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complex physical systems, and are preferable compared to the 
Newtonian approach. However, the Lagrangian approach has certain 
limitations. The elimination of the constraint forces from the 
Lagrange’s formulation does not allow one to directly calculate 
these forces. They can, however, be determined using an indirect 
approach. Besides this, Lagrange’s equation suffers heavily in the 
presence of time fluctuating parameters, non-potential fields, 
general dissipation and gyroscopic forces. Derivation of the 
Lagrange’s equations of motion for nonconservative and dissipative 
system (Rosenberg, 1977; Meirovitch, 1970; Whitaker, 1959) is 
essentially patchwork. This hinders the analysis of such systems, 
which the Lagrangian can afford. Nevertheless, the greatest 
advantage of Lagrangian formulation is that it brings out the 
connection between conservation laws and important symmetry 
properties of dynamical systems. Knowledge of conservation laws is 
of great importance in the analysis of dynamical systems as they 
lead to a complete integrability of dynamical system. The 
fundamental symmetries motivated the study of conservation laws 
from geometrical and group-theoretical point of view. The theorem 
of Emmy Noether (Noether, 1918) is one of the most fundamental 
justifications for conservation laws. Her theorem tells us that 
conservation laws follow from the symmetry property of nature. 
From the literature (Goldstein, 1980), (Sudarshan and Mukunda, 
1974), it is found that translational symmetry implies momentum 
conservation, time translational symmetry implies energy 
conservation and rotational symmetry implies conservation of 
angular momentum. There exists a fundamental theorem called 
Noether’s theorem (Noether, 1918 ), which shows that indeed, for 
every spatial continuous symmetry of a system, which can be 
described by a Lagrangian, some physical quantity is conserved and 
the theorem also allows us to find that quantity. 

1Introduction

From the late seventeenth century to the nineteenth century 
classical mechanics (Goldstein, 1980; Sudarshan and Mukunda, 
1974) was one of the main driving forces in the development of 
physics, interacting strongly with developments in mathematics, 
both by borrowing and lending. In fact, mechanics and indeed all 
theoretical science is a game of mathematical make–believe. The 
topics developed by its main protagonists, Newton, Lagrange, Euler, 
Hamilton and Jacobi among several others form the basis of 
classical mechanics. 

Since the last few decades, the subject of classical mechanics 
itself was undergoing a rebirth and expansion with strong 
developments in mathematics. There has been an explosion of 
research in the classical dynamical systems, focused on the 
discovery of advanced mathematics (e.g. Lie Algebra, differential 
geometry, etc.) (Sattinger and Weaver, 1986; Bluman and Kumei, 
1989; Gilmore, 1974). The aforementioned occurrences in the 
second part of the 20th century have radically changed the nature of 
the field of classical mechanics. The first development has led to 
modeling and analysis of complex, multi-bodied (often elastic 
bodied) structures, such as satellites, robot manipulators, turbo 
machinery and vehicles. The second has led to the development of 
numerical techniques to derive the describing equations of motion of 
a dynamical system, integration, simulation and obtaining the 
response. This new computational capability has encouraged 
scientists and engineers to model and numerically analyze complex 
dynamical systems, which in past either they could not be analyzed, 
or were analyzed using gross simplifications. 

The prospect of using computational techniques to model a 
dynamical system has also led dynamicists to reconsider existing 
methods of obtaining equations of motion. The methods of 
Lagrange (Lagrange, 1788) and Hamilton (Baruh, 1999) are used to 
carry out the primary task of deriving the equations of motion. 
Generalized coordinates which do not necessarily have to be 
physical coordinates are used as motion variables in these methods. 
This makes the Lagrangian-Hamiltonian approach more flexible 
than the Newtonian, as Newtonian approach is implemented using 
physical coordinates. The use of Lagrange’s formulation of 
dynamics offers the quickest way of deriving system equations for 

The objective of the paper is to present the developments in the 
field of Lagrangian-Hamiltonian Mechanics with particular regard 
to extension of Noether’s theorem. In recent years, the authors have 
attempted to develop alternative method to the construction of the 
first integrals of dynamical systems by means of extended Noether’s 
theorem. Typical contributions in this area are given in reference 
(Rastogi, 2005; Mukherjee et al., 2006; Mukherjee et al., 2007; 
Mukherjee et al., 2009). Investigating such alternatives has been 
applied to analyze the dynamics through invariance of the action 
integral for some engineering applications, which are rarely applied. 
Moreover, such research will open new horizons for the physics                                                            
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students, who are conversant with this theorem and its applications. 
A brief review on such major extensions has been presented in this 
paper through variational principle and group-theoretical approach 
or the other. This paper is divided into different sections, each 
dealing with the various aspects of the subjects. It begins with a 
summary of the evolution of classical Lagrangian-Hamiltonian 
Mechanics followed by a general overview of extension through 
variational or group theory. The fourth section of this work presents 
the alternative method of extension of Lagrangian-Hamiltonian 
Mechanics through umbra time. Few examples have been provided 
to elucidate the concept in brief. 

