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Multivariable H2 and H∞ Control for a 
Wind Energy Conversion System – A 
Comparison 
The Wind Energy Conversion System (WECS) is a nonlinear system, highly dependent on a 
stochastic variable characterized by sudden variations, and subjected to cyclical 
disturbances caused by operational phenomena. Thus, the quality of a WECS controller is 
measured by its capacity to deal with unmodeled dynamics, stochastic signals, and 
periodic, as well as non-periodic disturbances. Since the WECS' objectives can be easily 
specified in terms of maximum allowable gain in the disturbance-to-output transfer 
functions, H2 and H∞ methodologies can be good options for designing a WECS stabilizing 
controller, combining specifications such as: disturbance attenuation, asymptotic tracking, 
bandwidth limitation, robust stability, and trade-off between performance and control 
effort. Designs for WECS multivariable feedback controllers based on H2 and H∞ 
methodologies are presented in this paper. The performances of both controllers are 
computationally simulated, analyzed and compared in order to identify the advantages and 
drawbacks of each controller design. 
Keywords: Wind Energy Conversion System, Control Theory, H2 and H∞ control 
 
 
 
 
 
 
 
 
 
 

Introduction1 

The reproduction of the current energy scenery is impracticable 
due to problems to overlap the negative effects associated to 
progressive use of the conventional resources, such as the inevitable 
exhaustion of the fossil fuels and the environmental problems. 
Considering the growing energy demand, the importance of 
renewable and pollution-free technologies must increase in the 
future energy strategies. This fact has attracted great interest in the 
development of Wind Energy Conversion Systems (WECS). 

The basic configuration of a WECS is a wind turbine (WT) 
coupled to an electric generator, either directly or by a gear-box. In 
spite of its simplicity, WECS represents an interesting control 
problem. Due to difficulty in physical phenomena characterizing by 
means of experimental investigation, WECS modeling becomes a 
complex problem. The aerodynamic characteristics of a WT are 
nonlinear and highly dependent on wind speed, which is 
characterized by sudden variations and behaves simultaneously as 
energy supply and disturbance signal. A ripple torque is introduced 
into WECS by operational phenomena such as tower shadow, wind 
shear, yaw misalignment and shaft tilt (Freris, 1990). The speed 
and/or power control of a WECS can be achieve by adjusting the 
generator torque (Novak et al., 1995) or varying the pitch angle of 
the blades in some WT configurations (Wasynczuk et al., 1981). 
Thus, a WECS is a nonlinear multivariable system, in which the 
control system has to deal with several uncertainties, parameter 
variations, nonlinearities, noise, unmodeled dynamics, periodic and 
non-periodic disturbances. 

In this context, the quality of a WECS control system is 
measured by its stochastic properties and its capacity to establish a 
trade-off between detrimental dynamic load reduction and energy 
conversion maximization, shaping the system dynamics in order to 
satisfy performance and stability specifications (Leithead et al., 
1991). Another important control objective is to reduce the 
influence of wind fluctuation and ripple torque at any rotation speed, 
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because these cause large power fluctuations and unavoidable 
vibrations with detrimental effects to WECS (Dessaint et al., 1986). 
The classic methods do not offer a completely satisfactory solution 
to WECS control design, resulting in controllers that do not offer the 
necessary robustness for both stability and performance (Dessaint et 
al., 1986; Lefebvre and Dubé, 1988; Leithead et al., 1991). 
Considering that the WECS control objectives can be easily 
specified in terms of maximum allowable gain in the disturbance-to-
output transfer functions, H2 and H∞ methodologies can be good 
options for designing a WECS stabilizing controller, since both 
approaches combine specifications, such as: disturbance attenuation, 
asymptotic tracking, bandwidth limitation, robust stability and trade-
off between performance and control effort. The H2 methodology is 
particularly appropriate in situations where disturbance rejection and 
noise suppression are important, while H∞ is usually preferred when 
the robustness to plant uncertainties is the dominant issue 
(Maciejowski, 1989; Skogestad and Postlethwaite, 2001). 

