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A Procedure for the Parametric 
Identification of Viscoelastic Dampers 
Accounting for Preload 
Passive vibration isolators are usually made of viscoelastic materials. These materials 
have non-linear characteristics that change their dynamical properties with 
temperature, frequency and strain level. The vibration isolator’s mathematical modeling 
and optimal design requires the prior knowledge of the stiffness and damping of the 
applied viscoelastic material. This work presents a dynamical characterization 
methodology to identify the stiffness and damping of three samples of viscoelastic 
rubber with hardness of 25, 33 and 48 SHORE A. The experimental apparatus is a one-
degree of freedom vibratory mechanical system coupled to the viscoelastic damper. 
Sweep sine excitations are applied to the system and the resulting forces and vibration 
levels are measured. The amplitude of the excitation is controlled to achieve a constant 
RMS level of strain in the viscoelastic samples. The experimental results are obtained 
for conditions of no pre-strain and with a 10% of pre-strain. The time domain data is 
post-processed to generate frequency response functions that are used to identify the 
damping and stiffness properties of the viscoelastic damper. 
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Introduction1 

During the last five decades the usage of viscoelastic materials 
as passive vibration isolators and their characterization has been 
increasing. Jones (2001) states that the main contributions after 
1960 have been the development of new applications and the 
development of methodologies for the characterization of 
viscoelastic material properties. Viscoelastic materials have been 
used in passive suspensions of heavy and light machines such as 
combustion engines, hard disks, bridges, large panels and other 
applications (Lakes, 1998). 

 As a consequence of the viscoelastic nature of rubbers, their 
dynamic behavior is significantly dependent on frequency, 
temperature and strain level. Moreover, due to the inclusion of high 
content of additives within the compounds to optimize the 
mechanical performances of the rubber components, their dynamic 
behavior is markedly non-linear (Ramorino et al., 2003). Besides, 
the vibration isolators can present geometrical non-linearity. 
Therefore, mathematical modeling and optimal design require prior 
knowledge of the stiffness and damping coefficients of the applied 
viscoelastic material accounting for those complicating factors. 
However, in some cases the properties can be estimated only in the 
actual damper, which imposes the development of a methodology to 
estimate the properties of the viscoelastic materials from tests with 
the entire damper device. 

Tomlinson (1995) discussed the methodologies to evaluate the 
properties of viscoelastic materials. The main problems involved in 
these methodologies are the correct design of the test rig, the correct 
use of the instruments and the signal analysis. This author discusses 
how the flexibility of the test rig and its natural frequencies changes 
the estimated values of the viscoelastic parameters. 

This work presents a dynamical characterization methodology to 
identify the stiffness and damping of cylindrical viscoelastic 
specimens. The experimental apparatus is a one-degree of freedom 
vibratory mechanical system coupled to the viscoelastic damper. A 
harmonic excitation is applied to the system in order to measure the 
resulting forces and vibration levels. The experimental results are 
obtained at two static preload conditions for a frequency band 
between 0 Hz and 200 Hz. The time domain data is post-processed 
to generate the frequency response functions (FRF) which are used 
to identify the damping and stiffness properties of the viscoelastic 
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specimens. The methodology is applied to three samples of 
viscoelastic rubber with hardness of 25, 33 and 48 SHORE A. 

Nomenclature 

d = specimen diameter, mm  
F = force, N  
h = specimen height, mm  
��  = acceleration, m/s2 
��  = velocity, m/s 
� = displacement, m 
� = elastic constant, N/m 
�∗ = complex stiffness, N/m 
� = damper damping coefficient, N/(m⁄s) 
� = mass, Kg 
� = storage modulus of viscoelastic material, N/m2 

Greek Symbols 

� = cyclic frequency, 
���

�
 

	 = loss factor of the viscoelastic material 

 = geometric factor for the viscoelastic specimen 

Subscripts 

e = relative to the excitation of vibratory system 
r = relative to the resonance peak 
s = relative to the table suspension 
v = relative to the viscoelastic specimen 
c = relative to viscoelastic material 
1 = relative to the elastic coefficient of the table suspension  
2 = relative to the damping coefficient of the table suspension 