Nomenclature 
F(t   = external force with time fluctuation   

∗H  = umbra-Hamiltonian of the system 
K    = stiffness of the spring in N/m 
L   = Lagrangian of the system 
∗L   = umbra-Lagrangian of the system 

R   = damping coefficient of the damper in N-s/m 
V  = infinitesimal generator of rotational SO (2) group 
jV  = infinitesimal generator of symmetric group 

thj
j

tV  = real time component of  infinitesimal generator 
thj

j
ηV  = umbra time component of  infinitesimal generator 

thj

RV   = real-time potentials for resistive elements  
∗V

  = total-umbra potential 
∗

cV = umbra-potential for compliance elements 
∗
pV    = umbra-potential for external forces 
∗
RV     = umbra-potential for resistive elements 
∗T   = umbra-kinetic energy 
∗
cT   = umbra-co-kinetic energy  
e    = generalized force 
f    = generalized velocity 
m   = mass of the body in Kg 
( )tp   = real-time momentum 
( )ηp   = umbra-time momentum 
( )tq    = generalized displacement in real time 
( )ηq   = generalized displacement in umbra-time 
( )tq    = generalized velocity in real time 
( )ηq    = generalized velocity in umbra-time 
( )ix   = linear displacements in real time or umbra-time, where 

ni ...1=  
( )ix   = linear velocity in real time or umbra-time, where ni ...1=  

 t    = real-time in s 
η     = umbra-time in s 

Evolution of Classical Lagrangian-Hamiltonian Mechanics 
The major contribution in classical mechanics came from 

Lagrange (1788). The contributions of Lagrange put the field of 
analytical mechanics into a structured form now known as 

Lagrangian mechanics. In the original derivation, Lagrange’s 
equations were written for conservative systems only, and 
applicable when the system is closed, constraints are integrable, and 
there are no gyroscopic forces. Hamilton (Baruh, 1999; Gantmachar, 
1970; Calkin, 2000) has developed the most general principle of 
least action and showed that the Lagrangian with time integration 
provided the definition of action and minimization of this action 
integral established the Lagrange’s generalized equation. The main 
advantage of this new formulation is that it holds for any system 
subject to constraints and independently of the co-ordinates, which 
are chosen to represent the motion. However, the problem of 
dissipation was handled by Rayleigh (Gantmachar, 1970; Jose and 
Saletan, 1998), who attempted to enlarge the scope of Lagrange’s 
equation to incorporate dissipative forces in this generalized 
equation. He added velocity dependent potential through virtual 
work done by the dissipative elements and then re-encapsulated in 
an extended formula. In this formulation, the velocity’s dependent 
potential should not be brought inside the scope of total derivative 
with respect to time, otherwise an unrealistic momentum and inertia 
would enter in the equation. This is the reason why the velocity’s 
dependent Rayleigh potential fails in the case of gyroscopic forces. 

The next problem is to deal with Nonholonomic systems in 
classical mechanics as to determine the equation of motion for 
constrained systems. When physical constraints are imposed on an 
unconstrained set of particles, forces of constraints are engendered, 
which ensure the satisfaction of the constraints. The equation of 
motion developed for such constrained systems is based on the 
principle of D’Alambert, and later elaborated by Lagrange (1788) 
through Lagrange multipliers. Since its initial formulation by 
Lagrange, the problem of constrained motion has been vigorously 
and continuously worked on by various scientist including Volterra, 
Boltzmann, Hamel, Whittaker and Synge to name a few. Gauss 
(1829) explained a new general principle for the motion of 
constrained mechanical systems referred to as Gauss’s principle, by 
making use of acceleration. Gibbs (1879) and Appell (1899) 
independently discovered a new equation, which is known as the 
Gibbs-Appell equations of motion (Appell, 1899).  Pars (1979) also 
referred to the Gibbs-Appell equations as the most comprehensive 
equations of motion so far discovered. Routh Gantmachar (1970) 
proposed the equations of motion in a potential field taking a part of 
the Lagrangian variables and a part of the Hamiltonian variables, 
called as Routh variables. Lie (Hassani, 1999; Olver, 1986) 
introduced the group theory for canonical transformations by 
considering infinitesimal transformations. 

