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Stability Analysis of Carbon
Nanotubes Based on a Novel Beam
Model and Its Comparison with
Sanders Shell Model and Molecular
Dynamics Simulations

We study the effects of small-scale parameter on the buckling loads and strains of
nanobeams, based on nonlocal Timoshenko beam model. However, the lack of higher-
order boundary conditions leads to inconsistencies in critical buckling loads. In this paper,
we apply a novel approach based on nonlocal Timoshenko kinematics, strain gradient
approach and variational methods for deriving all classical and higher-order boundary
conditions as well as governing equations. Therefore, closed-form and exact critical
buckling loads of nanobeams with various end conditions are investigated. Moreover, the
dependence of buckling loads on the small-scale parameter as well as shear deformation
coefficient is studied using these new boundary conditions. Then, numerical results from
this new beam model are presented for carbon nanotubes (CNTSs). They illustrate a more
accurate buckling response as compared to the previous works. Furthermore, the critical
strains are compared with results obtained from molecular dynamic simulations as well as
Sanders shell theory and are found to be in good agreement. Results show that unlike the
other beam theories, this model can capture correctly the small-scale effects on buckling
strains of short CNTs for the shell-type buckling. Moreover, the value of nonlocal constant
is calculated for CNTs using molecular dynamic simulation results.
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I ntroduction

Structural elements like beams in nano-length scate
commonly used in nanotechnology devices such as SIERbr
devices of this size, the lengths are in the omfeinteratomic
distances, so the nonlocal and small-scale effenisbe significant.
Generally, classic continuum theories are foundé¢oinadequate
because of their scale-free constitutive equatidnsfact, these
classic theories cannot capture the size effeatsth® other hand,
computational methods like Molecular Dynamics (MBie not
suitable for large-scale nano-structures becausenef restricted
capacities. Size-dependent continuum theories liawe received
increasing attention in modeling nano-scale stmestiand devices.
Among these, the theory of nonlocal continuum meidsa
introduced by Eringen (1972; 1976; 1983 and 200%) Eringen
and Edelen (1972) has been widely used in nhanoméacshéor the
small-scale effects. The characteristics of suaories are taking
the internal length-scale and inter-atomic foreee tconsideration.

Nonlocal continuum mechanics has been applieddratkas of
lattice dispersion of phonon waves, fracture andatge mechanics,
wave propagation in nano composites, dislocatiochaeics and
surface tension in fluids, etc. (Eringen, 1983).

In particular, one property that has been extehsistidied is
the buckling of carbon nanotubes (CNTs), underladanpression
(Yakobson et al., 1996; Peddieson et al., 2003; g\&tral., 2006;
Sudak, 2003; Reddy and Pang, 2008; Reddy, 2007;gVearal.,
2010; Kumar et al., 2008; Feliciano et al., 201hadg et al., 2004;
Silvestre et al., 2011; Ma et al., 2008; Wang gt2010). Recently,
some researchers investigated the free vibratiod aave
propagation of CNTs using nonlocal beam theoriesdiLal., 2006;
Wang, 2005; Wang, C.M. et al., 2007; Wang, Q. arshgy C.M.,
2007; Yang et al., 2010; and Chang et al., 2002).
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As mentioned before, the buckling equation of naawohs
modeled by nonlocal Timoshenko beam theory is ahsixder
differential equation and requires six boundaryditons including
four classic (local) and two non-classic (highedes) boundary
conditions (Reddy and Pang, 2008). Researcherdlyisadve this
equation without considering higher-order boundeaoyditions by
neglecting the sixth-order term of the differenggjuation, because
the higher-order boundary conditions are not detezch clearly
(Reddy and Pang, 2008). This approximation leadmaacurate
critical buckling loads.

