, strange. 

The worst problem, however, with the use of gradient 
reconstruction and a 1-D limiting procedure occurred when the 
authors attempted to extend the capability in order to perform 
simulations of inviscid flows at high Mach numbers. The code 
extended to run cases for the Euler equations is able to obtain 
solutions for low supersonic Mach numbers as, for instance, for the 
flow over a wedge with freestream Mach number 2. However, the 
same test case results in numerical instability if the freestream Mach 
number is increased to, for instance, 8. These results lead to authors 
to conclude that this 1-D-type limiter is not the most adequate for 
these applications. Apparently, these problems arise from the fact 
that, when gradients are used, the reconstruction process is truly 
multi-dimensional, using information from all neighbors of the 
triangle under consideration. On the other hand, the 1-D-type 
limiting procedure does not use information from all neighbors and, 
hence, it actually does not provide an adequate limiting at all and 
leads to numerical instability. Therefore, with a gradient-type 
reconstruction, a truly multi-dimensional limiting procedure seems 
to be required in order to avoid numerical problems. 
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Simplified Gradient Calculation with Multi-Dimensional 
Limiter 

The multi-dimensional limiter is built as previously described 
and its formulation is based on the work of Barth and Jespersen 
(1989). Results for the L1 norm of the error for a test case with 
advection velocity given by ax = 1 and ay = 0 are presented in Fig. 8 
for the error calculated both without and with averaging. The curves 
in Fig. 8 include calculations with the nominally 2nd-order AUSM+ 
scheme with the multi-dimensional limiter for two different grid 
types, namely a completely unstructured grid and a grid with −45 
deg. orientation of the diagonals, and with the 1-D limiter for the 
grid with diagonals oriented with −45 deg. For all upwind cases, the 
2nd-order reconstruction uses gradients which are calculated using 
the triangular cell itself as the integration control volume. Moreover, 
the limiters are always the equivalent of a minmod limiter regardless 
of whether a 1-D or multi-dimensional construction is used. For 
comparison purposes, the error for the 2nd-order centered scheme, 
calculated on a mesh with −45 deg. orientation, is also shown. 

One can see in Fig. 8 that the mesh orientation has essentially no 
effect on the order of accuracy of the upwind scheme with the multi-
dimensional limiter. The orders of accuracy for both calculations 
with the multi-dimensional limiter are smaller than those obtained 
for the results with the 1-D-type limiter for the case shown in Fig. 8. 
Clearly, the order of accuracy of the centered scheme is much higher 
than that displayed by the upwind schemes, regardless of the mesh 
or the type of limiter construction. The comments that can be made 
with regard to the results with averaging are essentially the same, 
except that now one can observe a slight influence of the grid 
orientation on the multi-dimensional limiter results. In other words, 
the results with a truly unstructured grid indicate a slightly higher 
order of accuracy than those obtained for the grid with diagonals at 
−45 deg. 

 

 
Figure 8. L1 norm of the error without (top) and with (bottom) averaging, 
gradient reconstruction with simplified integration control volume and 
multi-dimensional minmod limiter, for the case ax = 1 and ay = 0. Lines are 
least square fits. 

 
Figure 8. (Continued). 

 
It is also interesting to observe that the cases with the upwind 

scheme not only yield a lower order of accuracy than those with the 
centered scheme, but also the actual value of the error with the 
nominally 2nd-order upwind schemes is much larger than that 
observed for the centered scheme for the same mesh spacing. 
Although not much emphasis is being placed on the actual value of 
the L1 norm of the error in the present paper, this can also be a very 
important parameter to be considered. All the results discussed so 
far have consistently indicated that the nominally 1st-order schemes 
yield error norms larger than those of the nominally 2nd-order 
upwind schemes which, on their turn, yield error norms larger than 
those of the 2nd-order centered scheme. 

Calculations with the advection velocity in the direction of the 
computational domain diagonal, i.e., ax = ay = 1, are shown in Fig. 9. 
In these cases, both the effect of the mesh orientation and the effect of 
using a limiter are investigated. Hence, Fig. 9 shows results for the L1 
norm of the error both without and with averaging, with gradient 
reconstruction, simplified gradient calculation and a multi-
dimensional minmod limiter, for the three different mesh topologies 
considered in this work. Moreover, for the case of a truly unstructured 
grid, the error for the calculations with the use of no limiter at all is 
also shown in Fig. 9. 

