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Numerical Simulation of the 
Solidification of Pure Melt by a Phase-
Field Model Using an Adaptive 
Computation Domain  
In this paper, we present a phase-field model with a grid based on the Finite-Difference 
Method, for improvement of computational efficiency and reducing the memory size 
requirement. The numerical technique, which is based on the temperature change of the pure 
material, enables us to use, in the initial steps of the computation, a very small computational 
domain. Subsequently, in the course of the simulation of the solidification process, the 
computation domain expands around the dendrite. The computation showed that the dendrite 
with well-developed secondary arms can be obtained with low computation time and moderate 
memory demand. The computational efficiency of this numerical technique, the microstructural 
evolution during the solidification, and competitive growth between side-branches are 
discussed.  
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Introduction
1
 

The understanding and modeling of dendritic growth has 

remained a central theme of solidification research for many years. 

Understanding the solidification process is of great importance 

because the resulting microstructures determine the properties of the 

material. Although there have been significant developments in 

understanding dendritic structures in the past decades, our 

knowledge of the dendritic growth is based on experiments and 

idealized theoretical models. On the other hand, phase-field models 

are known to be very powerful in describing non-equilibrium 

dendritic evolution. They are very efficient because, in the 

numerical treatment based on them, all the governing equations are 

written for the whole domain without distinguishing the interface 

from the solid and liquid phases. Furthermore, direct tracking of the 

interface position is not needed during numerical simulation of the 

solidification process. The Phase-field models were developed 

mainly for studying solidification of pure materials, being then 

extended to the solidification of binary and ternary alloys.  

Recently, Xu et al. (2006) used phase-field models focused on 

pure materials. Their paper presented a detailed numerical method and 

algorithm for solving two-dimensional (2-D) phase-field models. 

Comparison between the fully-coupled and sequential techniques 

showed that CPU time of the second approach is approximate 10% 

greater than that of the first one. However, the sequential method is 

chosen for computations in order to reduce storage requirements as 

much as possible. The authors found that the numerical results capture 

well the complex physics of the solidification problem. Consistent 

with physical reality, the computed critical radius indicates existence 

of a critical value for a nucleus to grow in the phase field simulation. 

Moreover, the critical radius decreases linearly with increasing Stefan 

number, which means that, if the Stefan number is large enough, 

solidification always takes place, no matter what the initial conditions 

are. In addition, they studied dendrite shapes at different degrees of 

supercooling; the results are in agreement with the experimental 

results. 

Moelans et al. (2008) published a paper presenting an 

introduction to phase-field models and an overview of their 

possibilities. Amongst those, as listed by the authors, was the 

simulation of solidification processes, precipitate growth and, more 
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recently, an application to solid-state phase transformations like the 

austenite-to-ferrite transformation in steels, dislocation dynamics, as 

well as crack nucleation and propagation. Achievements are 

expanding rapidly, due to improved modeling and implementation 

techniques and growing computer capacity.  

From a somewhat more theoretical standpoint, it should be 

noted that the interface morphology of the solidification front 

calculated by phase-field models reproduces the known patterns of a 

dendrite structure. The state of the domain is represented by the 

distribution of a single variable known as the order parameter, , or 

phase-field variable. In this study, the solid state is represented by 

, while, in the liquid region, . The region in which  

changes progressively from  to  is defined as the solid/liquid 

interface.  

In spite of phase-field models being suitable for simulating 

solidification processes, as mentioned by Moelans et al. (2008), they 

suffer from low computational efficiency. For example, for 

computation of a dendrite with side-branches, the computational 

domain should be discretized into one million points. Thus, the 

computational stability condition in an explicit finite scheme can be 

guaranteed only with a very small time step. Xu et al. (2006) show a 

sequential method to reduce required storage during the calculations 

of the solidification process. In this study, on the other hand, we 

present a numerical technique for the improvement of computational 

efficiency for computation of dendritic evolution in solidification 

processes in pure undercooled melts. At the start of the solidification 

process, there is a solid nucleus placed in the very small 

computational domain. The goal of this technique is for the 

computational domain to grow around the dendrite and fix the grid 

spacing (XYx
m, square grid), while solidification 

advances into the liquid region. The growth around the dendrite is 

controlled according with the thermal diffusivity of the material in 

the liquid region. 