This paper presents a novel method to derive theerging
equations and all the classic and higher-order Banconditions
based on nonlocal continuum theory, strain gradéasticity and
variational method, simultaneously. Moreover, theat and closed-
form solutions of the critical buckling loads foemobeams with
various end conditions are investigated. The ptesermodel
includes the small-scale parameter and can simpijemierate into
the other beam theories such as nonlocal EuleréBéinclassical
Timoshenko and classical Euler-Bernoulli beam metglignoring
either shear deformation parameter or nonlocalrperar or both of
them, respectively.

In this paper, we investigate the use of the mafned
Timoshenko beam model for modeling the buckling avér of
CNTs with small-scale effects. The numerical resfidr the axial
buckling of CNTs are derived and the proposed beadel based
on nonlocal boundary conditions is validated thirowgmparison
with results from MD simulations and Sanders sliedory, and
consistent values for the nonlocal elasticity canstof nanotubes
are determined. It will be shown herein how suipgly well the
Timoshenko beam model is able to investigate bogkstrains of
CNTs that are length dependent and relatively cltsethose
predicted by MD simulations.
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Nonlocal Timoshenko Beam Theory The nonlocal stress resultants of axial force, shaed bending

o ) ] moment are derived from the above equations, réspsc
The nonlocal elasticity model was first presentgdBringen

(1983). According to this model, the stress atfaremce point in 92N 6u
the body is dependent not only on the strain statbat point, but Ny —(eDa)2 L= (5)
also on the strain state at all of the points tghmwt the body. The X ax
constitutive equation of the nonlocal elasticityndae written as
follows (Eringen, 1983): 0°Q (6)
Qu - (eoa)zaT:‘L =K GAy,
(1_ (eoa)2 DZ)U Cumgm ' 1)
*M 6¢ 7)
. . . L ( a) O Ma -
where C,, is the elastic module tensor of the classicalrépat & X2 ax

elasticity; ando; and &, are the stress and strain tensors, respectively.

whereE, G, A andl are the Young's modulus, shear modulus, cross-
sectional area of beam and area moment of ineftizZeam cross
experiments, anca is an internal characteristic length (e.g., dcltt section, respectively. AdditionallyK; denotes the shear correction
parameter, granular distance). Therefag@ is a constant parameter tacior, defined by

showing the small-scale effect in nano-structures.
The assumed displacement field of the Timoshenkambe Q:KSIU dA.

In addition, e, is a nondimensional material constant, determined

kinematics is (8)
u(x,y.z,t)=u(xt)+ zelx t), This factor corrects the assumption of constanaiskiain on
UZ(X,y, z,t):O, (2 the cross section of beam in Timoshenko model, mi#ipg on the

_ material and geometry of the cross section.
(x,y,z,t)=w(x,t)

where @ denotes the rotation of the cross section at poatiout y- Strain Gradient Approach

axis. The remaining nonzero axial and transversarshtrains are Solving Eq. (4), the nonlocal axial and shear skesas a

given by function of displacement field can be determinetbdews:

ou _odg 0%¢(x, 2) a'e(x, 2)
Ey = tzZ—, o(x,z) = E| &(x, ) + (e, @)’ 2 +(ea)' i, 9
o Ton 5 e feaf T e S 02

ox

The rotation of the cross section and the transveh®ar strain
are illustrated in Fig. 1 for a Timoshenko bearmelet as below:

T A N

Assuming (%)2 <<1, where L is the length of the beam, and

neglecting the higher powers of the nonlocal pateme{eoa)z, the

¢ solution could be simplified to
Wy 2
o(xz)= E{s(x, 2)+(ea) 9 ‘;S(): Z)} (10a)
2
Szmple shear T(X) _ K5G|: y(x) + (eoa)z ddj)/((zX):|' (10b)

'1

Figure 1. Deformation components of a Timoshenko beam element.