Extensions of Lagrangian-Hamiltonian Mechanics through 
Variational Principle and Group-theoretical Approach 

Apparently, the first to notice the connection of conservation 
laws to invariance properties of dynamical systems was Jacobi 
(1884), who has derived the conservation law for linear and angular 
momentum from the Euclidean invariance of the Lagrangian. Emmy 
Noether (1918) formulated a theorem to find the invariants of the 
dynamical system and showed a relationship between symmetry 
aspects of conservation laws and invariance properties of space and 
time, i.e., their homogeneity and isotropy. These fundamental 
symmetries motivated the study of conservation laws from 
geometrical and group-theoretical point of view. Most of the results 
of conservation laws of classical mechanics based on Noetherian 
approach could be found in the research papers of Hill (1951), and 
Desloge and Karch (1977), where it has been applied as a reliable 
tool to find new conservation laws of dynamical systems. 

 The physics associated with the classical conservation laws 
widely attracted the investigations in this field, intriguing problems 
of classical mechanics by engineers and theoretical physicists, who 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright © 2011 by ABCM January-March 2011, Vol. XXXIII, No. 1 / 23 



Vikas Rastogi et al. 
 

 
Figure 1. Non-contemporaneous Variation. 

formulated newer types of constant of motion. In their several 
papers, Vujanovic (1970), Djukic and Vujanovic (1975) and 
Vujanovic (1978) have investigated this field of analytical 
mechanics and developed a new approach to obtain constants of 
motion. Vujanovic (1970) has established a group-variational 
procedure for finding first integral of dynamical systems. Djukic 
and Vujanovic (1975) have proposed a Noether’s theorem for 
mechanical system with non-conservative forces. Primarily, this 
theory was based on the idea that the transformations of time and 
generalized coordinates together with dissipative forces determine 
the transformations of generalized velocities. Vujanovic (1978) has 
reported a method for finding the conserved quantities of non-
conservative holonomic systems based on the differential variational 
principle of D’Alembert, which was equally valid for both 
conservative and non-conservative systems. His research work has 
shown that the existence of first integrals mainly depends on the 
existence of solutions of partial differential equations, known as 
Killing equations (Hassani, 1999; Olver, 1986). 

The above procedures, however, do not have generality of the 
Noether’s theorem, as it mainly depends on the particular structure 
of the special class of problems being attempted. However, our 
choice to relate the alternative method of umbra Lagrangian 
mechanics is motivated by the fact that Noether’s theorem, extended 
by Bahar et al. (1987) tackles both the aspects which are of 
considerable importance in the study of conservation laws. On 
phenomenological level, it shows the connection of conservation 
laws of some non-conservative system to the symmetries of space 
and time. On the other hand, it also possesses a pragmatic value as it 
could be used in engineering applications.  

The significant work in this direction was reported by Bahar and 
Kwatny  (1987), who provided a useful method based on a 
differential variational principle (Vujanovic, 1978) in order to 
extend Noether’s theorem to constrained–nonconservative 
dynamical systems, which includes the influence of dissipation and 

constraints, and thus making it suitable for use in engineering 
applications. The main focus of their research work was primarily 
concerned with the extension of the notion of variation, which also 
included variation in time, thus leading to non-contemporaneous 
variation (NCV). Here the use of NCV is limited to first order terms, 
and was denoted by Δ as the convention adopted in Vujanovic 
(1978), whereas δ is the contemporaneous variation (CV). The 
symbol δ also defines a simultaneous or Lagrange’s variation. A 
representative point A that is on the actual path at time t and an 
infinitesimal point B on the varied path at the same time t are 
correlated by 

 
qtqtq δ+= )()(

,                                                                    (1) 
 

)(tqwhere   and  are coordinates of points B and A 
respectively. The geometrical interpretation non-contemporaneous

 

variation (NCV) may be easily seen in Fig. 1. The following 
definition was used 

)(tq

 
tqqq iii Δ+=Δ δ

                                                                  (2) 
                 

The Non-contemporaneous variation of any function 
( )tqqF ii ,, is given by the expression  

 

t
t
Fq

q
Fq

q
FF i

i
i

i
Δ

∂
∂

+Δ
∂
∂

+Δ
∂
∂

=Δ ,                            (3)   

  
Putting Eq. (2) in (3) and following the procedure as given in 

reference (Bahar and Kwatny, 1987; Vujanovic, 1978), one may obtain  
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( ) ( )t
dt
dqqq

dt
d

iii Δ+Δ=Δ ( ) ( ) ( ) 0=Δ+Δ+Δ+Δ−Δ G
dt
dt

dt
dLLtqqQ iii                                                  (4) .             (11) 

