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An Edge-Based Unstructured Mesh 
Formulation for High Speed 
Tridimensional Compressible Flow 
Simulation 
Numerical simulation of realistic compressible flows is very important and requires 
accurate and flexible tridimensional formulations, which should furthermore be robust and 
efficient. In this work we describe the development of a computational tool for numerical 
simulation of inviscid compressible 3-D fluid flow problems. This tool uses as the main 
building block an edge-based Galerkin FEM (Finite Element Method) together with a 
MUSCL (Monotonic Upstream-centered Schemes for Conservations Laws) approach to 
get a higher-order scheme with LED (Local Extremum Diminishing) property. The code is 
particularly developed for the simulation of supersonic and hypersonic flow regimes and 
several important (sometimes unavoidable) numerical procedures incorporated to increase 
its robustness are described. Some aspects related to the adoption of an edge-based data 
structure and other implementation issues are also described. Finally, some numerical 
model problems are analyzed and compared with results found in the literature 
demonstrating the effectiveness of the developed tool. 
Keywords: 3-D compressible flows, Euler equations, FEM-MUSCL/LED, unstructured 
tetrahedral meshes, edge-based formulation 
 
 

 
 

Introduction 1 

Several industrial applications involve high speed compressible 
fluid flows, and the development of computational tools to deal with 
such class of problems, although quite well established nowadays, is 
still an important research area. The main issues remain obtaining 
accurate and robust computational models to deal with severe 
regimes and developing flexible and efficient codes to cope with 
complex geometries and large scale problems. 

In this paper we describe the extension to tridimensional models 
of the FEM-MUSCL/LED formulation developed by Lyra (1994), 
Lyra and Morgan (2002). The extension follows the work of Peraire 
et al. (1993) and includes several numerical strategies proposed or 
used by Lyra (1994) and Lyra and Morgan (2000, 2002) to increase 
the robustness and convergence behavior of the final scheme when 
simulating high speed inviscid compressible flows. Here, these 
strategies are extended and tested for 3-D model problems. The core 
of the code consists on an edge-based Galerkin FEM (Finite 
Element Method), using conservative variables, together with a fully 
upwind limited MUSCL (Monotonic Upstream-centered Schemes 
for Conservations Laws) approach to get a higher-order scheme with 
LED (Local Extremum Diminishing) property. The main concern is 
the steady-state solution of supersonic (and hypersonic) fluid flows. 
The solution is integrated in time using a simple explicit Euler 
forward approach, with a “lumped mass” matrix and local time 
stepping. A number of specific strategies were adopted to render the 
final scheme robust, including: adequate choices during limiting 
stage (limiter functions, set of variables to be limited, etc.); warm 
start for higher-order simulation; relaxation to guarantee positivity 
of thermodynamic variables; possible solid wall boundary condition 
for impulsive start from the free stream condition; and a discussion 
on the necessity of using a background numerical dissipation and a 
strategy for freezing the non-linear limiting term. 

In what follows, first we briefly describe the physical-
mathematical model considered. Then we present the main ingredients 
necessary to get the computational model, including: the edge-based 
FEM formulation; the incorporation of a MUSCL-LED high-order 
“monotonic preserving” reconstruction; the time discretization 
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adopted; how to implement the standard boundary and initial 
conditions, and several important numerical and computational issues. 
The following section discusses some numerical benchmark 
applications and, finally, some conclusions are drawn. 

Mathematical Model 

The equations which govern the unsteady laminar 
tridimensional flow of a compressible inviscid fluid, in the absence 
of external source terms, may be written in the conservation form 

 

