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An Edge-Based Unstructured Mesh
Formulation for High Speed
Tridimensional Compressible Flow
Simulation

Numerical simulation of realistic compressible flows very important and requires
accurate and flexible tridimensional formulatiomghich should furthermore be robust and
efficient. In this work we describe the developnafra computational tool for numerical
simulation of inviscid compressible 3-D fluid flgmoblems. This tool uses as the main
building block an edge-based Galerkin FEM (FinitteerBent Method) together with a
MUSCL (Monotonic Upstream-centered Schemes for €@wasons Laws) approach to
get a higher-order scheme with LED (Local ExtrenDiminishing) property. The code is
particularly developed for the simulation of superE and hypersonic flow regimes and
several important (sometimes unavoidable) numepeatedures incorporated to increase
its robustness are described. Some aspects relatdte adoption of an edge-based data
structure and other implementation issues are asscribed. Finally, some numerical
model problems are analyzed and compared with testdund in the literature
demonstrating the effectiveness of the developed to
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tetrahedral meshes, edge-based formulation
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Introduction

Several industrial applications involve high speethpressible
fluid flows, and the development of computatiorwadl$ to deal with
such class of problems, although quite well esthklil nowadays, is
still an important research area. The main isseein obtaining
accurate and robust computational models to de#h wevere
regimes and developing flexible and efficient cotiescope with
complex geometries and large scale problems.

In this paper we describe the extension to tridisr@ral models
of the FEM-MUSCL/LED formulation developed by Ly(4994),
Lyra and Morgan (2002). The extension follows tharkwof Peraire
et al. (1993) and includes several numerical siraseproposed or
used by Lyra (1994) and Lyra and Morgan (2000, 2@02ncrease
the robustness and convergence behavior of thedaeeme when
simulating high speed inviscid compressible flowtere, these
strategies are extended and tested for 3-D modélgms. The core
of the code consists on an edge-based Galerkin KEMite
Element Method), using conservative variables, ttogrewith a fully
upwind limited MUSCL (Monotonic Upstream-centeredh8mes
for Conservations Laws) approach to get a highdemscheme with
LED (Local Extremum Diminishing) property. The maiancern is
the steady-state solution of supersonic (and hgpérksfluid flows.
The solution is integrated in time using a simpkplieit Euler
forward approach, with a “lumped mass” matrix awodal time
stepping. A number of specific strategies were &stbgo render the
final scheme robust, including: adequate choicesndulimiting
stage (limiter functions, set of variables to lraited, etc.); warm
start for higher-order simulation; relaxation toagantee positivity
of thermodynamic variables; possible solid wall hdary condition
for impulsive start from the free stream conditiand a discussion
on the necessity of using a background numericsijpition and a
strategy for freezing the non-linear limiting term.

In what follows, first we briefly describe the pioa-
mathematical model considered. Then we presemhéire ingredients
necessary to get the computational model, includimg edge-based
FEM formulation; the incorporation of a MUSCL-LEDOgh-order
“monotonic  preserving” reconstruction; the time odéization
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adopted; how to implement the standard boundary mitihl

conditions, and several important numerical andmdational issues.
The following section discusses some numerical o@ack
applications and, finally, some conclusions arevdra

Mathematical Model

The equations which govern the unsteady laminar
tridimensional flow of a compressible inviscid fiyiin the absence
of external source terms, may be written in theseovation form

6U/6t+0Fj/0xj=0 in Qx/ for j=1,2,3 )

where the summation convention is employgdis the Cartesian
coordinate,Q is the spatial domain, t is the time independent
variable and = (t° T)is the time interval. The solution of this set of
equations is sought over the closed spatial dofairith boundary
surfaceI’, and the time interval. This initial/boundary value
problem requires additionally boundary and initiahditions, which
are taken here in the form

F"=niF"=En at Ix/

U(xj ,to):U[xj) on Oxt0 @

in which n, represents the component, )q direction, of the unit

normal vector tol" and U(xj) is a known function at initial time

t° In Eq. (1),U is the vector of the conservative variables, while

F' denotes the inviscid flux vector in the directign These
vectors can be written as