          
Equation (4) demonstrates that the usual commutatively rule 

does not extend to NCV. For the derivation of the Noether’s 
theorem, one may consider the variational expression as 

, which defines the integrand of the action integral 
governing the motion of such systems. This Lagrangian can be 

defined up to an additive term 

Then, one may get 
 

tConsGt
q
LqLq

q
L

i
ii

i
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⎠

⎞
⎜⎜
⎝

⎛
∂
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−+Δ
∂
∂

.                 (12) ii qQL ∂+∂

 
( tqG

dt
d

i, ) 0=ΔG and still satisfies the 

Lagrangian equation of motion identically. L can be replaced by 

to have: 

If , then 
 

tConst
q
LqLq

q
L

i
ii

i
tan=Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−+Δ
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

•
GL .                            (13) 

  Equation (13) is a conserved quantity. Now considering the 
linear infinitesimal one parameter transformation as followed in 
Bahar [29], one may obtain the conservation law ii qQGL δ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+∂

•
                                                                   (5)  
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i
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⎠
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⎝

⎛
∂
∂

−
∂
∂ τξThus expression (5) has been defined by authors (Bahar and 

Kwatny, 1987) as physical motivation and simply considered this 
equation to undergo two different transformations given as follows: 

                              (14) 

  (a) Non-Contemporaneous Transformation (NCT): The 
variational expression given in Expression (5) may be written in 
the form 

where ξ , τ
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Expression (6) in non-contemporaneous may be written as 
 

( ) ( ) GqQtqq
q
Ltqq

q
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Expression (7) will finally reduce to  

 
GqQtLL ii δδ ++Δ−Δ .                                     (8)  

 
The last two terms of expression (8) may also be written in 

NCV as well. 
(b) Contemporaneous Transformation (CT): Following the 

usual process to rewrite expression (6) as  
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and following the procedure as in reference (Bahar and Kwatny, 
1987; Vujanovic, 1978), one may obtain the following equation: 
 

( ) ( ) ( )G
dt
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dt
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The first integrals or conserved quantities may be obtained if 

right hand side of Eq. (10) can be made to vanish, then bracketed 
quantity under time derivative sign become a constant 

 

i i and Ρi are the linear infinitesimal one-parameter 
transformations. This may also be obtained by following usual 
approach and generalized killing equations, which has been obtained 
in reference (Djukic and Vujanovic (1975). Many such examples of 
the Noether’s theorem are contained in Vujanovic and Jones (1989). 
A variety of methods have been developed for the search of 
conservation laws such as methods of integrating factors, also 
termed as direct or ad hoc procedure as reported by Sarlet and Bahar 
(1980), and Djukic and Sutela (1984). Other methods were based on 
similarity variables (Jones and Ames, 1967) and transformation 
approach as presented by Crespo da Silva (1974). In this way, some 
procedures of group-theoretical approach with considerable 
generality have been established, which related the existence of first 
integrals to the symmetries of certain mathematical objects and 
served for describing the dynamical systems.  

Several other studies concerned with the symmetry aspects of 
Lagrangian and Hamiltonian formalism have been considered in the 
review papers of Katzin and Levine (1976), and Fokas (1979). A 
generalization of Noether Theorem in classical mechanics has been 
attempted by Sarlet and Cantrijn (1981). Another class of methods, 
in the spirit of finding invariants of motion for time-dependent 
parameters, are primarily established by few researchers such as 
Lewis and Leach (1982), who have reported an approach of finding 
exact invariants for one-dimensional time-dependent classical 
Hamiltonians, and as Sarlet (1983), who has developed a 
methodology of finding first integrals for one-dimensional particle 
motion in a non-linear, time-dependent potential field. Motivated by 
the research works of Vujanovic (1970), Vujanovic (1978) and 
Djukic and Vujanovic (1975), Simic (2002) has analyzed 
polynomial conservation laws of one-dimensional non-autonomous 
Lagrangian dynamical system and demonstrated that final form of 
dynamical system and corresponding conservation law depends on 
the solution of the so-called potential equation, which will be 
presented as 

 

( ) ( xtxxxtL ,
2
1,, 2 Π−= ) .                                                  (15) 

 
( )xt,ΠIn Eq. (15),  denotes the potential of the system and 

over dots denote differentiation with respect to independent 
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)

variables. However, the structure of symmetry transformation, 
which generated particular class of conservation laws, could be 
prescribed independent of potential equation. In this Lagrangian 
function, generality of Noether’s theorem is not being considered, 
which may be suitable to obtain invariants of any general class of 
systems. 