0 in for 1,2,3jt x j
j

∂ ∂ + ∂ ∂ = Ω × =U/ F / I  (1) 

 
where the summation convention is employed, xj is the Cartesian 
coordinate, Ω is the spatial domain, t is the time independent 
variable and I = (t0, T) is the time interval. The solution of this set of 
equations is sought over the closed spatial domain Ω, with boundary 
surface Γ, and the time interval I. This initial/boundary value 
problem requires additionally boundary and initial conditions, which 
are taken here in the form 
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in which jn  represents the component, in 

jx  direction, of the unit 

normal vector to Γ and ( )jU x  is a known function at initial time 

t0. In Eq. (1), U is the vector of the conservative variables, while 
jF  denotes the inviscid flux vector in the direction xj. These 

vectors can be written as 
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Here ρ, p, ε represent the fluid density, pressure and total 

specific energy respectively, and uj is the component of the velocity 
vector in xj direction. In addition, δij denotes the Kronecker Delta. 
The equation set is closed by the addition of the perfect gas equation 
of state given as 

 

( ) ( )( )1 / 2γ ρ ε= − − i ip u u  (4) 

 
where   /p vc cγ = , with pc  and vc  being the specific heats of the 

fluid at constant pressure and volume, respectively. A non-
dimensional counterpart of this mathematical model is then 
discretized as described in what follows. 

Computational Model 

The Galerkin finite element formulation, implemented in an edge-
based form, together with  a MUSCL approach, are used as the basic 
building block for the construction of a tridimensional unstructured 
grid scheme using a higher order upwind biased procedure for the 
solution of compressible Euler system of equations. An explicit Euler 
forward time discretization is used to advance the solution in time. All 
that will be described in what follows, together with several important 
numerical and implementation issues necessary to get a robust 
computational code. 

Variational formulation 

Assuming that the spatial domain Ω is discretized into an 
unstructured assembly of linear tetrahedral elements, with the nodes 
numbered from 1 to p, the subsets ( )V p and ( )W p of the trial and 
weighting function sets V and W, respectively, a weak variational 
approximation to the problem given by Eqs. (1) to (4) using the 
Galerkin FEM (Zienkiewicz at al., 2006) can be stated as 
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for each, 1,2,  ,  I p= …  where the summations just extend over 
those elements E and boundary faces f which contain node I, NI  
denotes the nodal standard Galerkin finite element shape/weighting 
functions and the compact support of them were used in order to 
evaluate the integrals by summing individual element contributions. 

To avoid the necessity of numerical integration, both the 

unknown ( )pU  and the inviscid flux ( )( )j pF U  are approximated in 
a piecewise linear fashion in terms of their nodal values. By 

inserting the assumed forms for ( )pU and ( )( )j pF U into Eq. (5), all 
integrals can be evaluated in closed form and the approximate weak 
variational statement leads to 
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where EΩ denotes the volume of the tetrahedral element E, with 

nodes I, J, K and L, and fΓ  denotes the area of the boundary 

triangular face with nodes I, J and K. In Eq. (6), the first and second 
summations extend for all E elements that contain node I and the 
third extends for all boundary faces f that contain node I. 

The standard finite element data structure consists of the 
physical coordinates listed by node number, a list of the nodal 
connectivity for each element and a list of the boundary faces 
connectivities. With this geometrical and topological data, the 
integrals discussed above can be performed by a loop over the 
elements and a loop over the boundary faces, with the element and 
faces contributions to the nodes being accumulated during the 
process. However, in order to get a more efficient computational 
implementation, both in terms of memory requirements and CPU 
time (Peraire et al., 1993; Catabriga and Coutinho, 2002; Kusmin et 
al., 2005; Smolarkiewicz and Szmelter, 2005; Löhner, 2008), an 
alternative data structure can be adopted which considers a list of 
edges and boundary faces, as will be further discussed in the 
following section. 

Edge/Face Based Formulation 

All integrals given in Eq. (6) can be performed in an alternative 
way using an edge/face data structure. By considering that a node I 
is directly connected with Iµ edges and vI  boundary faces, then an 

equivalent discrete form of Eq. (6) can be written as (Peraire et al., 
1993; Ventura, 2008): 
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where M is the consistent finite element “mass” matrix, the first 
summation is over all S edges (or sides) which contains node I and 

j j j j
IIs I IIs Is IIsS S= +F F F . The term 

I
 will exist only when node I is 

a boundary node. When this happens, node I will be part of Iv 
boundary faces BI1, BI2, BI3,…, BIv, where the boundary face BIf has 
nodes I, I1f, I2f. For notational convenience, we defined 

     and      j j
IIs IIs IIs IIs IIsL S C L= =C /

 
with C IIs  

being the weighting 

coefficient vector. The coefficient j
IIsC  denotes the weight, in jx

direction, which must be applied to the average flux of the edge S, 
which joins nodes I and Is to obtain the contribution made by that 
edge to node I. The coefficient j