U™ =[p.0u,pu,, pu; p¢ |
F! Z[pui AU+ P PU Y+ ©
PAy; . PUY + Iy ,(,05"' p) lTI:|
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triangular face with nodds J andK. In Eq. (6), the first and second

Here p, p, ¢ represent the fluid density, pressure and totaummations extend for at elements that contain nodleand the

specific energy respectively, angis the component of the velocity
vector inx direction. In additiong; denotes the Kronecker Delta.
The equation set is closed by the addition of #régut gas equation
of state given as

p=(y-1p(c-(4y)/2) @)

third extends for all boundary fackthat contain node

The standard finite element data structure consigtsthe
physical coordinates listed by node number, a disthe nodal
connectivity for each element and a list of the rmtary faces
connectivities. With this geometrical and topol@jiadata, the
integrals discussed above can be performed by p t@r the
elements and a loop over the boundary faces, Wihetement and
faces contributions to the nodes being accumulatedng the

where y = ¢, /¢, with ¢, and ¢, being the specific heats of the process. However, in order to get a more efficiemmputational

fluid at constant pressure and volume, respectivély non-
dimensional counterpart of this mathematical modkel then
discretized as described in what follows.

Computational Model

The Galerkin finite element formulation, implemehte an edge-
based form, together with a MUSCL approach, aeg @s the basic
building block for the construction of a tridimeosal unstructured
grid scheme using a higher order upwind biasedepla@ for the
solution of compressible Euler system of equatidmsexplicit Euler
forward time discretization is used to advancesthiation in time. All
that will be described in what follows, togethettwseveral important
numerical and implementation issues necessary toageobust
computational code.

Variational formulation

Assuming that the spatial domai is discretized into an
unstructured assembly of linear tetrahedral elesjemith the nodes
numbered from 1 tg, the subsets/ P and W™ of the trial and
weighting function set& and W, respectively, a weak variational
approximation to the problem given by Egs. (1) 4) @sing the
Galerkin FEM (Zienkiewicz at al., 2006) can be atbhs

Find U® OV | Owl? oW (P t > °

U™ - ()N
| NldQ—éiF'(Up)aX"

(p)
EONQ, ot i (S

(®)

for each, 1 =1,2, ...,p where the summations just extend overcoefficient vector. The coefficienC;,

those element& and boundary facek which contain nodd, N,
denotes the nodal standard Galerkin finite elerseape/weighting
functions and the compact support of them were uisentder to
evaluate the integrals by summing individual elenoemtributions.
To avoid the necessity of numerical integrationthbdhe

unknown U P and the inviscid fluxF'(U®) are approximated in
a piecewise linear fashion in terms of their nodalues. By
inserting the assumed forms for® and F'(U ) into Eq. (5), all

integrals can be evaluated in closed form and pipecximate weak
variational statement leads to

|

where Q¢ denotes the volume of the tetrahedral elenignwith

du

I:
x

I'f —n —n —n
Z—( F2+FJ+FK)

fol

Q. ONF
4 0xj

>

EOI

|:J.NINJdQ (F|j+FJj+F}i+FLj)—
Qe

(6)

implementation, both in terms of memory requirerseand CPU
time (Peraire et al., 1993; Catabriga and Couti@(®2; Kusmin et
al., 2005; Smolarkiewicz an&zmelter, 2005; Lohner, 2008), an
alternative data structure can be adopted whiclsiders a list of
edges and boundary faces, as will be further dsmmlisn the
following section.

Edge/Face Based Formulation

All integrals given in Eq. (6) can be performedaim alternative
way using an edge/face data structure. By consigdtiat a nodé
is directly connected withy, edges and, boundary faces, then an

equivalent discrete form of Eq. (6) can be written(Peraire et al.,
1993; Ventura, 2008):

H
Md_u:| == ZLIISFIIS 12+
dt | S=1
(7)
F n

1 2f

lv —n  —n —n
<2Df(4:| + Fir+ Fix + F'-F -
=,

)

where M is the consistent finite element “mass” matrixe thrst
summation is over all S edges (or sides) whichaiostnodd and