Experimental Apparatus and Formulation 

Two viscoelastic specimens, parts (3) and (5), are cylinders 
mounted in parallel inside the preload device composed of parts (1), 
(2), (4) and (6), as shown in Fig. 1. The preload is obtained by 
screws that compress the specimens by a quantity DS. Therefore, the 
amount of normal strain of each specimen is DS/2h. These screws 
have been suppressed in the schematic diagram to simplify it, and 
their action is represented by the black arrows. Finally, this 
mechanical subset is fixed to an inertial frame in order to guarantee 
that the acceleration of part (4), measured by mean of an 
accelerometer, is an absolute acceleration. 
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The moving disc (4) is used to apply dynamic loads to the 
specimens. It is connected to a single degree of freedom vibratory 
table driven by an electrodynamic shaker, as shown in Fig. 2. This 
configuration eliminates dry friction forces and prevents spurious 
motion assuring that the vibratory motion takes place, only in the 
horizontal direction. 

 
 

 
Figure 1. Test rig diagram. 

 
Figure 2 shows the complete experimental setup. The 

generalized coordinates x� � and 	x� � are used to represent the 
accelerations of the vibratory table and the moving ring (4) 
respectively. The acceleration of the latter can be assumed as being 
the same imposed to the viscoelastic specimens surfaces as stated 
before, i.e. part (4) is assumed to be ideally rigid in the entire 
frequency band of the tests. 

 
 

 
Figure 2. Experimental setup used in shear tests. 

 
The vibratory table acceleration x�� is measured by a 

piezoelectric accelerometer. The excitation force F� and the force F� 
acting between the vibratory table and the specimen’s support (4) 
are measured by piezoelectric force transducers. A piezoelectric 
accelerometer, fixed to the support (4), measures	x��. These signals 
are simultaneously acquired by an Agilent 35670A signal analyzer. 
Internally, the analyzer converts the voltage signals to engineering 
units. Thus the units of the signals from the load cells are converted 
to �N
 and those from the accelerometers are converted to	[m s�⁄ ]. 
The signal related to x�� is used as reference to maintain constant the 
vibration amplitude over all excitation frequencies. 

The physical model of the system presented in Fig. 2 was 
obtained using the free body diagram shown in Fig. 3, where M� is 
the vibratory mass of the table and M� is the mass of the support (4) 
plus 1/3 of the specimens mass (Jones, 2001). F1 and F2 are the 
spring and damping forces generated by the vibratory table 
suspension, while K∗x� is the force associated to the specimen 
complex stiffness.  

By applying the second Newton’s law, one obtains the 
mathematical system model presented in Eq. (1) where K	 is the 
load cell stiffness. 

 

M�x� � = F� − F� − F� − F� = F� −K��x� − x���������
��	
	����

−K�x� − C�x� �

M�x� � = F� − K
∗
x� = k��x� − x��− K

∗
x�

 (1) 

 
 

 
Figure 3. Free body diagram of the vibratory system  with the viscoelastic device. 

 
Preliminary experimental tests indicated that the stiffness of the 

load cell is high enough to permit the hypothesis that x� ≈ x� in the 
frequency band of the tests, and that C� is small compared to the 
damping provided by the viscoelastic specimen. Under these 
assumptions the above equations can be reduced to Eqs. (2), which 
represent the motion of two single DOF systems: 

 
�M� + M��x� � + �K� + K∗�x� = F�

M�x�� + K∗x� = F�
 (2) 

 
Assuming a steady-state harmonic excitation F� = F�e
�� that 

will produce a response of the system as x� = X�e
��, from these the 
frequency response function (FRF) is obtained as follows:  

 

�

��
=

�

����������������
∗�

 (3) 

 
Therefore, the complex stiffness K∗	can be calculated using this 

FRF as follows: 
 

K∗ =
��


�

− �K� − �M� + M��ω�� (4) 

 
The same procedure can be used to analyze the motion of the 

mass 	M� resulting in an alternative expression for K∗ as follows: 
 

K∗ = ω�M� +
��


�
  (5) 

 
It should be noted that, as the ratios F�/X� and F�/X� are 

complex owing to the phase lags between excitations and responses, 
K∗, is a complex, frequency-dependent quantity. Since F�/X� and 
F�/X�, can be calculated from the measurements made with the 
sensors indicated in Fig. 2, the complex stiffness can be estimated 
from Eqs. (4) or (5). Moreover, the complex stiffness is related to 
the complex elasticity modulus as indicated by Eq. (6) (Espíndola et 
al., 2005). 