Nomenclature  

Cp = specific heat at constant pressure, J/m3K 

D = thermal diffusivity, m2/sec  

g() = function in the phase-field models  

h() = function in the phase-field models  

H = latent heat, J/m3  
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I = number of node points in the x direction  

j = anisotropy mode number  

J = number of node points in the y direction  

K = iteration counter  

Kmax = maximum number of iterations  

M = mobility of the phase-field variable, m3/sec·J  

Nx = grid numbering in x-direction  

Ny = grid numbering in y-direction  

r = randomly-generated number between +1 and –1  

t = time step, sec 

T0  = initial undercooled temperature, K  

Tm = melting temperature, K  

X = grid spacing in x-direction, m  

Y = grid spacing in y-direction, m  

w = interface thickness-associated parameter, J/m3  

Greek Symbols 

  = noise amplitude factor  

 = anisotropy constant, dimensionless 

0 = interface thickness, (J/m)1/2 

 = order parameter, dimensionless 

 = orientation of the normal to the interface with respect to  

 the x-axis, rad 

0 = interface orientation with the maximum anisotropy, rad 

0 = interface width, m 

 = kinetic coefficient, m/sec, K 

 = material density, kg/m3 

0 = interface energy, J/m2 

 = order parameter  

 x = derivative of the order parameter along the x direction  

 y = derivative of the order parameter along the y direction  

Phase Field Modeling  

The time-evolution equation of the energy transport can be 

described as in the work of Kim et al. (1999):  
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In Eq. (1), D is the thermal diffusivity, H is the latent heat, 

considered positive for solidification,  is the material density, 

assumed the same for both solid and liquid, Cp is the specific heat. 

Equation (1) is linked to the phase-field equation by a source term, 

t. The evolution of the 2-D phase-field is described in the work 

of Kim et al. (1999) as:  
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The term on the left-hand side, t, represents the time variation 

of the order parameter . On the right-hand side, the first term is a 

diffusivity term, whereas the second and third terms represent the 

anisotropy. The product wg´ determines the distribution of the 

excess free-energy at the interface. The last product on the right-

hand side translates the driving force behind the solidification 

process. While g´ represents the free energy in the solidification 

process, h´ is the derivative of the so-called “smoothing” 

function. Here, M is the mobility of the phase-field variable,  and w 

are parameters associated with the interfacial energy and interface 

thickness, respectively, and Tm is the melting temperature. The 

function h varies monotonically from h to h and 

h´h´. In this study, we chose a widely used means to 

define h and g in phase-field models, as expressed in the 

works of Furtado et al. (2006) and Lee and Suzuki (1999):  
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To take anisotropy into account,  is defined as in Furtado et 

al. (2006):  
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The parameter  represents the degree of anisotropy and j is a 

mode number of anisotropy.   gives the orientation of the normal to 

the interface with respect to the x-axis, so that 0 is the interface 

orientation when the anisotropy is maximal. From the work of Kim 

et al. (1999), it is easy to conclude that  
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The three parameters in the phase-field equation, M, 0 and w, 

are related to the interface kinetic coefficient (), interface energy 

(), and interface width (). They are expressed in the work of 

Furtado et al. (2006) as  
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In the present study, we introduce a 2-D phase-field model with 

anisotropy and apply it to the solidification of a supercooled melt of 

pure nickel. This phase-field model is based on the simultaneous 

solution of the energy and phase-field equations. Phase-field 

modeling assumes the growth of a nucleus in the liquid phase. The 

boundary condition for the order parameter  is a zero-flux 

condition, while an adiabatic process was assumed for the heat flux.  

Numerical values for the model parameters and physical 

properties are presented in the results section.  

Numerical Method  

Equations (1) and (2) were solved by an explicit finite-

difference method, with a mesh sufficiently refined to describe 

details of the dendrites. Considering the pure-metal case, 

convergence is possible for values of t X. However, in 

order to observe the growth of thermal dendrites, the calculation 

must be done according to the time scale of the thermal diffusion. 

For this reason, it was necessary to use t X4D.  

The anti-symmetrical side branching from primary arms around 

the dendrite tip is known to be possible only with the existence of a 

noise source in the phase-field equation. Therefore, random noise 

was added to Eq. (2), in the same way as described in the work of 

Warren and Boettinger (1995):  
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where r is a randomly-generated number between  and  and  

is a noise amplitude factor. From Eq. (10), the noise can be seen to 

reach its maximum value for , being null at = 0 and = +1.  