Variational principles (Gelfend and Fomin, 1963) and principle 
of virtual work continued to attract interest of the researchers and 
have great importance in physics and mathematics. These principles 
helped in establishing connections and applications of these 
disciplines, and in devising diverse approximation techniques. 
Arizmendi et al. (2003) developed a variant of the usual Lagrangian, 
which describes both the equations of motion and the variational 
equations of the system. The required Lagrangian is defined in an 
extended configuration space comprising both the original 
configurations of the system and all virtual displacements joining 
any two integral curves. An extremal principal for obtaining the 
variational equations of a Lagrangian system is reviewed and 
formalized by Delgado et al. (2004)  by relating the new Lagrangian 
function (Arizmendi et al., 2003) needed in such scheme to a 
prolongation (Hassani, 1999; Olver, 1986) of the original 
Lagrangian. In their work, they considered an N-degree of freedom 
dynamical system described by an autonomous non-singular 
Lagrangian function , a = 1.2…N defined in the 
tangent bundle TQ of its configuration Manifold Q. Now, an 
extended configuration space D (D’Alambert’s configuration 
manifold) was considered, comprising of both the original 
configuration of the system plus all possible “virtual displacements” 
joining, in a first approximation, any two of the extremal paths of 
the original system. With the help of L, they defined new 
Lagrangian 

( tqqL aa ,,

( )t,εε,,qq,γ as 
 

( )
aaa

a

q
L

q
Lt

∂

∂
+

∂

∂
≡ εεγ ,εε,,qq, ,                                     (16)  

                         
where  and q  are given configuration displacements and 

velocities, ε is virtual displacement and  are virtual velocity. It is 
worth mentioning that even nonconservative systems can also be 
handled by using a prolonged Lagrangian function and Noether’s 
theorem in this extended space, obtained by them. It is not 
appropriate to provide all details of this extension, as it basically 
finds its applications in relativistic theories.  

q
ε

Alternative Method for Extending Lagrangian-
Hamiltonian Mechanics 

As detailed in the previous section, the procedure and methods 
developed by various researchers did not consider the generality of 
Noether’s theorem, as it was mainly focused on the particular 
structure of the special class of dynamical problems being studied. 
So, it is necessary to extend the scope of Lagrangian and Noether’s 
theorem, which includes the influence of dissipation and sometimes 
constraints, thus making it suitable for the larger and complex 
engineering applications. To overcome the limitations and enlarging 
the scope of Lagrangian-Hamiltonian mechanics, a new proposal of 
additional time like variable ‘umbra-time’ was made by Mukherjee 
(1994) and this new concept of umbra-time leads to a peculiar form 
of equation, which is termed as umbra-Lagrange’s equation. A brief 
and candid commentary on idea of umbra Lagrangian is given by 
Brown (2007). This idea was further consolidated by presenting an 
important issue of invariants of motion for the general class of 
system by extending Noether’s theorem (Mukherjee, 2001). This 
notion of umbra-time is again used to propose a new concept of 

umbra-Hamiltonian, which is used along with the extended 
Noether’s theorem to provide an insight into the dynamics of 
systems with symmetries. The advantages of using such Lagrangian 
are many ways as one may get the both aspects of the problem. It 
provides a great insight of the dynamical system through extended 
Noether’s theorem and on the other hand, it gives a pragmatic value 
since it could be used as a reliable tool for derivation of new 
conservation laws for many engineering problems, where the 
physicist can play a leading role. One of the most important insights 
gained from the umbra-Lagrangian formalism is that its underlying 
variational principle (Rastogi, 2005) is possible, which is based on 
the recursive minimization of functionals. In this direction, Rastogi 
(2005) also defined all these notions in an extended manifold 
comprising of real time, and umbra and real time displacements and 
velocities. The umbra Lagrangian theory has been used successfully 
to study invariants of motion for non-conservative mechanical and 
thermo-mechanical systems [48]. In another paper, the authors 
applied umbra Lagrangian to study dynamics of an electro-
mechanical system comprising of an induction motor driving an 
elastic rotor (Mukherjee et al., 2009). This system was symmetric in 
two sets of coordinates, one set was mechanical or geometrical, and 
the other symmetry was in electrical domain. Recently, Mukherjee 
et al. (2009) presented the extension for Lagrangian-Hamiltonian 
Mechanics for continuous systems and investigated the dynamics of 
an internally damped rotor through dissipative coupling. Some basic 
concepts of umbra-Hamiltonian theory may be given in Appendix A 
for ready reference. The concept of umbra-Lagrangian may be 
represented as shown in Fig. 2 and briefly expressed as follows: 

(a) D’Alembert’s basic idea of allowing displacements, when 
the real time is frozen, is conveniently expressed in terms of 
umbra-time. 