Fi. =F/'S) +F! .. The term( >| will exist only when nodé is

a boundary node. When this happens, nbdeill be part of I,
boundary face®,;, By, Bgs,..., By, where the boundary fad& has
nodes |, Iy, Iy For notational convenience, we defined

Le=[Cs] and §,=G./ L, with C_ being the weighting

denotes the weight, irX;

lis

direction, which must be applied to the averaga fifithe edge S,
which joins nodes and | to obtain the contribution made by that

edge to nodé. The coefficientC!, denotes a similar weight, but

Isl

now to obtain flux contribution to nodk. The coefficient D,

denotes the boundary face weight coefficient to mlete the
approximate computation of all integrals given be tight side of
Eq. (5) for noded that lie on the boundary. Subscripts and |
denote the two other nodes of the boundary facetwkbntains

nodel. Finally, F andF" represent the prescribed and calculated
fluxes in the boundary faces normal direction, eetpely.
The coefficientsCl, and D, are computed by

lis

nodesl, J, K andL, and I'; denotes the area of the boundary
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where first summation extends for all E elementgtvicontaindls
edge. The tern( > will be included only iflls edge belongs to the

lls
boundary surface. These coefficients satisfy thaions

e -(Se0,n) =0
2 <z ”>. ©

Cds +C|js| =0 for S=12,.. H

for j =1,2,3. From the anti-symmetry of the edge weights e>qaes

in second relation of Eq. (9), the numerical diSzegion can be
immediately noticed to possess a local conservatioperty.

For a detailed deduction of the edge based formonlatee Lyra
(1994) and Ventura (2008) for the 3-D extension.c#n be
demonstrated, as a result of relations given in @, that the
scheme given in Eq. (7) is a central differencestgiscretization, in
non-structured meshes, which is not a suitablecqipation to the
hyperbolic Euler system of equations, Hirsch (201@wever, a
combination of a central difference (“Galerkin” FEMIscretization
and some type of stabilization and shock-captutgrgns can be
used to construct an effective scheme. This casobe, using some
ideas taken from finite difference method (FDM) dmite volume

method (FVM), substituting the edge fluk,,=F'S). +F! 9.,
which is a true Galerkin flux in Eq. (7), by a ctmtent numerical
flux F,, defined on generic unstructured tetrahedra meshes.

lis

Stabilization and Shock-Capturing

First order approach — Roe’s approximate Riemann dger

A large number of engineering and science problares
governed by conservation laws expressed in termbypgrbolic
partial differential equations, such as the Eulejuadions.
Techniques inherit from the theory of hyperbolictiz differential
equations have been incorporated in some numeroethods
resulting in successful solution algorithms. In tjatar, the
perturbations of physical propagation along therattaristic lines,
which are typical in hyperbolic equations, playiaportant role in
a class of numerical methods known as Upwind methdthe
robustness of the Upwind discretization, the polisitof physical
interpretation and the high order approximation yaw&om
discontinuities emphasize the popularity of Upwindthods among
computational fluid dynamics algorithm developénga (1994).

In the present context, the first order (and algghér order)
Upwind methods implementation involves the soluta§rRiemann
problems, Godunov (1959) and Hirsch (2010). In thisk, Roe’s
approximate Riemann solver (Roe, 1981) is adopfdte main
advantage of Roe’s approach is its relatively l@mputational cost
and good accuracy for representatidrsingle discontinuities. Here,
the Roe scheme is implemented by defining the stersi numerical

flux F_ as

lis

Fo={F's,+ RS- Al(u-u)}/2 (10)

where the first term of the right hand side of BEQ)(represents the
Galerkin (central difference-type) term and theosecrepresents an
implicit numerical diffusion term that stabilizebet scheme. The

Roe Jacobian matri&, is calculated in the edge coefficient

direction C,

very robust and gives monotonic solutions. Howeveteads to
some drawbacks such as the non-recognition obstaty expansion

J. of the Braz. Soc. of Mech. Sci. & Eng.
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waves, violating the entropy condition, and lowrdfi order
accuracy.