IsIC  denotes a similar weight, but 

now to obtain flux contribution to node Is. The coefficient fD

denotes the boundary face weight coefficient to complete the 
approximate computation of all integrals given on the right side of 
Eq. (5) for nodes I that lie on the boundary. Subscripts I1f and I2f 
denote the two other nodes of the boundary face which contains 

node I. Finally, 
n

F  and nF  represent the prescribed and calculated 
fluxes in the boundary faces normal direction, respectively. 

The coefficients j
IIsC  and fD  are computed by 
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where first summation extends for all E elements which contains IIs 
edge. The term 

IIs
will be included only if IIs edge belongs to the 

boundary surface. These coefficients satisfy the relations 
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for 1,2,3j = . From the anti-symmetry of the edge weights expressed 
in second relation of Eq. (9), the numerical discretization can be 
immediately noticed to possess a local conservation property. 

For a detailed deduction of the edge based formulation see Lyra 
(1994) and Ventura (2008) for the 3-D extension. It can be 
demonstrated, as a result of relations given in Eq. (9), that the 
scheme given in Eq. (7) is a central difference type discretization, in 
non-structured meshes, which is not a suitable approximation to the 
hyperbolic Euler system of equations, Hirsch (2010). However, a 
combination of a central difference (“Galerkin” FEM) discretization 
and some type of stabilization and shock-capturing terms can be 
used to construct an effective scheme. This can be done, using some 
ideas taken from finite difference method (FDM) and finite volume 

method (FVM), substituting the edge flux j j j j
IIs I IIs Is IIsS S= +F F F , 

which is a true Galerkin flux in Eq. (7), by a consistent numerical 
flux IIsF defined on generic unstructured tetrahedra meshes. 

Stabilization and Shock-Capturing 

First order approach – Roe’s approximate Riemann solver 

A large number of engineering and science problems are 
governed by conservation laws expressed in terms of hyperbolic 
partial differential equations, such as the Euler equations. 
Techniques inherit from the theory of hyperbolic partial differential 
equations have been incorporated in some numerical methods 
resulting in successful solution algorithms. In particular, the 
perturbations of physical propagation along the characteristic lines, 
which are typical in hyperbolic equations, play an important role in 
a class of numerical methods known as Upwind methods. The 
robustness of the Upwind discretization, the possibility of physical 
interpretation and the high order approximation away from 
discontinuities emphasize the popularity of Upwind methods among 
computational fluid dynamics algorithm developers, Lyra (1994). 

In the present context, the first order (and also higher order) 
Upwind methods implementation involves the solution of Riemann 
problems, Godunov (1959) and Hirsch (2010). In this work, Roe´s 
approximate Riemann solver (Roe, 1981) is adopted. The main 
advantage of Roe’s approach is its relatively low computational cost 
and good accuracy for representation of single discontinuities. Here, 
the Roe scheme is implemented by defining the consistent numerical 
flux IIsF  as  

 

( ){ } 2j j j j
IIs I IIs Is IIs IIs Is IF S F S A U U= + − − /F  (10) 

 
where the first term of the right hand side of Eq (10) represents the 
Galerkin (central difference-type) term and the second represents an 
implicit numerical diffusion term that stabilizes the scheme. The 
Roe Jacobian matrixIIsA , is calculated in the edge coefficient 

direction IIsC using Roe’s average (Roe, 1981). The final scheme is 

very robust and gives monotonic solutions. However, it leads to 
some drawbacks such as the non-recognition of stationary expansion 

waves, violating the entropy condition, and low (first) order 
accuracy.  