In fact, Egs. (10a) and (10b) can be thought of@asstituting a
strain gradient form of the nonlocal beam modeld(feson et al.,
2003). Considering strain gradient approach, féoimaoshenko beam

Using Eq. (1), the nonlocal stress tensor compenare subjected to an external compressive and conseevéice field,
N, , and laterally distributed loadp(x) , the total potential energy,
(eoa) d’o,, —Es M, given by Kumar et al. (2008) is generalized ie firesence of
G o @ shear deformation effects as follows:
-l 2% =k 6y,
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nq{w-@@ya%w

a) K<C( dn (X)T}dv (1

2de

Thus, the second term is added to the original tegudor
capturing the shear deformation effects in Timokbdmeam theory.
Furthermore, Chang et al. (2002) proved the origioan of this
equation for strain gradient theory without higleder stress. They
used characteristic size coefficient?/6) instead of nonlocal

parameter and derived the potential energy densityg integration
by parts. The last three terms of Eq. (11) are tidsowvork done by
the axial load, lateral load and von Karman effeetpectively.

Substituting Eq. (3) into Eq. (11) and integratoger the cross-
sectional area, the following expression is obthifoe I :

L 2 2 2
n:lj EA(EJ +El(d—¢j +KSG/-\(%+¢)j dx
25 dx dx dx
-2 a)ZJL. duY g0 o W, do) |
2\ S dx? STl dx (12

i du] i 1t (dwY’
+[| Ng= [dx— [ pw{x)dx-=[N (—j dx.
;I;( ® dx -l[ 2-[ L dx

Governing Equations and Boundary Conditions

The classical axial forcelN, , acting on the beam cross-section

is defined as
Ne EAE (13)
dx

Using the above expression fod, and ignoring the laterally

distributed loads,p , for buckling analysis, the variation of Eq. (12)

with respect tou(x) and equating to zero can be written as

JU(I'I)—J;[EA }dx 0 14

Integrating by parts, we obtain the governing eguatand
boundary conditions in the direction as

d’u d?au
d2d2+

ddu

du déu
4981 o 4

dx dx

d(N +N,)=0,

™ (15)

(N +Ny)a = =0, (16)
dNg ) cdu| ™

-(eaf [ o ja | =0. 17)

Performing the variation with respect t(x) for Eq. (12) and
equating to zero gives
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}dx
dx

(18)

Integrating by parts, we obtain the governing eguatand
boundary conditions fow as

NG a9

|:QNL - No ;_‘\:\(/:|5N{ =0, (20)
2 d’w  dg)|ddw )

_ - =0. 21

{@@K@{w+mﬂﬁﬁ)o (21)

In the same way, applying the variational operakborp(x) for
Eq. (12) and equating to zero, we obtain

e

-T{(ena) K GA{(Z\:V ?f] d CIfﬂdx 0.

Using integration by parts, the governing equaisogiven by

0,(n)=

(22)

dM
dXNL =Qu: (23)
and the following boundary conditions are derived:
L
d“w dqo
aJ K G =0, 24
{ ~(af /{dz dXJHO (24)
L
d’p | ddg
-(ea)El — = 25
{ (eaf 1 o, (25)

By substituting the nonlocal shear force and bemdiroment
defined in Egs. (6) and (7) into the governing E4®) and (23),
and omitting the similar terms from both sides lué £quations, we
obtain

d? w, d d*w d’w
G/{ e df] (&) No g =Ne e (262)
d® dw
El —=KG aﬂp} (26b)
Solving Eq. (26a) forp gives
ABCM
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d?w
dx?

d?w

do__ 1 d'w
ax?

dx KGA|: 0 _(eoa)zNo
s

d*w
— |- 27
dx4 i| ( )
By differentiating Eqg. (26b) and inserting Eq. (2@)Eq. (26b),
the transverse equilibrium equation in terms oéralt displacement

for an axially loaded beam using a nonlocal stgradient theory is
obtained as

El(e,a)? d'w | El _
KsGA | dx® | N,

where N, is an external axial compressive load. This eguais

similar to that obtained by Reddy and Pang (2008)btickling of
the nonlocal Timoshenko beam using Hamilton's Rylac

In addition, for solving the above equation six bdary
conditions are required (three for each end), bghteboundary
conditions appear in Egs. (20)-(21) and (24)-(26)means that
there is one additional boundary condition for eactd. So, the
main objective is to select three independent banndonditions
which can satisfy all four boundary conditions &ach end. In the
next part, the boundary conditions for various beamports are
obtained.