The designs of multivariable feedback controllers based on H2 
and H∞ methodologies are presented in this paper. The structure 
shown in Fig. 1 was used for the rotation control for an upwind 
variable-pitch horizontal axis WT (HAWT) coupled to an induction 
generator, which is connected to the electric network via power 
electronic converters. The performances of both controllers are 
computationally simulated, analyzed and compared so as to identify 
advantages and drawbacks of each design. 

 

 
Figure 1. Multivariable structure for a WECS rotation feedback control system. 
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WECS Model 

A nonlinear model of a WECS with suitable complexity was 
developed for computational simulations. Five distinct WECS 
subsystems are considered in this modeling: wind, aerodynamics, 
drive train, pitch actuator and generator. 

Wind 

The WECS operation is highly dependent on wind speed, a 
stochastic variable characterized by sudden variations which 
simultaneously behaves as the energy supply and disturbance signal. 
Although the wind is a multidimensional stochastic process that 
depends on time and spatial coordinates, a two-dimensional model 
is generally enough to evaluate the dynamics of WECS (Wasynczuk 
et al., 1981). Due to a phenomenon known as “wind shear”', wind 
speed depends on height. Its value Vi at the representative point 3/4 
of the cord of i-th blade at instant t is given by (Golding, 1977; 
Wasynczuk et al., 1981; Freris, 1990): 
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where a is a coefficient that depends on local topography, θi is the 
spatial angle of the i-th blade, R is the WT radius, and H is the 
height of the tower that supports the WT. The wind speed VH at 
height H can be described by four components (Rohatgi and Pereira, 
1996; Leith and Leithead, 1997): 
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where V  is the effective average wind speed at height H. The 
discrete longitudinal wind gust VG at instant t can be described as 
(Hwang and Gilbert, 1978; Anderson and Bose, 1983; Raina and 
Malik, 1985): 
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where TG is the instant when the gust begins, ΔTG is the gust 
duration, and ho is a parameter known as roughness height. 
Another kind of sudden wind speed variation considered in this 
modeling is the ramp component VR, which is given by (Anderson 
and Bose, 1983): 
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where VRMAX is the peak of the ramp, TR is the instant when the ramp 
begins and ∆TR is the ramp duration. For small ∆TR, the ramp 
component can be used as an approach to the wind step. The wind 
speed stochastic component is the wind fluctuation ΔV, which can 
be estimated as (Wasynczuk et al., 1981): 
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where ψi = (i-1/2)Δψ, φi is an independent random variable with 
uniform density in the interval of 0 to 2π, and Sv(ψi) is a power 
spectral density given by: 
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where KN is the superficial drag coefficient, F is the turbulence 
scale, and μ is the mean wind speed at the reference height. For 
good results, it is suggested that N = 50 and Δψ be between 0.5 and 
2.0 rad/s (Anderson and Bose, 1983). 

WT Aerodynamics 

The aerodynamics of a WT is normally described by 
dimensionless coefficients, which define the WT ability to convert 
kinetic energy of moving air into mechanical power Cp or torque 
Cq (Novak et al., 1995; Medeiros et al., 1996). Both coefficients 
Cp and Cq depend on the constructive aspects of the WT blades 
and they are nonlinear functions of pitch angle β, yaw angle θ and 
a parameter known as tip-speed ratio λ, which is defined for the i-
th blade of WT as: 
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where ωi is the rotation of the WT i-th blade. Admitting that the WT 
is always aligned with the wind direction (θ=0o), the aerodynamic 
torque Qai of the WT's i-th blade is given by (Wasynczuk et al., 
1981; Freris, 1990; Novak et al., 1995): 
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where ρ = air density. 

Pitch Actuator 

Some WTs have an electro-hydraulic device to adjust the pitch 
angle β of its blades, which can be modeled as (Johnson and 
Smith, 1976): 
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where βc is the command signal, τ is the time constant of the pitch 
actuator and ξ is the damping factor. 