A remedy to the entropy violation problem of Roe´s scheme was 
suggested by Harten and Hyman (see Hirsch, 2010) by replacing 

kλ  to function ( ) kψ λ  in the computation of IIsA , with 
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where kδ  denote small positive numbers, either constant or the same 

for all fields “k” or more elaborately defined as a function of the 

local flow condition (Yee, 1989; Hirsch, 2010), and kλ   refers to 
the eigenvalues of Roe´s average Jacobian matrix. 

Higher order approach – MUSCL/LED scheme 

A flexible approach for building high-order schemes consists in 
the adoption of the so called MUSCL (Monotonic Upstream-
centered Schemes for Conservation Laws) methodology (Van Leer, 
1979; Hirsch, 2010). This is achieved by adopting a piecewise linear 
reconstruction using neighboring information. If, in addition to the 
reconstruction stage, a proper monotonic constraint is employed, 
normally in the form of non-linear slope limiters, the final scheme 
guarantees sharp results, “free” (or almost) from numerical 
oscillations.   

 
MUSCL reconstruction: To build a high-order scheme an extended 
stencil must be used. This can be done in different ways.  
 

 
Figure 1. Extended fictitious stencil and interface values for the 
MUSCL/LED scheme. 

 
Here, we consider a “structured” fictitious extended stencil of 

four points formed by the edge nodes I and Is and two “ghost” nodes 
IL and IsR located equidistantly along the line that contains nodes I 
and IS (see Fig. 1). 

In order to obtain the values at “ghost” nodes, one can either use 
some form of interpolation or alternatively use the gradients (Lyra 
and Morgan, 2002). In the present work, a gradient reconstruction 
was adopted. As linear shape functions were adopted, this leads to 
constant gradients over each element, with multiple values at node, 
so a global variational recovery (Zienkiewicz at al., 2006) was used 
to compute a continuous gradient field IU∇∇∇∇ . Using an edge-based 

data structure, this can be performed with an expression similar to 
that of Eq. (7), i.e. 
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where ML is the “lumped” (diagonal) “mass” matrix, which replaces 
the consistent FEM “mass” matrix M to avoid the need to solve an 
algebraic system of equations. 

Using a truncated Taylor series expansion (Hirsch, 2010), it can 
be shown that the extrapolated values, for the stencil of Fig. 1, can 
be rewritten as follows: 
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where sII  is the vector connecting nodes I and Is, and IU∇∇∇∇
represents the gradient of U at node I calculated as given in Eq. (12). 
The four nodes stencil allows the extension from first order to 
higher order scheme.  

Using the extended stencil, found as described previously, the 
values at the cell interfaces, for example, IU +  and IsU −  (see Fig. 1), 

can be computed from a totally “Upwind” extrapolation (see Hirsch, 
2010; Lyra, 1994) as 
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By inserting Eq. (13) into (14), the interface values can be 

rewritten as   
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where Is I= −U (U U )∆∆∆∆  and the computational implementation 

does not really requires “explicitly” extended stencils, making 
directly use of nodal gradients. 

The reconstructed interface values allow the construction of 
stabilized, high order fully “Upwind” scheme, which might present 
oscillations near discontinuities. Thus, it is necessary to introduce 
some strategy to guarantee some monotonicity properties for the 
solution.  

 
Limiting procedure: The main mechanism to guarantee higher order 
LED (Local Extremum Diminishing) schemes (Jameson, 1993; 
Lyra, 1994), which is a concept closely connected with TVD (Total 
Variation Diminishing) property, is the use of non-linear limiter 
functions. These functions impose restrictions over the dependent 
variables variations or over the flux functions leading to the 
possibility of designing monotonicity preserving high-resolution 
schemes.  

To assure monotonicity preservation, limiter functions are 
introduced at interface extrapolated values, and the expressions 
given in Eq. (15) are now calculated as follows: 
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where I I
+ +=r U / U∆ ∆∆ ∆∆ ∆∆ ∆ , Is Is

− −=r U / U∆ ∆∆ ∆∆ ∆∆ ∆  with 
LI I I

+ = −U ( U U )∆∆∆∆ , 

RIs Is Is
− = −U ( U U )∆∆∆∆  and ( )I Irϕ + , ( )Is Isrϕ −  are limiter functions.  