Performing the computations with a numerical grid of 200 x 200 

points with parameters determined in the previous section and the 

physical properties of nickel, it was not feasible to obtain a dendrite 

with developed secondary arms, due to the small computation 

domain. Dendrites with fully developed side branches necessitate a 

computational domain with several million points. However, 

computation with such a large computational domain is restricted 

not only by the computational efficiency, but also by memory size. 

In the present study, we develop a simple numerical technique in 

order to improve efficiency. Both phase-field models presented in 

this article, one with an adaptive computation domain and one with 

a computation domain of fixed size, were constructed with the same 

grid spacing (XY
 m). The difference is in the number 

of nodes of the computational domain. In the first model, the 

computational domain is very small in the initial steps of the 

computation; consequently, the computational efficiency is 

improved and the memory size requirement is reduced. In the 

second model, in the initial steps of the computation the 

computational domain is very large, thereby reducing computational 

efficiency and the memory size requirement is increased. 

The phase and energy transport equations were solved in a 

computational domain divided into square grids of I × J, with a grid 

spacing of XY not only for the thermal field, but also for 

calculation of the phase field. The thermal field TI,J and phase field 

I,J at each point in the grid I,J are known from the previous step. 

For each point I,J in the grid, a real value I,J, which 

describes the phase state of the grid, is assigned I,J to indicate 

the grid in the liquid state and I,J for the solid state. The 

ensemble of all grid points with I,J is taken to 

represent the interfacial region. At each time step, only the interface-

region value of the phase field I,J is calculated from previous 

values, by the explicit finite-difference form of Eq. (2).  

The transient response of the phase-field equation is controlled 

by the product M
. This parameter acts in the phase-field 

model similarly to the thermal diffusivity D in the energy transport 

equation. As the work of Furtado (2005) pointed out, in the 

formation of a dendritic morphology it is important that thermal 

diffusivity becomes greater than its similar term, M
. A greater 

value of D forces the thermal front to be always ahead of the 

solidification interface. Hence, there is always a thermal gradient 

ahead of the solidification front. In this study, the thermal boundary 

layer is defined as a region with TI,JT0, where T0 is a given 

initial undercooled temperature.  

In the phase-field models, the computational domain used for 

this kind of simulation should be discretized into about one million 

grid points. In this study, in the initial stage of solidification the 

computational domain used to calculate dendrite evolution is rather 

small, about 200 x 200 points. If the condition TI,JT0 at 

I,J in the square region is satisfied, the adaptive computational 

domain grows around the dendrite. Whenever the condition is 

satisfied, new temperature TI,J and phase I,J at the current time 

step are calculated from the explicit finite-difference method from 

the values in previous steps. If the condition just stated is not 

satisfied, the computational domain does not grow. The new 

temperature TI,J and phase I,J are then calculated from the 

values in previous steps for a small-size domain. In the present 

paper, we developed a numerical technique with moderate memory 

and enhanced computational efficiency, especially at the initial stage 

of solidification. The calculations were performed on an Intel 2 

Quad processor, with 1.38GB RAM. The block diagram in Fig. 1 

shows the flow of information in the numerical program.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The phase-field model for pure-metal solidification with adaptive 
computational domain. 

Results and Discussion  

Phase-field simulation of dendritic solidification  

The parameters and properties adopted in this study are 

summarized in Tables 1 and 2, respectively. 

Table 1. Model parameters (Ni). 

Anisotropy constant,   0.025  

Interface thickness, o  2.01  10  4 (J/m)1/2  

Free energy factor, w  0.61  10 8 J/m3  

Interface mobility, M  13.47 m3/secJ  

Grid spacing (X)  2  10  8 m  

Grid spacing (Y)  2  10  8 m  

Time step, t  1  10  12 sec  

Noise amplitude factor,  0.025  

 

Start  

Input: NX, NY, X, Y, D,  

____ Cp , H, t, w, Tm , T0 ,  

____ , 0 ,  , j,  0 ,  

____ M, Kmax  

     K   

 

Compute 
temperature  

 

Calculate 
phase field  

T I,J  T0   

NX  NX1  

NY  NY1  

K  Kmax  

Output:  I,J, TI,J  

Stop 
 

Yes  

Yes  

No  

No  
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Table 2. Material properties of Ni (Kim et al., 1999). 