Drive Train 

The drive train of a WECS can be modeled as a set of masses 
connected by flexible shafts according to the block diagram shown 
in Fig. 2 (Novak et al., 1995; Hori et al., 1999). Admitting an ideal 
gear-box, the mechanical coupling system of a WT with n blades 
can be described by the classical rotational dynamics: 
• i-th blade: 
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• hub: 
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• generator: 
 

( ) gmhggthggggg QQDDJ −+−=+ ωωωω&  (12)  

 
• shaft torques: 

 
( )tiihmih KQ ωω −=&  (13)  

( )gthgmhg KQ ωω −=&  (14)  

 
where ωt = hub rotation, ωg = generator rotation, Ji = i-th blade 
inertia, Jh = hub inertia, Jg = generator inertia (including gear-box 
inertia), Di = i-th blade damping, Dh = hub damping, Dg = generator 
damping, Dih = i-th blade-hub connection damping, Dhg = shaft 
damping, Kih = i-th blade-hub connection stiffness, Khg = shaft 
stiffness, Qmih = i-th blade torque, Qmhg = shaft torque and Qg = 
generator torque. 
 

 
Figure 2. WECS model for simulation. 

Generator Torque 

The electric generator converts the rotational mechanical energy 
of the WT into electric energy for costumers. For variable speed 
WECSs, the electric generator must be connected to the grid using 
power electronic converters. In this case, the generator torque is 
independent of the WECS dynamics (Novak et al., 1995) and can be 
considered as a system input in the WECS model. Since the 
dynamics of electric systems are extremely fast if compared to drive 
train dynamics, a quasi-static model is assumed for the electric 
generator. 

Controller Design for WECS 

Nominal Linear Model 

In order to design H2 or H∞ controllers, it is necessary to obtain a 
nominal linear model for the WECS. In the nonlinear Cpxλ and Cqxλ 
characteristics of a WT for β = 0o, which is shown in Fig. 3, it is 
possible to identify two distinct regions in the WT operation. The stall 
region (A) is characterized by a positive slope, resulting in an unstable 
operation with sudden and significant drops in the aerodynamic 
torque. The stable operational region (B) is characterized by a 
negative slope, corresponding to normal WT operation, where the 

aerodynamic torque Qa can be linearized as (Novak et al., 1995; 
Rocha et al., 2001; Rocha and Martins Filho, 2003): 
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where α is a scaling factor for torque disturbance due to wind 
variations V& , γ denotes feedback speed coefficient from the drive 
train, and κ represents the pitch control gain. In steady state, V&  is 
the wind fluctuation ΔV, which can be assumed for design purposes 
as a white noise with zero mean (Wasynczuk et al., 1981). Since it is 
desirable to operate at maximum Cp, the aerodynamic torque 
linearization can be performed in the corresponding λopt, which is 
always situated in the normal operation region. Considering 

nomV  as 

the nominal wind speed on the WECS location, the coefficients α, γ, 
and κ can be easily computed from WT data as: 
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Figure 3. Aerodynamic characteristics of a WT. 

 
Figure 4. WECS model for control design. 

 
Although a real mechanical drive train has rigid disks, flexible 

shaft elements with distributed mass and stiffness, an approximated 
two-mass model shown in Fig. 4 is enough to design a controller for 
WECS (Freris, 1990; Novak et al., 1995). Admitting an ideal gear-
box and reducing all quantities to the primary side, the mechanical 
coupling can be described as (Leith and Leithead, 1997): 
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where Jt is the total WT inertia, and Dt = total WT damping. 

The linearized equations 15, 19, 20 and 21 constitute the 
nominal linear state model of a pitch regulated WT. One of the 
control inputs is the generator torque Qg, which represents the 
electric load mechanically connected to generator. It is adjustable 
and virtually independent from WECS dynamics (Novak et al., 
1995). The second control input is the pitch angle β, which greatly 
impacts the control system due to its active influence on the WT's 
aerodynamic efficiency. In this context, WECS configures a 
multivariable system. 

Since the dynamics of the pitch actuator is very fast if compared 
to WT dynamics, it can be considered as an unmodeled uncertainty 
to avoid an unnecessary increase in the state variables of the 
nominal model, resulting in a simplest controller with the smallest 
order. The structural dynamics of the blades and tower are also 
considered as unmodeled uncertainties in this approach. 