An alternative notation can be introduced where 

( ) ( ) ( ) ( ) ( ) ( )1 2 21r L r L a bϕ = ≡, , , with =r b a , and the possibility of 

zero in the denominator and extra conditional sentence to avoid that 

in the computational implementation are eliminated. Chakravarthy-
Osher (see Hirsch, 2010) limiter function is an example of a limiter 
function and has the following general expression: 

 

( ) ( ) ( )( )0L a b sign a max min a bsign aβ =  , , ,   (17) 

 
where for a fully explicit “upwind” scheme 1 2β≤ ≤ . The 
parameter β  was introduced to allow the original minmod limiter 

function 1β =( )
 
to become more compressible. There are several 

alternative limiter functions, but, in this work, only the minmod 
limiter function is adopted. More details about limiter functions can 
be found in Hirsch (2010) and Lyra (1994). 

With the interface values in hands, given by Eq. (16), the first-
order numerical flux function IIsF given in Eq. (10) can now be 

replaced by 
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and the final formulation given by Eq. (7), with the flux defined in 
Eq. (18), represents an unstructured higher-order slope-limited 
(MUSCL/LED) scheme. 

Time Integration 

Equation (7) represents a system of ordinary differential equations 
and must be further discretized in time to produce a practical solution 
algorithm. The time evolution of the unknown vector I tU ( )  

at node I 

of the mesh, using a simple Euler forward finite difference 
approximation to the time derivative, can be written as 

 
11n n n

I I I L II

−+ = + ∆   U U t M RHS   (19) 

 

In Eq. (19), n
IRHS  

represents the right hand side of Eq. (7) 

computed at time level tn, n
IU  is the unknown vector at nt , 

1

L I

−
  M  is the inverse of the diagonal (lumped) mass matrix, and 

It∆∆∆∆  
is the nodal time-step interval vector. The consistent finite 

element mass matrix M  was replaced by the standard lumped 
(diagonal) mass matrix to enable truly explicit time integration and 
does not alter the final steady state solution, which is of primary 
concern here. Despite some possible loss of temporal accuracy, this 
approximation was also adopted for the transient computations 
performed in the shock tube application presented in this paper. 

Performing a stability analysis, based on the energy method 
(Giles, 1987), provides the following criteria to compute ∆t  for 
unstructured mesh “cell-vertex” algorithms 
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which was written conveniently for the edge-based notation adopted 

here, and with IIsu  and IIsc  denoting the edge values of the fluid 
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velocity vector and the speed of sound, respectively, and λmax

representing the largest eigenvalue (spectral radius) of the Jacobian 
matrix IIsA . These edge values are obtained by averaging the 

appropriate nodal values. 
It must be remarked that the time step I∆ t  must satisfy a CFL-

like stability condition, which is more restrictive than the linear 
stability limit, to guarantee that the final scheme is TVD (or LED) 
stable (Hirsch, 2010; Jameson, 1993; Lyra, 1994). Also, when a 
steady-state analysis is studied, a local time stepping is employed to 
accelerate the convergence rate towards steady-state. This is 
implemented by specifying a constant CFL, in Eq. (20), throughout 
the mesh. For true transient simulation, the minimum local time-
step, i.e. Imin( )   I∀t∆∆∆∆ , is used for the whole discretization. 

Boundary and Initial Conditions 

To have a fully discretized model we must describe how we deal 
with the different boundary and initial conditions normally present 
on inviscid laminar flow regimes. 

 
Far field boundary condition: For a node I located at the far field 

boundary, the “prescribed” flux 
n

IF  of the boundary face loop 
presented in Eq. (7) is determined by solving a Riemann problem 
(Lyra and Morgan, 2002), employing, once again, Roe's Riemann 
solver (Roe, 1981), to resolve the interface between the computed 
value IU  and the free stream value ∞U . This means that 

 

( ) ( ) ( ) ( ){ } 2
n

n n n
I I I I∞ ∞ ∞= + − −F F U F U A U ,U U U /  (21) 

 

in which the Roe matrix ( )n
I ∞A U ,U is evaluated in the direction 

normal to the boundary. 
 