A remedy to the entropy violation problem of Rog¢heme was
suggested by Harten and Hyman (see Hirsch, 2010)kphacing

‘ﬁk‘ to function w(ﬁk) in the computation of A |, with

w(jk):‘jk‘ if
w(ﬁk):(}fwkz)/aﬁ it [4<g,

Pk‘ 2 5k
(11)

where J, denote small positive numbers, either constath®@same
for all fields “k” or more elaborately defined asfunction of the

local flow condition (Yee, 1989; Hirsch, 2010), aﬁd refers to
the eigenvalues of Roe’s average Jacobian matrix.

Higher order approach — MUSCL/LED scheme

A flexible approach for building high-order schenuesisists in
the adoption of the so called MUSCL (Monotonic Ueamn-
centered Schemes for Conservation Laws) methodddgy Leer,
1979; Hirsch, 2010). This is achieved by adoptirgiezewise linear
reconstruction using neighboring information. H, addition to the
reconstruction stage, a proper monotonic constrgirémployed,
normally in the form of non-linear slope limitetse final scheme
guarantees sharp results, “free” (or almost) frommaerical
oscillations.

MUSCL reconstruction: To build a high-order scheme an extended
stencil must be used. This can be done in diffenents.

o
[’I :[‘Is

~

T
U Isg

U;I U,

L 4

Figure 1. Extended fictitious stencil and interface values for the
MUSCL/LED scheme.

Here, we consider a “structured” fictitious exteddsencil of
four points formed by the edge nodemdlIsand two “ghost” nodes
I, andlsg located equidistantly along the line that contaioesiesl
andls (see Fig. 1).

In order to obtain the values at “ghost” nodes, cae either use
some form of interpolation or alternatively use tiradients (Lyra
and Morgan, 2002). In the present work, a gradienbnstruction
was adopted. As linear shape functions were adopitési leads to
constant gradients over each element, with multjplees at node,
so a global variational recovery (Zienkiewicz at 2006) was used
to compute a continuous gradient fieldJ, . Using an edge-based

data structure, this can be performed with an esgioe similar to
that of Eq. (7), i.e.

M 22| =Sci(u, u,) s 2-
de , 1

(12)

Iy
<Z Df( 6 +U +U )>
f=1
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in the computational implementation are eliminat€takravarthy-

the consistent FEM “mass” matrM to avoid the need to solve an Osher (see Hirsch, 2010) limiter function is anregke of a limiter

algebraic system of equations.

Using a truncated Taylor series expansion (Hir2€10), it can
be shown that the extrapolated values, for thec#tehFig. 1, can
be rewritten as follows:

U, =U, 20U, lIs-(U, -U,)

(13)
U, =U, +20U lIs=(U -U))

Isg

where IIs is the vector connecting nodésand Is, and OU,
represents the gradientdfat nodd calculated as given in Eq. (12).
The four nodes stencil allows the extension fromstfiorder to
higher order scheme.

Using the extended stencil, found as describediqusly, the
values at the cell interfaces, for example; and U, (see Fig. 1),
can be computed from a totally “Upwind” extrapabati(see Hirsch,
2010; Lyra, 1994) as

Ur=U, +(U, -u, )2
(14)
U.=U,-(U, -U,)/2

By inserting Eq. (13) into (14), the interface wducan be
rewritten as
U/ =U, +(20U,11s-AU) /2

15
U, =U,-(20U J1s-AU)/ 2 (19

where AU =(U,-U,) and the computational implementation

does not really requires “explicitly” extended «iiésy making
directly use of nodal gradients.

The reconstructed interface values allow the canstm of
stabilized, high order fully “Upwind” scheme, whichight present
oscillations near discontinuities. Thus, it is resagy to introduce
some strategy to guarantee some monotonicity ptiepefor the
solution.

-1
N . . . M
Limiting procedure: The main mechanism to guarantee higher ordeL L]'

LED (Local Extremum Diminishing) schemes (Jamestf93;
Lyra, 1994), which is a concept closely connectéth WVD (Total
Variation Diminishing) property, is the use of nlimear limiter
functions. These functions impose restrictions awer dependent
variables variations or over the flux functions diegy to the
possibility of designing monotonicity preservingghiresolution
schemes.