Control Objectives 

Aiming to explicit the trade-off between the control 
requirements, the nominal model has to be manipulated using 
weighting functions to obtain a generalized system G(s) shown in 
Fig. 5, given by: 
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where x = state vector, u = control signals, w = exogenous inputs, z = 
control objectives outputs and y = measured outputs. The exogenous 
inputs w are signals determined by external processes or environments 
that influence the dynamics of the system, such as reference signals, 
commands, disturbances and noises. 
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Figure 5. Generalized system. 

 
The main control requirement of WECS is to reduce detrimental 

dynamic loads on the shaft, which is obtained by minimization of 
the shaft torque variations over all bandwidth. In this context, the 
first control objective output z1 is obtained by weighting the 
difference Δω = ωt - ωg with a fixed gain Kδ. Another important 
control requirement for fixed and variable speed WECS is the WT 
rotation control, which can be defined as the reduction of the 
rotation error et = ωsp - ωt. Thus, the second control objective output 
z2 is generated by weighting et with a PI function: 
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which implies in the augmentation of the original nominal model 
with an integrator. The control design has to minimize the effects of 
wind fluctuation and ripple torque over the energy delivered to 
electric load, generating the third control objective output z3, which 

is obtained by weighting the generator torque Qg with a fixed gain 
Kq. Finally, it is necessary to limit the bandwidth of pitch control 
input β by weighting it with a fixed gain Kβ. The exogenous inputs 
w on WECS are the rotation reference ωsp and wind fluctuation V& . 
Due to practical constraints relative to the assembly, cost and 
maintenance of the sensors, the generator rotation ωg is considered 
the only measured output y. Considering u = [Qg β]´, w = [ωsp V& ]´ 
and x = [Qa ωt ωg Qmhg ∫ dtet

]´, the nominal WECS model augmented 

with weighting functions is given by: 
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H2 Methodology 

The H2 controller design can be formalized as an optimization 
problem, where the goal is to find a controller K2 that internally 
stabilizes the system G(s), so that H2 norm: 
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is minimized, where Hzw denotes the transfer function matrix from 
exogenous inputs w to objective outputs z. This H2 optimization 
problem is equivalent to the conventional LQG problem (Skogestad 
and Postlethwaite, 2001) involving a cost function: 
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with correlated white noises ξ (states) and η (measurements) entering 
in the system via w channel associated with the correlation function: 
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This problem can be solved by the resolution of the following 

two Riccatti equations 
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resulting in an H2 optimal controller K2(s) given by: 
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H∞ Methodology 

Feedback control design can be also formalized in terms of H∞ 
norm optimization. The sub-optimal H∞ control problem is to find all 
admissible compensators K∞(s) which internally stabilize the 
generalized system G(s) and minimize the norm (Doyle et al., 1989): 
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such that ||Hzw||∞<ε. Considering D11 = 0 and D22 = 0, the solution of 
this problem can be given by: 
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and X∞ and Y∞ are the solutions for two Riccatti equations: 
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The existence of a solution for H∞ control problem is assured by 
the following conditions: X∞ ≥ 0, Y∞ ≥ 0 and the eigenvalues 
ρ(X∞Y∞) ≤ ε2. The best solution for sub-optimal/optimal H∞ controller 
can be computed using the loop-shifting two-Riccatti formulae 
(Chang and Safonov, 1996). 

Simulation Results 

Plant Description 

The WECS considered in this paper consists of an upwind 
Horizontal Axis WT coupled to a 2.5MW four-pole electric 
generator by a gear-box (ratio 1:102.5) as shown in Fig. 6 
(Wasynczuk et al., 1981). This WT has two blades (NACA230XX 
series airfoil), each one with a length of 45.72 m, where the outer 
30% corresponds to the variable-pitch section controlled by a servo-
hydraulic actuator. The generator and other support equipment are 
enclosed in a nacelle, which is mounted atop a tower with 60.96 m 
where wind measurements are performed. A yaw control allows the 
correct alignment of the WT rotor with the wind direction. The 
complex nonlinear and stochastic mathematical model presented in 
the section “WECS Model” is used to simulate this WECS, while 
the nominal model described in the subsection “Nominal Linear 
Model” is used to design the controllers. The scheme for dynamic 
simulation for this closed-loop WECS is described in Fig. 7. The 
main data of this WECS are presented in table 1, including an 
approach for the power coefficient obtained from the blade 

geometry. To compute the parameters of the nominal model, the 
effective average wind speed is considered as 7m/s. 
 