 

 
Figure 9. L1 norm of the error without (top) and with (bottom) averaging, 
gradient reconstruction with simplified integration control volume and 
multi-dimensional minmod limiter, for the case ax = ay = 1. Lines are least 
square fits. 
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Figure 9. (Continued). 

 
One can observe in Fig. 9 that the effect of the grid orientation is 

not dramatic, but the grids with −45 deg. diagonal orientation 
clearly yield a lower order of accuracy. For the present case, these 
grids have a large number of control volume edges exactly normal to 
the direction of property advection, and this seems to have a 
detrimental effect on the resulting scheme order of accuracy. Figure 9 
also shows that the orders of accuracy for the solutions with the truly 
unstructured grids and with the grids with +45 deg. diagonal 
orientation are completely identical, although the magnitudes of the 
L1 norms of the error are slightly higher for the former grid 
topology. The results in Fig. 9 indicate that the truly unstructured 
grids yield a slightly smaller order of accuracy, when compared to 
the solutions with the +45 deg. grids, if the error with averaging of 
the numerical solution is used. 

The calculations with no limiter yield L1 norms of the error, 
which are substantially lower than those obtained with the multi-
dimensional minmod limiter, as one can observe from the 
comparison of the results for the truly unstructured grids shown in 
Fig. 9. Moreover, the actual scheme order of accuracy is better for 
the results without the limiter. This is the result that should be 
expected for a problem with a smooth solution such as the present 

model problem, and it is in accordance with those obtained by 
Aftosmis, Gaitonde and Tavares (1995). Furthermore, this result is 
in direct contrast to the one obtained in the previous section for the 
calculations with the 1-D limiter. As previously discussed, since the 
model problem has a smooth solution, the limiter should either play 
no role at all or, in the worst case, clip the smooth peaks and valleys 
of the smooth model function, if it perceives the gradients as too 
high. In this latter case, the solution without any limiter should yield 
a better comparison with the analytical solution than the limited 
calculation and, hence, a higher actual order of accuracy for the 
scheme. This is precisely what is being observed in the present 
calculations with the simplified gradient reconstruction and the 
multi-dimensional limiter. Moreover, this provides confidence that 
the multi-dimensional limiter is actually doing a much better job 
than the previous 1-D-type limiter, and it solves the apparent 
anomaly observed with the 1-D limiter.  

The resulting orders of accuracy obtained in the several tests 
performed with the nominally 2nd-order AUSM+ scheme using 
gradient reconstruction and the simplified control volume for gradient 
calculation and with the multi-dimensional limiter are summarized in 
Table 5. For comparison purposes, some results already reported in 
previous tables are repeated here as, for example, the results for the 
centered scheme and for the upwind scheme with 1-D-type limiter, 
which appear in Fig. 8. The first important conclusion that can be 
drawn from these results is that the use of the multi-dimensional 
limiter has brought the scheme order of accuracy down when 
compared to the values which are obtained using the 1-D-type limiter. 
However, considering the discussions in the previous paragraph, the 
results obtained with the multidimensional limiter are more consistent 
than those obtained with the 1-D limiter. Moreover, a comparison of 
the results in Table 5 with those in Tables 2 and 4 indicates that the 
nominally 2nd-order scheme with the multi-dimensional limiter still 
consistently yields a higher actual order of accuracy than the 
nominally 1st-order scheme for the corresponding cases. Furthermore, 
flow simulations with the Euler equations did not present instability 
problems, even for very high Mach numbers, when the multi-
dimensional limiter is used (Figueira da Silva, Azevedo and 
Korzenowski, 2000). Hence, despite the decrease in order of accuracy 
caused by the multidimensional limiter, its use would certainly be 
recommended as opposed to that of the 1-D-type limiter. 

 

Table 5. Summary of order of accuracy results for 2nd-order reconstruction with simplified gradient and multi-dimensional minmod limiter. 