The nondimensional form of Eq. (28) using lengththaf beam,
L, as a nondimensionalizing parameter can be renrés

1 = d*w  d’w
+U——-Q- +——=
e

El
K<GA

-feaf [S2+ ¥ =0

dx*  dx? (28)

d°w

(o) G+

=0, (29)

If A>0, one of the solutions is

W(X) = ¢, +¢,x + ¢, sin(Px)+ ¢, cos(Px)

+C sin(Qx) +C, cos(Qx), (32)

where c,,c,,...,
six boundary conditionsP and Q are given by

1
2

(33)

NI

If A <O, the other solution is defined as

W(X) = ¢, +C,x + c,e™ cogX) + ¢,e™ sin()

+c.e™ cog(X) + c,e™ sin(S), 34)

whereR and S are

where Q and I are the nondimensional forms of shear

deformation and nonlocal parameters, respectivahd r is the
ratio of the critical buckling loads as follows:

= El —_[&a : _NQt
Q= , U=l =, , 30
kaar ' X ( L ) TNL (30)
where N is obtained from solving Eq. (28) ard., is that given

by classic Euler columns for simply supported eowlditions.

We may simply switch to nonlocal Euler-Bernoulli dme
model by ignoring the shear deformation terms. Alde local
Timoshenko beam model is obtained by letting thelocal
parameter to be zero and by setting the shear meftoon and
nonlocal parameters to zero, the local Euler-Belihdaeam
model appears.

Buckling Solutions

Here we consider analytical solutions for nonloEahoshenko
beams under a constant axial compressive loadg usa buckling
equation obtained in Eq. (28) for different endditions. This sixth
order equation exhibits different solutions whi@pdnd on the ratio

r, and the nonlocal and shear deformation parameferand Q .

The discriminant of the characteristic equatiorresponding to the
differential Eq. (28) is defined as follows:
El

N
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2
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2

+@a
El ’
KSGA

+@#~%

(35a)

1
|

~

N

El
K.GA

(eoa)\/E'

K GA

ool) KGA |-

35b
2| El(ea) (350)

The first solution in Eq. (32) is found to be vatidpending on

the sign of A . Therefore, the second solution is not used is thi
research and is only stated for completeness.

Simply supported beams

Considering the classic continuum mechanics for pgim
supported boundary conditions, the deflection aeding moment
are zero at each end. We note that the essentialdaoy conditions
are the same for the local and nonlocal boundamyditions.
However, the natural boundary conditions shouldrbesformed to
the nonlocal form, in order that they can be usedigher-order
theories. To this end, we use the classic bounctamgitions as well
as the newly derived boundary conditions in Eq€9)+(21) and
(24)-(25) for deriving the following boundary cotidns in order to
satisfy all four boundary conditions:

w=0, (36)

April-June 2012, Vol. XXXIV, No. 2/ 129

c, are constants of integration and determined by



Inserting Eq. (36) into Eqg. (32), we obtain a sgstef six
homogeneous algebraic equations. In order to haverdrivial
solution, we should enforce the determinant of toefficient
matrix for the system of equations to be zero.