Solid wall and symmetric boundary condition: At a solid wall ( wΓ ) 

the “prescribed” flux 
n

IF is set equal to the computed flux 
n

IF  and 

the normal component of the velocity nu is set to zero at each time 

step, i.e. 0 at u n⋅ = Γn
w . 

 
Initial condition: The initial value of the vector IU is set equal to a 

known value IU , Eq. (2), which is a function of a prescribed Mach 
number and angle of attack. 

Important Numerical and Computational Aspects 

Several remarks concerning some numerical peculiarities of the 
formulation previously described are opportune. The importance of 
the strategies to be discussed in what follows is such that they can be 
responsible for the success or failure of the analysis. This is 
particularly true for hypersonic flow simulation. Some brief comments 
on general aspects of the computational implementation and the use of 
some available enabling technologies are also presented. 

Numerical Issues 

Variable choice during limiting stage: The limiting procedure can 
be imposed on the primitive, conservative or characteristic 
variables. Lyra (1994) reports that the use of the primitive variables 
led to better behavior than the use of the conservative variables or 
mixing primitive and conservative variables. Also, the use of the 

characteristic variables would require some extra computation, 
being computationally more expensive. These facts and several 
numerical results (robust and oscillation-free solutions for the 
analyzed problems) support the choice of primitive variables 
adopted in this work. However, it should be mentioned that Yee 
(1989) reports that the choice of characteristic variables plays an 
important role in the stability and convergence rate as the Mach 
number increases, and also that when using characteristic variables 
one can use different limiter functions for each variable, exploiting 
some characteristics of specific limiters which are better designed 
for linear or non-linear fields (Lyra, 1994; Lyra and Morgan, 2000). 

To increase the robustness of the final scheme, Lyra (1994) 
reports that, when using primitive variables it was very important to 
apply the limiting procedure for the velocity field in the weighting 
coefficient direction and the normal direction to this coefficient. 
Thus, the velocities are initially projected onto these directions and 
after applying the limiters they are projected back onto the Cartesian 
direction. This idea was inspired in FVM (Finite Volume Method) 
which works with normal and tangential directions to the control 
volume surface and was adopted here. 

Enhancement of stability and convergence rate on high 

speed flow simulation 

Warm start for higher-order simulation: One very efficient and 
robust strategy adopted to find the steady state solution of 
challenging applications consists on advancing the solution a few 
steps using a first order scheme and then advancing the solution 
towards steady-state using a higher order scheme.  

 
Positivity of thermodynamic variables: Due to the presence of high 
gradients, rarefaction zones and impulsive initial conditions, 
negative values of density and pressure can occur during the time 
integration process, mainly at the initial stages. To avoid negative 
values of thermodynamic variables during the iterative process, 
density and pressure are updated, whenever necessary, using some 
kind of relaxation. This must assure that they are always positive. 
For instance, pressure update is modified according to equation 

 

( ) 11 1    if   \ ( \ )n np p p p p p pη α α
−+  = + ∆ + + ∆ ∆ ≤   (22) 

 
and the values adopted to η  and α  are 2.0 and -0.2, respectively. 
For more details see Lyra (1994). 

 
Initial condition x solid wall boundary condition: The boundary 

condition 0    at     n
w⋅ = Γu n  is not consistent with the initial data 

(free stream condition) and an additional difficulty might appear 
when attempting to simulate severe flow regimes which contain 
obstacles. In fact, truly impulsive start of any mechanical system is 
not physically possible, but rapid start or impulsive acceleration is 
quite legitimate and can be implemented by considering that the free 
stream condition is achieved after a certain small time interval. 
Alternatively, one can adopt the free stream condition directly, but 
together with a relaxation on the solid wall boundary condition 
(Lyra, 1994). This is accomplished here by taking 

 

( )1 1    at   n n e
w

−⋅ = ⋅ − Γu n u n   (23) 

 
where   (0 1)e e< ≤  is a parameter such that when its value is 
different from one, the solution will slip and penetrate the wall at the 
start of the transient, but as time evolves the normal velocity goes to 
zero at the wall. This procedure has been found to be very important 
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for the simulation of high speed flow past blunt bodies, where the 
value e = 0.8 has been typically used. 