 
K∗ = θE	�1 + iη	�  (6) 
 
In Eq. (6), θ is a constant dependent on the specimen geometry 

and on the test rig setup. Considering that cylindrical viscoelastic 
specimens are submitted to shear stress, Tomlinson (1995) suggests 
θ� = πd�/4h. However, it should be noted that the damper has two 
specimens that impose	θ = θ� 2⁄ = πd�/8h. The term E	 is the 
storage modulus and η	 is the loss factor of the viscoelastic material. 
Using the real and the imaginary part of Eq. (4) and Eq. (5), the 
storage modulus and the loss factor are calculated according to Eq. 
(7) or Eq. (8): 
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E′ � ��

���
�Re ���

��

� 	 
K� 	 
M� 
 M��ω	��

η � ��

���
�
Im ���

��

�																																														
 (7) 

 

�′ � ��


��
��	�� 
 �� ���

��

��	

� � ��


����
�� ���

��

�																		
 (8) 

 
It is observed in Eq. (7) and Eq. (8) the influence of the single 

DOF vibratory system in the estimative of the storage modulus and 
the loss factor, i.e. in Eq. (7) there are the influences of the stiffness 
and of the inertia 
M� 
 M��, while in Eq. (8), only the inertia M� 
influences the storage modulus estimate. Moreover, it is important 
to notice that at higher frequencies the inertia influences will be 
higher and the estimate would be unsatisfactory.  

Experimental Results 

The experiments were conducted with two states of preload 
applied to the rubber specimens: 

 
a) State 1: No preload was applied. 
b) State 2: A prescribed displacement of 2.5 mm, equally 

distributed on the specimens due to the symmetry with 
respect to the moving ring, was applied as indicated in 
Fig. 4. This corresponds to a normal strain in each 

specimen	ε � �.	�

�	
� 0.104. 

 

 
Figure 4. Schematic of preloaded specimens. 

 
The excitation is controlled in order to sustain an acceleration of 

the specimen support (4) over all frequencies from 0 to 200 Hz, of 
the form x$� � 15 sin
2πft� mm/s	, since it had been verified that 
at low frequencies the excitation force reaches values near 100 N, 
which is the upper limit of the shaker. The signal analyzer Agilent 
35670A is used to control the acceleration x$�	producing a voltage 
signal, which is amplified to produce the excitation force through an 
electro-dynamical exciter. The signal analyzer is also used to 
estimate the transfer functions X�/F� and	X�/F�. A group of settings 
permit the adjustment of the waiting time, which is necessary for the 
PID control system to reach the steady state condition, and of the 
integration time to reduce random errors in the transfer functions 
estimations. In this work the waiting time and the integration time 
were both adjusted to 100 periods of the excitation frequency. The 
frequency response functions were obtained with a resolution of 
0.25 Hz, and are denoted as follows: 

 
• X� F�⁄  – is the receptance of the one degree of freedom 

vibratory system, i.e. moving table. 

• X�/F� – is the receptance of the specimen support (4) and 
the suspension formed by the viscoelastic specimens. 

 
The experiments were conducted on three different viscoelastic 

rubber samples with different shore hardness. They are nominated 
as follows: 

 
• Soft – Rubber with 25 shore A 
• Medium – Rubber with 33 shore A 
• Hard – Rubber with 48 shore A 

 
Figure 5 shows the transfer functions obtained with all 

specimens submitted to both states of preload, the room temperature 
was 25oC, measured by a thermometer. The frequency band of 
interest has been defined as being 20 Hz to 120 Hz in order to 
prevent noise originated from rigid body motions of the inertial 
table on which the test rig was mounted, and to magnify the 
differences between the rubber dynamical properties, for conditions 
without and with preload. It is important to point out that for hard 
rubber the influence of the preload on the loss factor has been 
verified to be quite low for frequencies below 20 Hz. 