To assure monotonicity preservation, limiter fuood are
introduced at interface extrapolated values, arel ékpressions
given in Eq. (15) are now calculated as follows:

U =U, +4 (r")(20U, lls-AU) 12

(16)
Ug=U, _¢|s(r|;)(2|:|U JlIs —AU)/Z

wherer” =AU / AU, ,r_ =AU / AU with AU =(U, -U, ),
AU =(U, -U,) and g, (rl*) , ¢,S(r|;) are limiter functions.
An alternative notation can be
¢(1)(r) =L, (1r) =L, (ab), withr =b/a, and the possibility of
zero in the denominator and extra conditional ser@eo avoid that

100 / Vol. XXXIV, No. 1, January-March 2012

function and has the following general expression:

L(a,b) = sigr( § ma.EO, miﬁ las bsijn)}a}

where for a fully explicit “upwind” schemel<s<2. The
parameter3 was introduced to allow the originalinmod Iimiter
function (B =1) to become more compressible. There are several

alternative limiter functions, but, in this worknlg the minmod
limiter function is adopted. More details aboutitien functions can
be found in Hirsch (2010) and Lyra (1994).

With the interface values in hands, given by E®),(the first-

order numerical flux functionF,_given in Eq. (10) can now be

lis

17

replaced by
F ={F/ U* /| ) - —
Is { ( |) st F (Uls) %s (18)
A (U U )|(us —U;)} /2

and the final formulation given by Eq. (7), withetflux defined in
Eq. (18), represents an unstructured higher-ordepedimited
(MUSCL/LED) scheme.

Time Integration

Equation (7) represents a system of ordinary difféal equations
and must be further discretized in time to prodaigeactical solution

algorithm. The time evolution of the unknown vect#y(t) at node
of the mesh, using a simple Euler forward finiteffedence
approximation to the time derivative, can be wnittes

UPt=U+AL (M ] RHS" (19)

In Eq. (19), RHS| represents the right hand side of Eq. (7)
computed at time levet”, U is the unknown vector at",

is the inverse of the diagonal (lumped) mass magmd
At, is the nodal time-step interval vector. The coesistfinite

element mass matrixM was replaced by the standard lumped
(diagonal) mass matrix to enable truly explicit éinmtegration and
does not alter the final steady state solution,ctvtis of primary
concern here. Despite some possible loss of terhpocaracy, this
approximation was also adopted for the transienmhpidations
performed in the shock tube application presemdtis paper.

Performing a stability analysis, based on the gnemgthod
(Giles, 1987), provides the following criteria tonopute At for
unstructured mesh “cell-vertex” algorithms

-1
H

at, ZZCFL[MLL Sz:1L”s

e

with (A ) :‘u s ‘+c
max Jjjs ~|1isns| * Ciis

(20)

introduced  whergyhich was written conveniently for the edge-basethtion adopted

here, and withu,, and C,; denoting the edge values of the fluid

ABCM
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velocity vector and the speed of sound, respegtivahd A_,,
representing the largest eigenvalue (spectral sadifithe Jacobian

characteristic variables would require some extomputation,
being computationally more expensive. These factd several
numerical results (robust and oscillation-free sohs for the

matrix A, . These edge values are obtained by averaging th@a\zed problems) support the choice of primitiveriables

appropriate nodal values.

It must be remarked that the time stap must satisfy a CFL-
like stability condition, which is more restrictihan the linear
stability limit, to guarantee that the final schemelr'vD (or LED)
stable (Hirsch, 2010; Jameson, 1993; Lyra, 199430Awhen a
steady-state analysis is studied, a local timepstepis employed to
accelerate the convergence rate towards steady-sftis is
implemented by specifying a constant CFL, in E®)(2hroughout
the mesh. For true transient simulation, the mimmiocal time-

step, i.e.min(At, ) O I, is used for the whole discretization.

Boundary and Initial Conditions

To have a fully discretized model we must deschibe we deal
with the different boundary and initial conditionsrmally present
on inviscid laminar flow regimes.