For simply supported conditions, the critical buregl load is
obtained as

L’ 77 El

P
L4 +772L2|: El +(e0a)2:|+ nAEI (eoa)
K GA K GA

NCriIicaJ -

@7

Manipulating the above equation using the dimerieimn
parametersyz and Q , the critical buckling load becomes

_PEl

Critical — 2
L

N

1
L+ﬂ2(ﬁ+5)+ﬂ“(ﬁxﬁ)}' 39

This result is exactly the same as that obtaineRégdy (2007)
using Fourier series and shows the perfect compsgtitio the
presented method. Reddy (2007) introduced the Eguéd8) as an
exact solution for buckling of only simply suppattbeams. In his
method, the series expansions of the generalizguladiements are
defined in order to satisfy the boundary conditiodswever, it is
not easy to define these series expansions of #reerglized
displacements for other boundary conditions suchclasnped,
cantilever or propped cantilever beams, but in dhse of simply
supported beams, it can verify Eq. (38) and new nbdawy
conditions.

In addition, this result is similar to that obtainky Reddy and
Pang (2008) using Hamilton's principle, except &or additional

term which is the product off and Q . This is due to neglecting

the sixth-order term in solving the differentialuadjon in the work
of Reddy and Pang (2008). This equation is predessdollows:

. _E

a__ 7 a9
S| 1+(E+Q) | 29)

Critical

Moreover, this result could transform into the romal Euler-
Bernoulli forﬁzo, classical Timoshenko beam fqZ =0 and

classical Euler-Bernoulli beam by Iettirr_g =u=0.

Clamped beams

Hosseini-Ara et al.

5 3
(eoa)zNO% +(K5GA_ No)d V=

o 0.

Substituting these boundary conditions in Eq. (82) setting
the determinant of the coefficient matrix to beazethe critical
buckling load is derived as

47 1’El

.
L +4m2L? {EI + (eoa)z} 167 Ellea) (e:2)
K.GA K .GA

NCriIicaJ -

(41)

The critical buckling load using the dimensionlgssameters
7 and Q is

N = TCE 1
critieal (LJZ 1+ 472 (H+Q)+167 (I xQ) |
2

Again, this equation may be transformed into eithernonlocal
Euler-Bernoulli theory, for the shear parameter teetzero,. the
classical Timoshenko beam theory, for the nonlpeahmeter set to
zero, i =0; or classical Euler-Bernoulli beam theory, for tbtiie

(42)

shear and the nonlocal parameters set to Z2rei =0.

Cantilever beams

The boundary conditions for the fixed end of a temer beam
at x=0 are derived in Eq. (40) for clamped beams. Howeter
boundary conditions for the free end of a cantildveam atx =L

are obtained based on the newly derived boundamngitons in
Egs. (20)-(21) and (24)-(25). Considering the dtadsoundary
conditions, the shear force and bending momentere at the free
end. Thus, we use these classic boundary conditiensell as the
newly derived boundary conditions in Egs. (20)-(2hf (24)-(25)
to derive the following boundary conditions:

2,
d W:O’
dx?
d“w=
ax*
2 5,
[EI (e,a) ]d w{ﬂ_ El

KGA [df |N, KGA

0,

(43)

o |dPw . dw
(eoa) } pree +&-0.

Again, these boundary conditions satisfy Eqgs. (20) and
(24)-(25). Applying these boundary conditions armvieg the
transcendental equation corresponding to the detarmn of the

Regarding the classic continuum mechanics for ctmp coefficient matrix, the critical buckling load ibt@ined

boundary conditions, the deflection and rotationhef cross-section
are zero at each boundary. Thus, we use thesdcelaas well as
the newly derived boundary conditions in Eqgs. (@0} and (24)-
(25) to derive the following boundary conditiona. this way we
satisfy all four boundary conditions.

w=0,
d_W = O’ (40)
dx
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TL%El

|, 7 Ellea)”
+(e°a)} 4 KGA

NCritioaI -

El
KGA

4% + nzL{ (44)

Simplifying the above equation by means of the acal
parameter,z7, and shear deformation parameté?,, the critical
buckling load becomes
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7TEl 1

Critical 2 )
V|2 Lrze0)y+ L (and
(O.Sj 1+4772(,u+Q)+16n“(,u><Q)

(45)

This result is similar to that obtained by Reddg &ang (2008)
for cantilever beams, except an additional termcilis the product
of 77 and Q . Again, this is due to neglecting the sixth-ortim
in solving the differential equation in their workhis equation is

presented as below:

El T
Ngritical = |:

4+ 772(/7+§)}' (46)

s
Thus, in the case of cantilever beams, it can yéd. (45) and

new boundary conditions in Egs. (40) and (43) dstivfrom
variational approach.