Method Limited Type Advection (ax,ay)Grid Orientation L1 Norm  
without Averaging

L1 Norm 
with Averaging 

AUSM+ Multidim. ( 1 , 0 ) unstructured 0.92 1.06 
AUSM+ Multidim. ( 1 , 0 ) -45 deg. 0.89 0.98 
AUSM+ 1 - D ( 1 , 0 ) -45 deg. 1.37 1.55 
AUSM+ No limiter ( 1 , 0 ) -45 deg. 1.23 1.27 
Centered  ( 1 , 0 ) -45 deg. 2.01 1.87 
AUSM+ Multidim. ( 1 , 1 ) +45 deg. 0.84 0.87 
AUSM+ 1 - D ( 1 , 1 ) +45 deg. 1.49 1.50 
AUSM+ Multidim. ( 1 , 1 )  -45 deg. 0.73 0.72 
AUSM+ 1 - D ( 1 , 1 )  -45 deg. 1.52 1.51 
AUSM+ Multidim. ( 1 , 1 ) unstructured 0.84 0.80 
AUSM+ No limiter ( 1 , 1 ) unstructured 1.10 1.13 

Results for Extended-Volume Gradient Calculation 

The last aspect analyzed in the present work considers the use of 
gradient reconstruction with property gradients computed using an  

 
extended integration control volume, as suggested by Barth and 
Jespersen (1989). An analytical study would indicate that the choice 
of Barth and Jespersen’s integration control volume would allow 
capturing the exact gradient of a linear function, whereas the use of 
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the triangular control volumes themselves for gradient calculation 
would not yield the exact result in this case. Hence, one would 
expect that the adoption of this more costly gradient calculation 
could improve the actual order of accuracy of the nominally 2nd-
order AUSM+ scheme for the present model problem calculations. It 
should be noted that, considering the results of the previous section, 
only the multi-dimensional limiter is used in the present tests. 

The results presented in Fig. 10 consider the case of advection 
velocity along the x-axis, i.e., ax = 1 and ay = 0, and 2nd-order 
gradient reconstruction with the extended control volume for 
gradient calculation. Figure 10 indicates the evolution of the L1 
norm of the error with the grid spacing both without and with 
averaging of the numerical results performed prior to error 
calculation. This figure shows both the curves for the truly 
unstructured grid orientation as well as for the grid with diagonals 
oriented with +45 deg. with the x-axis. The results for the grid 
oriented with −45 deg. with respect to the x-axis are not shown in 
the figure because they are exactly identical to those for the grid 
with +45 deg., as one would expect in this case. As previously 
discussed, the multi-dimensional version of the minmod limiter is 
used and, for comparison purposes, the calculations without any 
limiting of the extrapolated properties are presented for both cases. 

The curves in Fig. 10 are indicating that there is very little effect 
of the mesh topology for this case, as far as the limited results are 
considered. On the other hand, the magnitude of the L1 norm of the 
error is substantially lower when the truly unstructured grid is used 
with the calculations without a limiter. Moreover, the actual order of 
accuracy is larger in this case. The calculated order of accuracy for 
the results without limiting is also larger than that for the 
calculations with the multi-dimensional minmod limiter, as should 
be expected. Furthermore, the averaging procedure of the numerical 
solution prior to error evaluation consistently improves the order of 
accuracy of the solution for all cases presented in Fig. 10. 

 

 
Figure 10. L1 norm of the error without (top) and with (bottom) averaging, 
gradient reconstruction with extended integration control volume and 
multi-dimensional minmod limiter, for the case ax = 1 and ay = 0. Lines are 
least square fits. 

 
Figure 10. (Continued). 