Far field boundary condition: For a nodd located at the far field

boundary, the “prescribed” flu>d:|n of the boundary face loop
presented in Eq. (7) is determined by solving anRien problem
(Lyra and Morgan, 2002), employing, once again, 'R &demann
solver (Roe, 1981), to resolve the interface betnie computed
value U, and the free stream valug, . This means that

Fr={F(u)+F (u.)-|a(u u)(u-u b2 ey

in which the Roe matrijA"(U, U, )| is evaluated in the direction

normal to the boundary.

Solid wall and symmetric boundary condition: At a solid wall (T,,)

—n —-n
the “prescribed” fluxF. is set equal to the computed fltxi and
the normal component of the velocity' is set to zero at each time
step, i.e.u"Mm =0 atl, .

Initial condition: The initial value of the vectol, is set equal to a

adopted in this work. However, it should be mergwrthat Yee
(1989) reports that the choice of characteristidades plays an
important role in the stability and convergencesras the Mach
number increases, and also that when using chasticterariables
one can use different limiter functions for eachiatsle, exploiting
some characteristics of specific limiters which hegter designed
for linear or non-linear fields (Lyra, 1994; LyracaMorgan, 2000).

To increase the robustness of the final schemea I($094)
reports that, when using primitive variables it wasy important to
apply the limiting procedure for the velocity field the weighting
coefficient direction and the normal direction ftuist coefficient.
Thus, the velocities are initially projected ontede directions and
after applying the limiters they are projected banko the Cartesian
direction. This idea was inspired in FVM (Finite Mme Method)
which works with normal and tangential directiomsthe control
volume surface and was adopted here.

Enhancement of stability and convergence rate on @h
speed flow simulation

Warm start for higher-order simulation: One very efficient and
robust strategy adopted to find the steady stateitiso of

challenging applications consists on advancingsibletion a few
steps using a first order scheme and then advartbiegsolution
towards steady-state using a higher order scheme.

Positivity of thermodynamic variables: Due to the presence of high
gradients, rarefaction zones and impulsive init@dnditions,
negative values of density and pressure can oactinglthe time
integration process, mainly at the initial stages.avoid negative
values of thermodynamic variables during the iteeatprocess,
density and pressure are updated, whenever negessarg some
kind of relaxation. This must assure that they alveays positive.
For instance, pressure update is modified accortirggjuation

pn+l= pn+Ap[1+/7(a+\Ap\ )T if (Ap p<sa (22)
and the values adopted tp and a are 2.0 and -0.2, respectively.

For more details see Lyra (1994).

known valueU , , Eq. (2), which is a function of a prescribed Mac hitial condition x solid wall boundary condition: The boundary

number and angle of attack.

Important Numerical and Computational Aspects

Several remarks concerning some numerical pedigmrof the
formulation previously described are opportune. Thportance of
the strategies to be discussed in what followsich $hat they can be
responsible for the success or failure of the amalyThis is
particularly true for hypersonic flow simulatioroi8e brief comments
on general aspects of the computational implementand the use of
some available enabling technologies are also piese

Numerical Issues

Variable choice during limiting stage: The limiting procedure can
be imposed on the primitive, conservative or charastic

variables. Lyra (1994) reports that the use ofgthmitive variables
led to better behavior than the use of the consiee/aariables or
mixing primitive and conservative variables. Algbe use of the

J. of the Braz. Soc. of Mech. Sci. & Eng.
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condition u"h=0 at [, is not consistent with the initial data

(free stream condition) and an additional diffiguthight appear
when attempting to simulate severe flow regimesctvhitontain

obstacles. In fact, truly impulsive start of anyamenical system is
not physically possible, but rapid start or imputsiacceleration is
quite legitimate and can be implemented by considehat the free
stream condition is achieved after a certain srtiale interval.

Alternatively, one can adopt the free stream caowlitirectly, but

together with a relaxation on the solid wall bourydaondition

(Lyra, 1994). This is accomplished here by taking

N = N1 (1
u'm=u"""m(1-e) atl (23)
where e (0<e<1) is a parameter such that when its value is

different from one, the solution will slip and pére the wall at the
start of the transient, but as time evolves thenabwvelocity goes to
zero at the wall. This procedure has been fourtzkteery important

January-March 2012, Vol. XXXIV, No. 1 /101



for the simulation of high speed flow past blundiss, where the
valuee = 0.8 has been typically used.