(b) Umbra-time may be viewed as the interior time of a system. 
(c) Potential, kinetic and co-kinetic energies stored in storage 

elements like symmetric compliant and inertial fields can be 
expressed as functions in umbra-time (umbra-displacements 
and umbra-velocities). 

(d) The effort of any external force, resistive element or field, 
gyroscopic element (treated as anti-symmetric resistive 
field), transformer or lever element, anti-symmetric 
compliant field and sensing element depends on 
displacements and velocities in real time. The potentials 
associated with them are obtained by evaluation of work-
done through umbra-displacements. 

In formulating the umbra-Lagrangian for a system, two classes 
of elements are generally required: (a) storage elements, whose 
energies are defined in terms of umbra-displacements and umbra-
velocities, and (b) rest of the elements for which the efforts returned 
are evaluated entirely in terms of real time and their umbra-potential 
are obtained by umbra-displacement of the corresponding element. 
These two categories of elements can be identified through breaking 
the system into its basic entities or dynamical units. Bond graphs 
(Mukherjee and Karmakar, 2000; Karnopp et al., 1990) may be one 
of the tools for representing the dynamics of the system and 
obtaining the expressions for either the classical or the umbra-
Lagrangian as provided in details in Appendix B. 

The broad principle, on which the creation of umbra-Lagrangian 
and other relevant energies (Mukherjee, 2001; Rastogi, 2005; 
Mukherjee et al., 2009) are based, can be summarized as follows:  
(a) All temporal fluctuations of parameters are in real time. 
(b) The co-kinetic and potential energies would normally be 

evaluated taking generalized velocities and displacements as 
function of umbra time and it is assumed that there are n 
generalized co-ordinates. All definitions are separately given in 
Nomenclature.  
The umbra-potential (for potential forces only) is defined as  
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Figure 2. Iconization of umbra theory. 

For example, umbra-potential for a damper with time varying 
damping coefficient may be written as 

 

         ,                         (17) ( )( ) ( )( ) (
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where a bold face letter represents a vector quantity. As an 
example, the umbra-potential energy for a spring with time 
varying stiffness can be written as 

 
It is significant to note that in classical approach, one may 
incorporate dissipative forces through Rayleigh potentials, 
which in linear case can be defined as  
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  Likewise, the umbra-kinetic energy is defined as In such case, the anti-symmetric part of [R] in Eq. (24), if 

present, has no contribution to . In classical approach, such 
anti-symmetric part is identified as gyroscopic force and 
subjected to a set of alternative treatment. However, in present 
approach, as considered in Eq. (22), it can include both the 
dissipative (symmetric part) as well as the gyroscopic effects 
(anti-symmetric part) through the resistive field, for which the 
corresponding umbra-potential becomes 

 
RV
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and the umbra co-kinetic energy as  

 
( )( ) ( ) ( ) ( ) ( )( ηηηηη pqpqq ,,, tTtTc

∗∗ −= ) .           (20)  
 ( )[ ] ( )ηqqT RtVR =∗ .                                                  (25) For instance, the umbra co-kinetic energy for a time varying 

mass can be represented as  
(d) The umbra-potential associated with external generalized forces 

may be incorporated as  
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(c) The umbra-potential associated with generalized resistive fields 

is evaluated, which is based on the philosophy that resistive 
fields open the system, and thus they observe the states of 
motion in real time as an external observer. The force generated 
by them does work on the system through umbra generalized 
displacements 

 
To illustrate, one may find the umbra-potential for any external 
force ( )tF  as 
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The total umbra-potential may be obtained by summing-up all the 
potentials represented by Eqs. (17), (22) and (26) and expressed as   
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Using Eq. (30) along with Eqs. (33) and (34) in the previous 
equation (35), the extended Noether’s theorem may be obtained and 
written as 

 
and the umbra-Lagrangian would, therefore, be  
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 ....1 mj =with  New Lagrange’s equations for a general class of systems may 
be given as                                              

 In terms of the differential one-forms  and  the above 
relation may be expressed as 
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Noether’s theorem (Noether, 1918) states that, if the Lagrangian 

of a system is invariant under a family of single parameter groups, 
then each such group renders a constant of motion. The extended 
Noether’s theorem, as discussed in paper (Mukherjee et al., 2009) 
may lead to a constant of motion, or trajectories, on which some 
dynamical quantity remains conserved.  

                                                                              
The term on the left-hand side is the classical Noether term 

while the term on the right-hand side is additional and termed here 
as modulatory convection term. This modulatory convection term is 
made zero to obtain the conserved quantity. So, whenever the 
extended Lagrangian is found invariant, there is either the general 
conserved quantity or a trajectory on which such quantity remains 
conserved. The aforementioned methodology may be explained with 
two simple examples provided in the next subsections. 