Interface energy, o  0.37 J/m2  

Kinetic coefficient at interface,   2 m/s K  

Melting temperature (Tm)  1728 K  

Latent heat (H)  2.35  10 9 J/m3  

Thermal diffusivity (D)  1.55  10 − 5 m2/s  

Specific heat (Cp)  5.42  10 6 J/m3 K  

Interface width (2 o)  8  10 − 8 m  

 

Dendritic growth analysis is popular in phase field studies and 

there are lots of application examples for pure materials like those 

featured in Kobayashi (1993) and Andersson (2002), as well as 

phase-field models for solidification of binary alloys as, e.g., the 

works of McFadden et al. (1993) and Wheeler et al. (1993), and 

ternary alloys, like in the paper by Lee and Suzuki (1999).  

The first numerical simulation in this study, using a phase-field 

model, was conducted for the study of free dendrite growth in a pure 

material. Figure 2 shows a calculated dendrite, growing from a seed 

at the central region of the computational domain.  
 

 

Figure 2. Dendrite calculated with a 1400 x 1400 point grid, where the 
dendrite started to grow from a seed at the central region. Solidification 
time was 3.79 x 10

 − 7
 sec.  

 

Figure 2 depicts the simulation of a nickel dendrite calculated 

with a numerical grid of 1400 x 1400 points. In this simulation, a 

dendrite is presented with secondary and tertiary arms. The 

secondary arm increases with the distance behind the primary 

dendrite tip. The asymmetry in the side branch of the primary arms 

observed in Fig. 2 is due to a noise source added to the phase-field 

equation. The tertiary arms occur only at one side of the secondary 

arms. This asymmetry seems to be related to the thermal field 

distribution. The preferential direction of tertiary arm growth 

coincides with that of release of latent heat. This was observed in 

experiments on dendritic growth in undercooled melts. In all 

simulations carried out for the present study, the value of the 

anisotropy mode number is J . Also, we choose  in Eq. (5). 

Therefore, the interface orientation with respect to the maximum 

anisotropy is at the diagonal direction of a grid, entailing 

preferential dendritic growth along this direction. An adiabatic 

process was assumed for the heat flux. The boundary condition for  

is a zero-flux condition. We zoom in on the dendrite tip (Fig. 2) to 

show the results for the phase field. This is presented in Fig. 3.  

 

Figure 3. Extended region from tip of dendrite. 

 

Figure 3 shows the results for order parameter () calculated in 

the interface region. As previously mentioned, the interface is 

determined implicitly in phase-field models by values of  

calculated between 0 and 1. A grid spacing of XY
 m 

is assumed constant everywhere in the domain, including the 

interface region.  

To exhibit the similarities between the dendrites calculated in 

the present paper and those described in the literature, we introduce 

Fig. 4. In that figure, both pictures display: a) the secondary arms; b) 

the secondary arm increase with distance behind the primary 

dendrite tip; c) the asymmetry of the side branch found in the 

secondary arms; and d) the secondary arms growth rigorously 

perpendicular to the primary arm.  

 

 
Figure 4. (a) Present calculation and (b) dendrite found in the literature 

(Prates, 1978).  

Phase-field simulation and computational efficiency  

In order to test the computational efficiency of our numerical 

technique, we compared the computer run time for the calculation of 

dendritic growth in undercooled melts using a phase-field model 

with and without an adaptive computational domain.  

Figure 5 shows the dendrite growth obtained by the phase-field 

model with the adaptive computational domain for different 

solidification times and domain sizes.  
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(a)  

 

(b)  

 

(c)  

 

(d)  

Figure 5. Development of the adaptive computational domain for dendritic 
growth. The numerical grids and solidification times are: (a) 85 x 85 
points, 4.47 x 10

 − 9
 sec; (b) 205 x 205 points, 3.62 x 10

 − 8
 sec; (c) 405 x 405 

points, 9.35 x 10
 − 8

 sec; and (d) 605 x 605 points, 1.50 x 10
 − 7

 sec.  

 

Figures 5(a)-(d) show the development of the adaptive 

computational domain for dendritic growth. In Fig. 5(a), the 

dendrite started to grow from a nucleus added at the center of the 

computational domain with 85x85 points, solidification time being 

equal to 4.47x10−9
 sec, insufficient for growth of primary and 

secondary arms. In Fig. 5(b), the numerical grid (205x205) is 

larger than that of Fig. 5(a) (85x85), due to the dendrite tip 

advancing into supercooled liquid during the solidification process. 