 
Figure 6. Sketch of HAWT used herein. 
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Figure 7. Block diagram of the dynamic simulation of the WECS control. 

Table 1. WECS data. 

Limits 
cut-in wind speed cut-off wind speed rated wind speed 

5.8 m/s 20 m/s 12.5 m/s 
Normalized Parameters of WT 

Base values: Pbase = 2.5MVA and Sbase = 17.55RPM 
Drive Train Parameters 

Normalized Inertias (Jbase = 740165 kg.m2) 
JB1 = 18.23 JB2 = 18.23 JH = 0.9527 

Jt = JB1 + JB2 + JH = 37.4127 
JG = 2.091 

Normalized Stiffness Constants (ωbaseKbase = 1360299 kg.m2/s3) 
ωbaseKB1H = 861.1 ωbaseKB2H = 861.1 ωbaseKHG=28.4 

Normalized Damping Constants (ωbaseDbase=1360299 kg.m2/s2) 
ωbaseDB1 = 4.58 x 10-3 ωbaseDB2 = 4.58 x 10-3 ωbaseDH = 1.108 x 10-2 

ωbaseDt = ωbaseDB1 + ωbaseDB2 + ωbaseDH = 2.024 x 10-2 
ωbasedB1H = 29.31 ωbasedB2H = 29.31 ωbaseddHG = 1.832 

ωbaseDg = 3.01 x 10-2 
Power Coefficient 
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Servo-hydraulic Pitch Actuator 
τ = 0.032 s ξ = 1 

Linearized Aerodynamic Parameters 
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The frequency response of the open-loop WECS is shown in 

Fig. 8. Although high frequency wind fluctuations are well rejected, 
WECS is very affected by low frequency wind disturbances. It is 
noted that the control input β is more effective on WT regulation 
than Qg, although it reduces energy conversion efficiency. Torsional 
modes can be excited by sudden wind variations and/or operational 
disturbances since this WECS presents a resonance peak on: 
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H2 Controller Performance 

Considering the WECS presented in the subsection “Plant 
Description”, the use of the H2 design procedure results in the 
following controller: 
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The frequency response of the closed-loop WECS with an H2 

controller is shown in Fig. 9. High frequency wind fluctuations are 
submitted to strong attenuation. For frequencies below 0.7 rad/s, the 
sensitivity function (et/ωsp) decays rapidly when the frequency tends 
to zero, as shown in its Bode plots, satisfying the requirements 
related to disturbance rejections. Bode plots of the complementary 
sensitivity function (ωg/ ωsp) show that the H2 controller attenuates 
measurements noise above 0.7 rad/s, assuring good robustness 
against uncertainties above this frequency. In regards to the rotation 

difference Δω, the excitation of torsional modes is difficult due to an 
adequate attenuation of reference variations and/or operational 
disturbances. Although power fluctuations on the electric load are 
attenuated, the system's response to variations of the electric torque 
Qg will be slow. 

The simulation results presented in Fig. 10 show the dynamic 
behavior of the fixed-speed closed-loop WECS when submitted to a 
wind gust with duration of 90 s. After this event, both control inputs 
are simultaneously used in the rotation regulation, and ωt returns to 
its reference value ωsp after approximately 5 minutes. Considering a 
variable speed operation, the rotation reference must be adjusted to: 
 