The umbra-Lagrangian may be defined on extended manifold, 
which consists of real displacements and velocities as well as 
umbra-displacements and velocities and real time (Mukherjee et al., 
2009), i.e. 

 

( ) ( ) ( ) ( )( )ηη qqqq ,,,, tttLL ∗∗ = .                         (31) Example 1. Simple mass-spring-damper system with time 
fluctuating parameters  

Here, the super dot ( ) denotes a derivative with respect to real 
time or umbra time, depending on the context. Unlike the classical 
formulation, this analysis requires single but extended manifold 
comprising of both umbra and real displacements and velocities and 
real time. The umbra-Lagrangian of a system admits several one-
parameter transformation groups, and then the infinitesimal 
generator (Hassani, 1999; Olver, 1986) corresponding to j

•

Let us consider a simple mass spring damper system as shown 
in Fig. 3. Using the aforementioned procedure, the umbra-
Lagrangian for this system may be expressed as 
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, γξ =where  and  are the general 

functions of umbra and real displacement and real time. The fact 
that the given umbra-Lagrangian is invariant under the j

 
Figure 3. Mass-spring-damper system with time fluctuating parameters. th 

transformation may then be expressed as 
 Example 2. Two oscillators with gyroscopic coupling  

Let us consider an example of a system with two similar 
oscillators having mass  and stiffness K, and with a gyroscopic m
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of the system may be written as  
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Applying the second theorem of umbra-Hamiltonian and finding 
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  of the system, one obtains If the umbra-Lagrangian admits the one-parameter rotational 
group, then the infinitesimal generators of the rotational SO (2) 
group may be written as  
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  Again, the corollary of the second theorem of umbra-
Hamiltonian gives 

 
 
and the symmetry (invariance) condition for umbra-Lagrangian may 
be expressed as 
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constant of motion. 

 
Through Eq. (36), one obtains 
 

Both Examples illustrated in this paper provide an overview of 
the whole concept. It is apparent throughout the paper that the 
proposed extension of Lagrangian-Hamiltonian mechanics in terms 
of umbra philosophy gives a new dimension for analyzing the 
dynamical systems with non-conservative and non-potential forces. 
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Conclusions 
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The paper presented a brief review on the literature in 
Lagrangian-Hamiltonian Mechanics. Most of the research papers 
and books available in this field are incorporated, which 
undoubtedly enhanced and enriched the field of Mechanics. In this 
paper, authors have presented a brief review on extension of 
Lagrangian-Hamiltonian Mechanics. Various previous extensions 
on the subject matter were discussed with a particular regard to 
extension of Noether’s theorem with nonconservative and non-
holonomic systems for general class of systems. After review on 
literature on this subject matter, the following points are concluded: 

,       
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 (i) The procedure and methodology developed by other 
researchers don’t have any generalization of Noether’s theorem, as it 
has been mainly applied on the particular structure of the problems, 
which were rather mathematical without much physical 
interpretations of the real system. In this way, there is a substantial 
loss of generalization of the theorem, which may be applied to any 
engineering problems. However, in recent years, few researchers 
have applied the generalized Noether’s theorem in few engineering 
applications. 

( ) ( ) ( ) ( )( ) ( ) ( )( ) Ctytxtxtytytxm =++−⇒ 22

2
γ

,  

 
where C is a constant of integration. The first term is the moment of 
momentum, and the second term is contributed by the gyroscopic 
coupling. 

The umbra-Hamiltonian (discussed in Appendix A) of the 
system may be expressed as (ii) In contrast to all the previous extensions, the philosophy 

developed by the authors has addressed the issue of nonconservative 
and dissipative forces by assuming a new Lagrangian, which find 
wider applications for engineering problems. The authors have 
devised a new methodology to find invariants of motions of the 
dynamical systems. Gauge transformations [48], bi-symmetric rotor-
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Fig. 4(a) Fig. 4(b) 

Figure 4. (a) Schematic diagram of two oscillators with gyroscopic coupling; (b) Bond graph model for system 
represented by (a) with artificial flow sources to obtain umbra-Lagrangian. 

motor system [49], dynamics of the rotor with internal damping [50] 
and few others are the applications already published in archival 
literature. 

(iii) It is noteworthy to say that the alternative methods 
developed by the authors give more transparent physical 
interpretations, which enable the analyst to make further use of these 
first integrals in stability analysis. 

(iv) In this article, the authors intended to provide critical 
evaluations of other extensions, which are rarely applied in the real-
world problems. 