 
The L1 norms of the error for the case of advection velocity 

along the domain main diagonal, i.e., ax = ay = 1, and 2nd-order 
gradient reconstruction with the extended control volume for 
gradient calculation, are shown in Fig. 11. In the present cases, there 
are grid orientation effects between the +45 and −45 deg. grids. This 
is to be expected, since the grids with +45 deg. diagonal orientation 
have a large number of triangle diagonals oriented along the 
advection direction, whereas the grids with −45 deg. diagonal 
orientation have a large number of triangle diagonals oriented 
normal to the advection direction. Moreover, one can also observe 
that there is not much difference between the results with the truly 
unstructured grids and the grids with +45 deg. orientation, when the 
limited calculations are considered, as it was also observed for the 
case of advection along the x-axis. On the other hand, the same is 
not true, if the calculations without limiting are considered. 
Actually, the order of accuracy for the calculations with the truly 
unstructured grid and no limiting is substantially larger than that 
obtained for the other cases, especially if measured in terms of the 
L1 norm without averaging of the numerical results. 

 

 
Figure 11. L1 norm of the error without (top) and with (bottom) averaging, 
gradient reconstruction with extended integration control volume and 
multi-dimensional minmod limiter, for the case ax = ay = 1. Lines are least 
square fits. 
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Figure 11. (Continued). 

 
 

 
 
 

The orders of accuracy obtained for all these test cases are 
summarized in Table 6. The orders of accuracy obtained for the 
corresponding cases with the 1st-order version of the AUSM+ 
scheme are also shown in Table 6 for comparison purposes. It is 
clear that, even with gradients computed using an extended, and 
presumably better control volume, the nominally 2nd-order versions 
of the AUSM+ scheme do not yield true 2nd-order accuracy. For the 
case of the truly unstructured grid, and without any limiting and 
without averaging the solution, one actually obtains an order of 
accuracy very close to 2nd order for the case of advection 
transversal to the computational domain. However, for some of the 
other cases, the order of accuracy numerically determined is even 
lower than 1st order for the nominally 2nd-order scheme. Moreover, 
a comparison of the results in Tables 5 and 6 also indicates that, for 
some cases, reconstruction using gradients computed on the triangle 
itself yield a higher order of accuracy than when it uses gradients 
computed on the extended control volume. It can be stated, though, 
that the nominally 2nd-order schemes always achieve an order of 
accuracy larger than that obtained with the nominally 1st-order 
scheme for the same case, when gradient reconstruction with a 
multidimensional limiter is used, regardless of the control volume 
used to compute the gradients. 

 

Table 6. Summary of order of accuracy results for 2nd-order reconstruction with extended gradient and multi-dimensional minmod limiter. All results 
consider the AUSM+ scheme. 

Method Limited Type Advection (ax,ay) Grid Orientation L1 Norm  
without Averaging

L1 Norm  
with Averaging 

1st order   ( 1 , 0 ) unstructured 0.92 0.77 
2nd order Multidim. ( 1 , 0 ) unstructured 0.87 0.97 
2nd order No limiter ( 1 , 0 ) unstructured 1.24 1.49 
1st order   ( 1 , 0 )  +45 deg. 0.82 0.77 
2nd order Multidim. ( 1 , 0 )  +45 deg. 0.87 0.99 
2nd order No limiter ( 1 , 0 )  +45 deg. 1.14 1.25 
1st order   ( 1 , 0 )  -45 deg. 0.82 0.77 
2nd order Multidim. ( 1 , 0 )  -45 deg. 0.87 0.99 
2nd order No limiter ( 1 , 0 )  -45 deg. 1.14 1.25 
2nd order Multidim. ( 1 , 1 ) unstructured 0.84 0.81 
2nd order No limiter ( 1 , 1 ) unstructured 1.85 1.58 
1st order   ( 1 , 1 )  +45 deg. 0.45 0.45 
2nd order Multidim. ( 1 , 1 )  +45 deg. 0.85 0.87 
2nd order No limiter ( 1 , 1 )  +45 deg. 1.18 1.22 
1st order   ( 1 , 1 )  -45 deg. 0.50 0.41 
2nd order Multidim. ( 1 , 1 )  -45 deg. 0.72 0.72 
2nd order No limiter ( 1 , 1 )  -45 deg. 1.23 1.28 

 
 