Other Issues: The lack of background numerical dissipation &l t
non-linear nature of the limiting procedure wererfd to be the main
causes of a bad convergence rate observed for 2ddnapplications
(Lyra, 1994). So, the existence of some form okgeaund diffusion
might be important for helping to damp high frequemodes on
challenging high speed applications. This can heiogd if instead of
using a central difference (or Galerkin), secondkomethod as the
building block for the final scheme, an alternatimethod which has
implicitly some background diffusion is adopted &y 1994; Lyra
and Morgan 2002). Alternatively, a freezing strgtdny stopping the
update of the limited corrective flux (non-lineaerm, proposed in
Lyra (1994), can be used when the solution appesasteady-state,
helping to drop the residual towards machine zesith no
measurable error on the final solution.

The aspects described previously were not reqdoethe 3-D
applications analyzed here, but they could be msacgsfor more
complex flow regimes. This probably happens dueth® extra
numerical diffusion associated with the extensidnaol-D like
Upwind discretization into multidimensional modelsging even
bigger for 3-D models than for 2-D. Further invgation is required
to confirm such conjecture.

Some Computational and Implementation Issues

The CFD simulator, which implements the scheme rilesst in
this work, was written in Fortran90 and was devetbpas an
academic computer program to solve Euler equatibusing the
complete computational modeling and simulation pss¢ some
open source libraries and programs were adopteddble fast and
secure implementation and or to perform the pred aost-
processing steps:

The Gmsh system was adopted as a finite elemeahggrierator
which has a build-in CAD (Computer Aided Designpiere and a
post-processor. It provides a fast, light and disendly meshing
tool with parametric input and with some visualiaatcapabilities.
Of course, any other available CAD and 3-D tetrahlednesh
generator could have been used.

The adoption of an edge/face data structure amdhiedral
meshes has demanded a pre-processor program, mhithextract
this alternative data structure from the standaleinent data
structure and pre-compute several data, such a&s:etlge and
boundary face weighting coefficientS,s and D; respectively, the
volume associated with each node (i.e. the lumpassmatrix) and
the average nodal external normal vector. The poegssor
program was written in C++, making use of the FM[Bexible
Distributed Mesh Data Base) library, which was dddpas an
object manager to easily create the required dat@tare from a
tetrahedral mesh without an explicit implementatasrhash tables
or similar algorithms.

The operations performed by edge/face based digorare,
basically, loops over the edges, boundary facesrams of the
mesh. For instance, a loop over the edges coneistsgather
information from the nodes of each edge; operate tbis
information; scatter it back to the nodes of thge=dand add it to
the nodal quantities. These are the basic opemfwesent in the
developed simulator, easily implemented using BoA0.

Paraview and Visit, which are free scientific datsualization
tools, were used for post-processing simulationbeyT allow
manipulating and post-processing data in a varigtyways to
visualize scalar, vector and tensor fields on rdirtensional
structured and unstructured meshes.
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Numerical Results

Shock tube problem

The first model analyzed was the classical transseock tube
problem. The numerical model simulates a long tuinéjally
divided by a diaphragm into two regions, which haldtationary
gas at two different states, left and right. Thegotiragm is suddenly
removed allowing the gas, at different statesnteract and a flow
starts to develop. The structure of this one-dinueras flow turns
out to be very interesting with the typical solaticonsisting of four
constant states separated by three elementary wavdmear
degenerate contact discontinuity wave and two nweat waves,
each of which might be either a shock or a rarafactwave
depending on the left and right initial states @di, 2010). It
represents a significant test case for the vabdabf any numerical
algorithm developed for the solution of inviscidhwaressible flows.