Appendix A 

Concept of umbra-Lagrangian and umbra-Hamiltonian 

Mukherjee (1994) introduced a concise and modified form of 
Lagrange’s equation and manifested the use of this new scheme to 
arrive at system models in the presence of time fluctuating 
parameters, general dissipation and gyroscopic couplings, etc. In 
this scheme, real and virtual energies (or work) are separated by 
introduction of an additional time like parameter, which is termed as 
‘umbra-time’. The prefix ‘umbra’ was appended to all type of 
energies, and corresponding Lagrangian was termed as the “umbra 
Lagrangian”. The basic idea presented in reference (Mukherjee, 
1994; 2001) leading to umbra-Lagrangian and umbra-Lagrange’s 
equation may be briefly expressed as follows: 

(a) Umbra-time is the beholder of D’Alembert’s basic idea of 
allowing displacements, when the real time is frozen. 

(b) Umbra-time may be viewed as the interior time of a system. 
(c) Potential, kinetic and co-kinetic energies stored in storage 

elements like symmetric compliant and inertial fields can be 
expressed as functions in umbra-time (umbra-displacements 
and umbra-velocities). 

(d) The effort of any external force, resistive element or field, 
gyroscopic element (treated as anti-symmetric resistive 
field), transformer or lever element, anti-symmetric 
compliant field and sensing element depends on 
displacements and velocities in real time. The potentials 
associated with them are obtained by evaluation of work-
done through umbra-displacements. 

The broad principle on which the creation of umbra-Lagrangian 
and other relevant energies (Mukherjee, 1994; Mukherjee, 2001; 
Rastogi, 2005; Mukherjee et al., 2006; Mukherjee et al., 2007; 

Mukherjee et al., 2009) are summarized in the section IV. However, 
the umbra-Hamiltonian (Mukherjee, 2001) may be represented as 
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The umbra-Hamiltonian  is composed of two components 

as  and .  is the interior Hamiltonian, which does not 
depend on any function of real displacement, real velocity and real 

time, and  is the rest of the umbra-Hamiltonian, called  the 
exterior Hamiltonian. Thus 
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                                                   The two theorems of the umbra-Hamiltonian may be given as 
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Corollary of Theorem 2 
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Appendix B 

Generation of umbra-Lagrangian through Bond graphs 

Karnopp [51] proposed an algorithm to arrive at Lagrange’s 
equations for complex systems through its bondgraph model. The 
steps of Karnopp algorithm may be briefed as 
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(1) Apply the required causality at all effort and flow sources and 
use the junction structure elements (only) to extend the causality 
as far as possible within the bondgraph. If causal conflicts arise 
at this stage, there is a fundamental contradiction within the 
model and it must be reformulated.   

(iii) Insert the original flow sources at their respective 
junctions on the η  and t component designating them as function of 
t; insert the effort sources in η  component only. 

(iv) Insert all I- and C-elements and fields at their respective 
junctions onη -component. (2) Choose a ‘1’ junction for which the flow is not yet causally 

determined or insert a ‘1’ junction into any causally 
undetermined bond and attach an artificial flow source to ‘1’ 
junction. 

(v) R-elements and fields (including gyrators) observe the 
motion in real time t and apply the force on the system, the 
corresponding umbra-potentials associated with them is generated 
through work done by these forces undergoing umbra-
displacements. These features may be incorporated by inserting 
them in trans-temporal space and adding suitable trans-temporal 
bonds; 0-junction and suitable activations as shown in Fig.6 (b). 
Such bondgraph may be termed as umbra-Lagrangian generator 
bond graphs.  

(3) Apply the required causality to the artificial source and extend 
the causality as far as possible into the bondgraph using junction 
structure element. 

(4) Return to step (2) and continue until all bonds have been 
causally oriented. 
Now at this stage, an extension of Karnopp’s algorithm is 

presented with a detailed procedure and may appear more elaborate 
for generation of umbra-Lagrangian of the system. The models may 
be classified as follows: 

 

(a) System with no modulated two-port transformers. Such 
bondgraph models may be called holonomic. 

(b) System with modulated two-port transformers. Such 
bondgraph may be called as non-holonomic. 

 

 
Figure 6(a). Causal bond graph model of system 5(a) with artificial flow sources. 

 
The umbra-Lagrangian for Fig. 6(b) may be expressed as 
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                                    (B1) 
 

Figure 5(a). System with a DC motor and a rotating disc in 
viscous medium.          

Now, it is easy to verify that umbra-Lagrangian of Eq. (B1) 
renders right equation of motion through Eq. (30) for the system. 
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