 
Other Issues: The lack of background numerical dissipation and the 
non-linear nature of the limiting procedure were found to be the main 
causes of a bad convergence rate observed for some 2-D applications 
(Lyra, 1994). So, the existence of some form of background diffusion 
might be important for helping to damp high frequency modes on 
challenging high speed applications. This can be obtained if instead of 
using a central difference (or Galerkin), second-order method as the 
building block for the final scheme, an alternative method which has 
implicitly some background diffusion is adopted (Lyra, 1994; Lyra 
and Morgan 2002). Alternatively, a freezing strategy, by stopping the 
update of the limited corrective flux (non-linear) term, proposed in 
Lyra (1994), can be used when the solution approaches steady-state, 
helping to drop the residual towards machine zero, with no 
measurable error on the final solution. 

The aspects described previously were not required for the 3-D 
applications analyzed here, but they could be necessary for more 
complex flow regimes. This probably happens due to the extra 
numerical diffusion associated with the extension of a 1-D like 
Upwind discretization into multidimensional models, being even 
bigger for 3-D models than for 2-D. Further investigation is required 
to confirm such conjecture. 

Some Computational and Implementation Issues 

The CFD simulator, which implements the scheme described in 
this work, was written in Fortran90 and was developed as an 
academic computer program to solve Euler equations. During the 
complete computational modeling and simulation process, some 
open source libraries and programs were adopted to enable fast and 
secure implementation and or to perform the pre- and post-
processing steps: 

The Gmsh system was adopted as a finite element grid generator 
which has a build-in CAD (Computer Aided Design) engine and a 
post-processor. It provides a fast, light and user-friendly meshing 
tool with parametric input and with some visualization capabilities. 
Of course, any other available CAD and 3-D tetrahedral mesh 
generator could have been used. 

The adoption of an edge/face data structure and tetrahedral 
meshes has demanded a pre-processor program, which must extract 
this alternative data structure from the standard element data 
structure and pre-compute several data, such as: the edge and 
boundary face weighting coefficients, CIIs and Df respectively, the 
volume associated with each node (i.e. the lumped mass matrix) and 
the average nodal external normal vector. The pre-processor 
program was written in C++, making use of the FMDB (Flexible 
Distributed Mesh Data Base) library, which was adopted as an 
object manager to easily create the required data structure from a 
tetrahedral mesh without an explicit implementation of hash tables 
or similar algorithms.  

The operations performed by edge/face based algorithm are, 
basically, loops over the edges, boundary faces and nodes of the 
mesh. For instance, a loop over the edges consists on: gather 
information from the nodes of each edge; operate on this 
information; scatter it back to the nodes of the edges and add it to 
the nodal quantities. These are the basic operations present in the 
developed simulator, easily implemented using Fortran90. 

Paraview and Visit, which are free scientific data visualization 
tools, were used for post-processing simulations. They allow 
manipulating and post-processing data in a variety of ways to 
visualize scalar, vector and tensor fields on multidimensional 
structured and unstructured meshes.  

Numerical Results 

Shock tube problem 

The first model analyzed was the classical transient shock tube 
problem. The numerical model simulates a long tube, initially 
divided by a diaphragm into two regions, which hold a stationary 
gas at two different states, left and right. The diaphragm is suddenly 
removed allowing the gas, at different states, to interact and a flow 
starts to develop. The structure of this one-dimensional flow turns 
out to be very interesting with the typical solution consisting of four 
constant states separated by three elementary waves: a linear 
degenerate contact discontinuity wave and two non-linear waves, 
each of which might be either a shock or a rarefaction wave 
depending on the left and right initial states (Hirsch, 2010). It 
represents a significant test case for the validation of any numerical 
algorithm developed for the solution of inviscid compressible flows. 