In Fig. 5(b), one observes only primary arms, with no side 

branching, for a solidification time of 3.62x10−8 sec. In Fig. 5(c), 

the time for solidification (9.35x10−8
 sec) is sufficient for the 

growth of secondary arms. Finally, in Fig. 5(d), the time for 

solidification is 1.50x10−7 sec and the numerical grid comprises 

605x605 points. Here, it is possible to observe well-developed 

secondary arms away from the dendrite tip, while small side 

branches compete with each other shortly behind the dendrite tip. 

The asymmetry in the side branches is evinced in Figs. 5(c) and (d). 

This follows from the thermal field distribution. Again, side 

branching prefers the direction of latent heat release. In all of Fig. 5, 

computational convergence is optimized through adoption of a small 

computational domain around the dendrite.  

Figure 6 shows variation of computer run time (in seconds) as a 

function of primary dendrite length (in units of domain size). There, 

the open and solid circles are for the adaptive computational domain 

and a computational domain of fixed size, respectively. One can see 

that, with the adaptive computational domain, the run time required 

to reach a given primary dendrite growth is about a tenth of that 

with the computational domain of fixed size. Computational 

efficiency is guaranteed by using an adaptive computational domain 

for phase field and thermal calculation. Because the computational 

domain is small at the beginning of the calculations, convergence is 

optimized. Using the phase-field model with an adaptive 

computational domain for simulation of the solidification process, 

the calculation of dendritic growth is carried through with a 

computational domain sufficiently small for the phase field and 

thermal calculations. Increasing the primary dendrite length, one 

finds that the run-time versus primary-dendrite-length plot will tend 

to exhibit an exponential-like behavior.  

 

Figure 6. Variation of computer run time as a function of primary dendrite 
length, in units of points. 

 

Figures 7(a) and 7(b) show the dendritic patterns obtained by 

our phase-field model with an adaptive computational domain and a 

computational domain of fixed size, respectively. A nucleus was 

placed at the central point of the domain. The initial and boundary 

conditions used in this simulation with an adaptive computation 

domain are identical to those adopted in the simulation with a 

computation domain of fixed size. In both Figs. 7(a) and 7(b), the 

initial undercooled temperature is 1468 K. If different degrees of 

supercooling are adopted for the simulations, dendritic formation 

with different morphologies will ensue. The average length of the 

primary dendrites in Fig. 7(a) is 1.02x10−5 m, and 9.9x10−6 m in 

Fig. 7(b). The run times for Figs. 7(a) and 7(b) are 1.2x104 sec and 

1.0x105 sec, respectively. The growth velocity of the dendrite tip in 

Fig. 7(a) is about 49.13 m/sec, whereas it is roughly 46.1 m/sec in 

Fig. 7(b).  

 

 

(a)  

 

(b)  

Figure 7. Dendritic patterns obtained by (a) the Phase Field Model with an 
adaptive computational domain and (b) the Phase Field Model with a 
computational domain of fixed size. 

 

In this figure, the growth velocity is calculated by the ratio of 

the average length of four primary dendrites to the solidification 

time. The difference in growth velocities between the two methods 

is only 6.17%. Note that the width and velocity growth of the 

primary dendrite arm in the method with an adaptive computational 

domain are greater than in the method with a computational domain 

of fixed size. Thus, the velocity growth and the morphology of the 

dendrite calculated via the phase-field model with an adaptive 

computational domain are very close to those from the model with a 
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computational domain of fixed size. As for improvements in 

computational efficiency, however, the slight differences in 

morphology cannot be considered as an obstacle for the phase-field 

model with an adaptive computational domain. This method can be 

very useful for solidification simulation via phase-field model.  

Conclusions  

In spite of the proven ability of phase-field models for 

computation of the pattern evolution in solidification, they suffer 

from low computational efficiency. In the computation of a dendrite 

with side branches, the computational space should be discretized 

into a mesh with about two million cells. Such a high number leads 

to a considerable increase of the run time.  

In the present study, a phase-field model is introduced with an 

adaptive computational domain for efficient computational 

simulation of the dendritic growth in a system of pure undercooled 

melts. The method, which is based on the difference in thermal 

diffusivity in pure materials, enables us to reduce by about an order 

of magnitude the run time for simulation of the solidification via 

Phase Field Model.  

The phase and thermal fields were calculated adaptively only in 

the regions that satisfy the condition TI,JT0. The 

computation showed that the dendrite with well-developed 

secondary and tertiary arms can be obtained on a personal computer 

with a much reduced run time. The calculated dendritic morphology 

displayed a microstructure quite similar to results found in literature 

and experiments.  
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