A final comparison is presented in Fig. 12. For this comparison, 

a mesh with −45 deg. for the diagonal orientations was selected and 
the advection velocity along the x-axis was chosen. Figure 12 has 
the results both without and with averaging the numerical solution 
prior to error calculation. All calculations used the minmod limiter, 
either in its 1-D or multi-dimensional versions. Probably the most 
important conclusions one can draw from these comparisons are that 
both the order of accuracy of the limited schemes and the actual 
values of the L1 norms of the error are essentially the same for all 
three forms of reconstruction here studied, which have yielded 
relevant results when extended for high speed, supersonic, Euler 

calculations. The use of a 1-D-type limiter construction together 
with a gradient reconstruction, as already discussed, clearly has 
conceptual and practical problems. Therefore, the fact that the 
corresponding curves in Fig. 12 yield the best order of accuracy 
amongst the upwind schemes tested is, unfortunately, of no help. 
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Figure 12. Comparison of the L1 norm of the error without (top) and with 
(bottom) averaging for the various types of reconstruction investigated in 
the present paper. Case considered has ax = 1 and ay = 0 and uses a grid 
with diagonals oriented with −45 deg. with respect to the x-axis. Lines are 
least square fits. 

Concluding Remarks 

The present paper describes a detailed study of order of 
accuracy for upwind, MUSCL-type, flux-vector splitting, finite 
volume schemes on unstructured triangular grids. All the upwind 
calculations use Liou’s AUSM+ scheme. The major emphasis of the 
work clearly is on the effects of the reconstruction procedure 
adopted to obtain 2nd-order accuracy together with the limiter 
construction. The study considers four major cases for the nominally 
2nd-order upwind scheme. These can be classified as (a) one-
dimensional reconstruction with a 1-D-type limiter, (b) gradient 
reconstruction with a simplified integration control volume and a 1-
D-type limiter, (c) gradient reconstruction with a simplified 
integration control volume and a multi-dimensional limiter, and (d) 
gradient reconstruction with an extended integration control volume 
and a multi-dimensional limiter. The various forms of linearly 
reconstructing interface properties are tested using a scalar, linear 
advection problem with periodic boundary conditions and the 
effects of triangular mesh orientation and direction of the advection 
velocity are considered in the study. 

The results indicate that the nominally 2nd-order upwind 
schemes do not yield true 2nd-order accuracy. Actually, with a few 
exceptions, the orders of accuracy achieved are quite far from 2nd 

order. Only the 2nd-order centered scheme was able to produce 
results with true 2nd-order accuracy. However, even if the higher 
order upwind schemes do not achieve 2nd-order accuracy, their 
orders of accuracy are higher than those obtained with the nominally 
1st-order schemes. For some cases, the actual order of accuracy of 
the 2nd-order schemes is almost twice the order of its corresponding 
1st-order version. Moreover, the results also indicate that the actual 
value of the error, measured in terms of its L1 norm, is much smaller 
for the 2nd-order schemes than for the corresponding 1st-order 
schemes. In some cases, the L1 norm of the error can be one order of 
magnitude smaller for the 2nd-order scheme. 

The calculations show that the use of gradient reconstruction 
with a 1-D-type limiter does not yield reliable results. Although the 
orders of accuracy achieved are among the best that were obtained 
in the present investigation, some aspects of the error behavior are 
not reasonable. It seems that the reconstruction using property 
gradients is a truly multi-dimensional process and, hence, it does not 
make sense to use a limiter whose construction is based on 1-D 
ideas. On the other hand, all the other reconstruction strategies 
tested in the present work yield results which are essentially 
equivalent. This means that, if one thinks in terms of gradient 
reconstruction, the present results did not show any marked 
advantage of using the extended control volume for gradient 
calculations. Actually, based on the current results, the 
recommendation would be to compute the gradients using the 
triangles themselves as integration control volumes. This is more 
computationally efficient than the use of the extended control 
volumes and it yields essentially the same order of accuracy for the 
nominally 2nd-order scheme. It should be observed, however, that 
the present conclusion is based on the consideration of a simple 
advection, or convection, problem. Clearly, it would be interesting 
to revisit this question of simple versus extended control volume for 
gradient calculation, when considering the viscous gradients that are 
necessary for Navier-Stokes computations. 
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