It should be noted that the system natural frequency increases 
with the application of preload, as shown in Fig. 5. This is verified 
for all rubber hardness and it is more evident in the phase diagram. 
This means that the specimen stiffness increases with the preload 
compression level. Additionally, the resonance band widens for the 
soft rubber, indicating that the damping factor of the system also 
increases. It should be noted that this does not mean that the 
specimen viscous damping coefficient increases. 

 
 

 
Figure 5. FRF’s from vibratory systems at all confi gurations. 

 
Figure 6 shows the amplitudes of the transfer functions X�/F� 

and	X1
�/F�, which are the receptance and the mobility curves, 

respectively, for the system composed by the moving ring, part (4), 
and the viscoelastic suspension	K∗. Assuming that the influence of 
the mass M� can be neglected at low frequencies, these two curves 
could be interpreted as indicators of the stiffness and damping 
coefficient of viscoelastic suspension. Thus, based on the results 
presented in Fig. 6, it is possible to conclude that the preload level 
increases the stiffness and the damper coefficient for all rubbers. 
This behavior is in agreement with that shown in Fig. 5, since the 
application of the specimen preload requires a higher force F� to 
produce the same vibration level. Therefore, with a constant mass, 
an increase of |F�| should be related to higher values of the stiffness 
and the damping of the rubbers. 
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Figure 6. FRF: Amplitude of the mobility ��

�

� ��⁄ � and receptance 	���/���. 

Parametric Identification of Complex Stiffness 

The experimental FRFs are used to obtain the stiffness and 
damping properties of the specimens using a Voigt model, depicted 
in Fig. 7, associated to the viscoelastic behavior of the device. It 
should be noted that the parameters to be identified are not the 
material viscoelastic parameters; instead, the aim is to determine a 
set of parameters that represent an equivalent vibratory system with 
an additional suspension. 

The identification procedure is done in two steps: 
 

• Determine the stiffness	K�, damping coefficient C� and 
mass	M�, of the table suspension without the viscoelastic 
damper using a curve fitting method; all of them are 
constant parameters of a linear vibratory system. The 
curve fitting method minimizes the difference between the 
experimental and theoretical transfer functions using a 
direct search optimization algorithm. 

• Adjust of the experimental receptance X�/F�	 with the 
model of the vibratory system, now including viscoelastic 
damper, represented by the Voigt model parameters M�, 
K� and C�. 

 
The sum of the vibratory table suspension stiffness and the 

specimen stiffness can be used as a first guess, in the curve fitting 
algorithm, to estimate the stiffness values of the specimens. This 
hypothesis can be accepted because K� and K� are associated in 
parallel and the load cell could be assumed as a perfectly rigid link 
between vibratory system and the viscoelastic device. 

Lepore et al. (2008) have measured the vibratory table 
properties using a curve fitting methodology and obtained the 
following results: 

 
• Mass: M� � 3.4	Kg 
• Stiffness: K� � 50,194	N/m  
• Damping: C� � 5.05	Ns/m 

 

 
Figure 7. Voigt model adopted to represent the visc oelastic damper. 

 
 

Figure 8 enables to evaluate the quality of the adjustment 
procedure by using the Voigt model for the soft rubber without 
preload. The total RMS error is 0.03% in the frequency band. It 
should be emphasized that the curve fitting process used in this 
paper is very dependent on the initial choice of state variables. 

 
 

 

Figure 8. Adjusted Voigt model and the experimental  data of the soft 
rubber without preload. 