V
R
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sp

λ
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The simulation results presented in Fig. 11 verify the effect of a 
wind step variation of 7.5 m/s to 9.5 m/s in the dynamic behavior of 
the variable-speed closed-loop WECS. In this case, ωt follows speed 
reference ωsp, reaching zero error after 10 minutes. Aiming to adjust 
ωt, the generator torque Qg is practically duplicated, increasing the 
energy delivered to the electric load. Considering that β has a 
detrimental effect on energy conversion efficiency, the relatively 
small contribution of this control input on rotation regulation is 
positive for variable speed WECS. The system's operation does not 
excite any torsional modes and the noises introduced by wind 
fluctuation are filtered by the H2 controller. 
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Figure 8. Bode plots of linearized open-loop WECS model. 
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Figure 9. Bode plots of H2 closed-loop WECS. 
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Figure 10. H2 closed-loop WECS at fixed-speed operation: wind gust. 
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Figure 11. H2 closed-loop WECS at variable-speed operation: wind step. 

H∞ Controller Performance 

Considering the WECS presented in the subsection “Plant 
Description”, the optimal H∞ controller is obtained with ε = 0.0674: 
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The frequency response of closed-loop WECS with the H∞ 

controller is shown in Fig. 12. Notice that high frequency wind 
fluctuations are strongly attenuated. The sensitivity function decays 
rapidly for frequencies below 0.7 rad/s and the complementary 
sensitivity function is attenuated above 0.7 rad/s, assuring the 
requirements related to disturbance rejections and robustness against 
uncertainties. The H∞ controller provides adequate attenuation of the 
reference variations or operational disturbances and, if compared to 
the H2 controller, it provides a greatest attenuation for power 
fluctuations in the grid, resulting in an extremely slow response for 
variations on electric torque Qg. 

In relation to a fixed-speed operation, the dynamic behavior of 
the H∞ closed-loop WECS when submitted to a wind gust with 
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duration of 180 s is shown in Fig. 13. If compared with the H2 
controller, this controller presents better robustness, without 
unstable behavior when submitted to greatest disturbances. The 
control system is able to reject the effects of this wind disturbance 
using simultaneously β and Qg. The turbine speed ωt returns to its 
reference value ωsp approximately at the end of the wind gust. The 
simulation results for variable speed closed-loop WECS when 
submitted to wind step variation from 7.5 m/s to 9.5m/s are shown 
in Fig. 14. Notice that the β performance on the rotation adjustment 
is improved. Although ωt will eventually reach the reference ωsp, 
this adjustment is extremely slow. 

Conclusions 

H2 or H∞ optimal feedback control problem involves finding a 
controller K for a generalized system G(s), using optimization 
techniques for the respective norms. Although both approaches 
present several similarities, the H∞ methodology results in a more 
conservative controller than the H2 methodology, since the 
disturbance signal dependency is considered in the H∞ controller 
design. Thus, the H∞ controller presents a better robustness than a 
similar H2 controller, but its dynamic response is extremely slow. 
Although the H∞ solution can be relatively flexible, admitting sub-
optimal controllers, the tendency is to use the H∞ controller in 
applications involving regulation problems, such as fixed-speed 
closed-loop WECS, where the output has to stay at determined value 
despite the presence of great disturbances. In counterpart, the fast 
response of the H2 controller is more adequate for applications 
involving tracking problems, such as variable-speed closed-loop 
WECS, since it is necessary to follow a reference imposed by the 
wind speed to obtain maximum energy conversion. In this context, 
an interesting option for WECS controller designs can be the multi-
objective H2/H∞ optimal control approach, where several channels 
associated with different norms are established, aiming to 
simultaneously attend several performance criteria. 
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Figure 12. Bode plots of H∞ closed-loop WECS. 

0 5 10 15 20 25 30
6

8

10

V
 (

m
/s

)

0 5 10 15 20 25 30
0

0.2

0.4
ω

sp
,ω

t (
P

U
)

0 5 10 15 20 25 30
−0.01

0

0.01

ω
t−

ω
g (

P
U

)

0 5 10 15 20 25 30
2.4

2.6

2.8

Q
g (

P
U

)

0 5 10 15 20 25 30
1.5

1.6

1.7

β 
(d

eg
re

e)

time (min)  
Figure 13. H∞ closed-loop WECS at fixed-speed operation: wind gust. 
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