The initial conditions considered for this classié@emann

problem are the following: leflp=1.0, ou =0, pg =2.5; right:
p=0.125, pu, =0, p£ =0.25. The three dimensional domain

adopted has length of 1 and 0.1 in both width ae@ht. An
uniform mesh with 15.988 nodes and 86.806 tetrahedements
was used. The adopted boundary conditions aréefdrdondition at
left and right surfaces and solid slip wall for #ile other four tube
surfaces. Finally, we considergd=1.4, CFL=0.45, §, =0.1, a

global time-step procedure and min-mod limiter tiore
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Figure 2. Shock Tube problem: a) density map; b) density along the tube
using first order and higher order approaches.

In Figure 2a we can identify the four constant dgrstates and
three distinctive waves, which are better seen flag 2b, which
presents the density distribution along the tubethBsolutions,
obtained with first and higher order schemes, aee ffrom
oscillations, capturing all relevant features wgttod accuracy. The
higher order scheme gives sharper shock, contacoutinuity and
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rarefaction waves representation as expected. Tesgis compare e
well with 1-D and 2-D solutions obtained with siarilformulation =
(Lyra and Morgan, 2002), being slightly more difftes

—— First Order
+++++ High Order

Flow past a flat plate

The second example consists in the investigatioa ofgular
shock reflection formed when a non-viscous and dstelow
impinges over a flat plate with Mach number of 2fd angle of 133
attack of minus 10° relative to the flat plate. Shimple steady-state i )
test case is another useful problem to verify caepalgorithms, =3 T i N
because there is an analytical solution calculbtedimilarity, Lyra (T
and Morgan (2002), allowing an insight into thefpemance of the 005 1152 253 35 4 45 5 55 6 65 7 75 8 85 9 95 1010511 NS 12
schemes extended in this work for three—dimensisitalilations. DingoralLanah (m)

The analytical solution of this 2-D problem consist two constant (b)

states connected by a shock which has a theorefiopé of 29.3 | 1t of o \ o and d |
; Figure 4. Flow past a flat plate problem: a) mesh and density map values
deQreeS with the flat plate wall. using a higher order approach; b) density profile using first and higher
order schemes.

Density (kg/m?)

The techniques presented to increase the robusufesise
algorithm were implemented in the numerical soheert were not

flj)(i requireq for _the_se two simp_le appl?cations p_r_esénlttere._ A

Boundary Conditions on surfuce:  PTOPET iNVestigation as to their effective necgssit challenging

4 BandC 3-D problems has not yet been fully made, and siackcal

un=0 p=10 extended 1-D “structured” stencil is used for eatdyge of the

pu=0 mesh, the 3-D model approximation would involve reweaore

pv = cos(-10°) “artificial” diffusion than its 2-D counterpart. $at is expected

pw=sin(-10°) that some of those techniques might be deactividedcertain

. pe =0.9464 applications that where required for 2-D models ré_yand
X Morgan, 2002), without compromising the solution.

Concluding Remarks
Figure 3. Description of flow past a flat plate problem and sketch of the

analytical solution. A successful higher-order 3-D unstructured mestvisaid
compressible flow solver has been fully describ&gart from the
Figure 3 describes the whole problem, i.e. geométifial and  €°'€ FEM-MUSCL/LED formulation, several importanimerical

main boundary conditions (i.e. surface A is a salal, B and C are and computational ingredients were added to reritler final
inflow far field surface and D is a free far figddrface). The frontal SCNeéme robust and ready to be tested for the siomileof
and back surfaces have symmetric boundary condifire other Cchallenging high-speed flow applications. The benafk problems
parameters for this case are the followipgs 1.4, CFL = 0.45,dy = analyzed demonstrate the effectiveness of the dgedl code. The

éoresented formulation and corresponding serial cecde be
extended for distributed memory parallel computatising similar
methodology as previously adopted by the authorh \similar
formulation for incompressible flow studies (Antgne008). The
code can also be further extended to deal with numeplex
physical-mathematical models, such as: laminar dlewd transient
regimes, using improved time integration technigumsextending
the 2-D approaches (Lyra, 1994).

0.1, and 10 as the tolerance to reach steady state, usingtylen
residual l-norm and min-mod limiter function. An uniform
unstructured tetrahedra mesh with 108.322 elenzent<20.340 nodes
was adopted.
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