 
Table 1 shows the numerical results obtained for all the 

experiments. The stiffness of all rubbers shows a variation from 
9.31% up to 12.66% with respect to the damper without preload, 
which is an indication that the suspension becomes stiffer as the pre-
strain increases. It is important to mention that Christensen (1982) 
states that creep is not perceptible in short time periods and that for 
steady harmonic conditions the dynamics effects are influenced by 
the initial strain, in which case it is possible to associate the preload 
with equivalent stiffness increment. Besides, the damping 
coefficient has a completely different behavior, i.e. the variation 
starts at 9% and decreases with the rubber hardness reaching a 
negative variation for the hardest one. The negative variation for the 
hardest rubber could be associated with the sharpness of the 
resonance peak that increases the error of the curve fitting method. 

Table 2 shows the values of the natural frequency, damping 
factor and half bandwidth of the vibratory system with different 
rubber hardness and preload conditions. Bendat (1986) suggests that 
for a light damped system, the half power bandwidth is expressed 
as	B� � 2ξf�. Therefore, small changes in the damping coefficient 
using the preload produce a decrease in the sharpness of the 
resonance peaks, which means an increase of		B�. Analyzing the half 
power bandwidth 
B�� and the damping factor 
ξ�, for the soft and 
medium rubbers, it is possible to affirm that the increment of the 
damper coefficient 
C�� is compensated by the increment of 
the	
K��, i.e. the benefits of the polymeric additives in increasing 
the damper coefficient is not sufficient to reduce the resonance peak 
sharpness.  

Besides, it is necessary changing the natural frequency of the 
vibratory system to estimate the viscoelastic material properties over 
a wide frequency band. Even though the good results obtained with 
Voigt model, the complexity to change the experimental setup 
reaching new natural frequencies pushes us to apply a model able to 
estimate the material properties over a large frequency band in only 
one run. Therefore, the following results had been obtained using 
the Maxwell model, which is suitable to estimate the material 
properties in only one run. 

Figure 9 shows the proposed one DOF Maxwell model to the 
vibratory system. 
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Table 1. Materials properties estimated by curve fit ting of the Voigt model. 

Rubber 
hardness 

Without preload Preload – 10% of strain 

Stiffness �� 	��/�
 Damping 
��	���/�
 

Stiffness �� Damping �� 
Absolute Value 

��/�
 Variation 
Absolute Value 

�Ns/m
 Variation 

Soft – 25 shore 149,986.61 114.59 163,948.13 9.31% 124.91 9.00% 

Medium – 33 
shore 

244,605.26 144.48 268,906.82 9.93% 150.13 3.91% 

Hard – 48 shore 980,356.04 107.37 1,104,445.91 12,66% 102.72 -4.33% 

 
 

Table 2. Physical parameters of the tested vibrator y systems. 

Rubber hardness 
Without preload Preload – 10% of strain 

Natural 
Frequency [Hz] 

Damping 
factor � 

Half power 
bandwidth [Hz] 

Natural 
Frequency [Hz] 

Damping factor 
� 

Half power 
bandwidth [Hz] 

Soft – 25 shore 39.50 0.074 5.846 40.75 0.077 6.276 

Medium – 33 
shore 

47.39 0.075 7.109 49.21 0.075 7.382 

Hard – 48 shore 79.47 0.027 4.291 81.99 0.027 4.427 

 
 

 

 
Figure 9. One DOF Maxwell model. 

 
The values of 	K∗ has been calculated using Eq. (5) and the 

storage and the loss factor by means of Eq. (8). The number of 
elements, an association in series of a spring K and a damper	C, 
necessary to represent the viscoelastic material, as shown in the 
boxes of Fig. 9, is not fixed and varies with the material behavior. 
Jones (2001) suggests that it could be necessary more than 4 
elements; however, the complexity of the fitting process increases 
also with the number of elements. 

The model with one single element has complex modulus 
written as: 

 

�∗ = ��1 + �	� = � +
������

�������
 (9) 

 
The model with several elements to represent the complex 

modulus is written as follows: 
 

�∗ = ��� + � ������
�

�
�

�����
�

�

�

���
� + � �� �����

�

�
�

�����
�

�

�

���
� (10) 

 
Comparing the transfer function for Voigt, represented in Fig. 7, 

and Maxwell models, represented Fig. 9 and modeled by Eqs. (9) 
and (10), it is possible to determine a correlation between the loss 
factor and the damper coefficient as follows: 

	 =
���

� 
 (11) 

 
or the inverse relation where C� is obtained by means of:  

 

�� =
!� 

�
 (12) 

 
Figures 10 to 12 show the estimated values of E′ and η for each 

rubber obtained from experimental tests. These curves have been 
obtained using the parameters of the Maxwell models, as defined in 
Eq. (10); after that, the storage modulus is obtained dividing K∗ by 
the geometric factor θ. 