The initial conditions considered for this classical Riemann 
problem are the following: left: 1.0ρ = , 0iuρ = , 2.5ρε = ; right: 

0.125ρ = , 0iuρ = , 0.25ρε = . The three dimensional domain 

adopted has length of 1 and 0.1 in both width and height. An 
uniform mesh with 15.988 nodes and 86.806 tetrahedra elements 
was used. The adopted boundary conditions are far field condition at 
left and right surfaces and solid slip wall for all the other four tube 
surfaces. Finally, we considered: 1.4γ = , 0.45CFL = , 0.1kδ = , a 

global time-step procedure and min-mod limiter function.  
 

  
(a) 

 

  
(b) 

Figure 2. Shock Tube problem: a) density map; b) density along the tube 
using first order and higher order approaches. 

 
In Figure 2a we can identify the four constant density states and 

three distinctive waves, which are better seen from Fig. 2b, which 
presents the density distribution along the tube. Both solutions, 
obtained with first and higher order schemes, are free from 
oscillations, capturing all relevant features with good accuracy. The 
higher order scheme gives sharper shock, contact discontinuity and 
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rarefaction waves representation as expected. These results compare 
well with 1-D and 2-D solutions obtained with similar formulation 
(Lyra and Morgan, 2002), being slightly more diffusive. 

Flow past a flat plate 

The second example consists in the investigation of a regular 
shock reflection formed when a non-viscous and steady flow 
impinges over a flat plate with Mach number of 2.0 and angle of 
attack of minus 10° relative to the flat plate. This simple steady-state 
test case is another useful problem to verify computer algorithms, 
because there is an analytical solution calculated by similarity, Lyra 
and Morgan (2002), allowing an insight into the performance of the 
schemes extended in this work for three–dimensional simulations. 
The analytical solution of this 2-D problem consists in two constant 
states connected by a shock which has a theoretical slope of 29.3 
degrees with the flat plate wall. 
 
 

 
Figure 3. Description of flow past a flat plate problem and sketch of the 
analytical solution. 

 
Figure 3 describes the whole problem, i.e. geometry, initial and 

main boundary conditions (i.e. surface A is a solid wall,  B and C are 
inflow far field surface and D is a free far field surface). The frontal 
and back surfaces have symmetric boundary condition. The other 
parameters for this case are the following: 1.4γ = , CFL = 0.45, dK = 
0.1, and 10-4 as the tolerance to reach steady state, using density 
residual L2-norm and min-mod limiter function. An uniform 
unstructured tetrahedra mesh with 108.322 elements and 20.340 nodes 
was adopted. 
 
 

  
(a) 

 

 
(b) 

Figure 4. Flow past a flat plate problem: a) mesh and density map values 
using a higher order approach; b) density profile using first and higher 
order schemes. 

 
The techniques presented to increase the robustness of the 

algorithm were implemented in the numerical solver, but were not 
required for these two simple applications presented here. A 
proper investigation as to their effective necessity in challenging 
3-D problems has not yet been fully made, and since a local 
extended 1-D “structured” stencil is used for each edge of the 
mesh, the 3-D model approximation would involve even more 
“artificial” diffusion than its 2-D counterpart. So, it is expected 
that some of those techniques might be deactivated for certain 
applications that where required for 2-D models (Lyra and 
Morgan, 2002), without compromising the solution. 

Concluding Remarks 

A successful higher-order 3-D unstructured mesh, inviscid 
compressible flow solver has been fully described. Apart from the 
core FEM-MUSCL/LED formulation, several important numerical 
and computational ingredients were added to render the final 
scheme robust and ready to be tested for the simulation of 
challenging high-speed flow applications. The benchmark problems 
analyzed demonstrate the effectiveness of the developed code. The 
presented formulation and corresponding serial code can be 
extended for distributed memory parallel computation using similar 
methodology as previously adopted by the authors with similar 
formulation for incompressible flow studies (Antunes, 2008). The 
code can also be further extended to deal with more complex 
physical-mathematical models, such as: laminar flows and transient 
regimes, using improved time integration techniques, by extending 
the 2-D approaches (Lyra, 1994). 
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