It is necessary to emphasize that differently from the resonant 
modes used to estimate the parameters the proposed methodology 
permits the estimation over a large frequency band in only one run. 
Christensen (1982) suggests that the resonant methods have as 
principal drawback the possibility to estimate the parameters only in 
vicinity of the natural frequencies of the test rigs; this disadvantage 
is overcome in the proposed methodology.  

 

 
Figure 10.  Estimated properties of the soft rubber . 



A Procedure for the Parametric Identification of Viscoelastic Dampers Accounting for Preload 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright   2011 by ABCM July-September 2011, Vol. XXXIII, No. 3 / 313 

 
Figure 11. Estimated properties of the medium rubbe r. 

 
 

 
Figure 12. Estimated properties of the hard rubber.  

 
The mean values for the E′ obtained with Maxwell models are 

very close to the experimental data. The higher difference occurs 
with the elastic modulus of the hard rubber under 10% preload 
condition. The higher stiffness of the viscoelastic device in this 
condition can be the reason for this difference, at these values of 
viscoelastic devices stiffness the hypothesis that the supports are 
rigid cannot be verified at the full frequency band.  

The elastic moduli, estimated or from experimental data, show 
that a preload makes the viscoelastic device stiffer. This behavior is 
verified in the whole frequency band and appears to be constant, i.e., 
the stiffness value of the preloaded specimens can be assumed as 
being a constant plus the stiffness of the specimens without initial 
strain. The peaks observed near 38 Hz, 58 Hz and 92 Hz in all 
experiments can be associated with local resonances of the linkage 
between the vibratory table and the viscoelastic device or the 
viscoelastic device configuration. However, a more detailed study 
should be undertaken to explain this observation. 

The loss factor η estimated for both states, with and without pre-
load, is practically the same. Therefore, a careful analysis of these 
curves should be done to evaluate the damper coefficient	C�, shown 
in Eq. (12). This is due to the dependence of the equivalent damper 
C� on the elastic and dissipative moduli. So, any change in the 
values of equivalent damper can be due to a change in the both 
modulus or in only one modulus as can be seem in this paper. This 
behavior agrees with the analysis of half power bandwidth. 

Conclusions 

The methodologies to identify viscoelastic rubber’s physical 
properties by the Maxwell and Voigt models do not presented 
significant differences in the signals treatment for the experimental 
conditions used in this work.  

The equivalent damping identified by the Voigt model results 
the mean value of the viscoelastic damping coefficient that is valid 
at the resonance region of the vibratory system where the device is 
installed. Therefore, the Voigt model does not allow identifying the 
damping coefficient dependency on the excitation frequency. 

The identification of the rubber physical properties using X�/F�	 
instead of 	X�/F�	 can be done without knowledge of the vibratory 
table properties used in the experimental tests. The proposed 
methodology when applied by using X�/F� permits the 
identification of physical properties over a large frequency band in 
only one run. However, the same procedure when applied by using 
the X�/F� does not reach the same quality due to vibratory table 
dynamic behaviour. The proposed methodology estimates both 
storage and dissipative modulus of the viscoelastic material also 
with specimens under preload conditions. 

Additionally, the Maxwell model allows identifying the loss 
factor	η	, which is practically independent of the two preload levels 
used in the experiments. It is used to calculate the loss modulus of 
the viscoelastic material that is required for numerical analysis 
based on finite elements. 

The preload value has important effect on the stiffness and 
damping properties of the device. This knowledge is important in 
the design of practical viscoelastic dampers used in machinery 
suspensions. 

Additional works should be done to take into account the 
nonlinear properties of the material and higher strain levels that 
appear in some devices. This would be done by reducing the size of 
specimens or by using another excitation device. 
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