Propped cantilever beams

The boundary conditions for propped cantilever beame the
combination of clamped and simply supported boundanditions,
derived before. Assuming the fixed endxat 0 and hinged end at
x=L, we have Egs. (40) and (36) for the fixed and &ihg
boundary conditions, respectively.

Solving the determinant equation of the coefficienatrix,
results the critical buckling load as below:

2045 1°El

El ,
aat e ]

NCriIicaJ -

41847°El (e,a)°
K GA

L+ 2045;71{ (47)

Hence, the critical buckling load using the dimensss
parametersy and Q is

N = TCEl 1
criteal ( L jz 1+ 20187 +Q) + 407615 u xQ) |
143

Generalizing, the closed-form and exact solution cdfical
buckling load for nonlocal Timoshenko beam with isas end
conditions is investigated as

(48)

d=

Nerigea = L 2
k

1
L+ (kP (z +Q) +(kﬂ)“(ﬁ><§)}' (49)

where k is a constant depending on different boundaryu:

conditions and defined ak =1 for simply supported,k =2 for
clamped,k = 05 for cantilever anck = 143 for propped cantilever
beams considered for the fundamental mode of bughéad. This
is a remarkable result which can relate the nomlsolitions with
the small-scale effects to the classical solutmfithe beams.

Defining the equivalent values for length, nonloeald shear
deformation parameters as follows:

J. of the Braz. Soc. of Mech. Sci. & Eng.
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El

== 50
KGAIZ 0)

2
L - _|&| &
leq_?' eq_(|_j 0 Qg

e

where |, is an equivalent length, defined for buckling ofumns
with different boundary conditions.

(51)

Simplifying Eq. (49) by using equivalent values k. (50),
we obtain

N _ TTEl 1
e L+ 12y + Q) + 71 (g Q) |

(52)

2
qu
In addition, this result can simply degenerate ithi® nonlocal

Euler-Bernoulli beam theory forS_)eq=0, classical Timoshenko
beam theory forzi, =0 and classical Euler-Bernoulli beam model

by letting ﬁeq =, =0.

Numerical Results

Comparison of critical buckling loadsfor beam theories

In this section, we consider numerical solutions @NTs
modeled as nanobeams with circular cross sectims.numerical
results are presented in the form of graphs ankgdbor different
types of end conditions, using the following effeetproperties of
carbon nanotubes (Reddy and Pang, 2008):

E =1000(GPa),G = 420(GPa),d =1(nm)

2 4
d - _ 0049(nm)*

A= o4 (53)

= 0785(nm)?, | =

a=15(nm), K; = 0877.

Plots of the critical buckling loads for nonlocalmbshenko
beam for different values of shear deformation ammhlocal
parameters are presented in Fig. 2.

As illustrated in Fig. 2, the solid lines fa® =0 denote Euler-
Bernoulli beam which are the upper bound solutioBg.increasing
the shear deformation parameteﬁ, the critical buckling loads
decrease. The effect of shear deformation is dfieahtior different
boundary conditions. This effect is negligible fard ratios more
than 20 (orQ less than 0.0005), but significant by increasing t
Q,for L/d ratios less than 20.

Moreover, the intersections of the curves and texss (i.e.,
0) are the ratios of the local critical buckling dsa

Specifically, for Q =0, these values are the same as the local
Euler-Bernoulli beam solutions.

Furthermore, the comparison of the ratio of théaai buckling
loads,r, for different end conditions and with respecttte nonlocal
Euler-Bernoulli, Timoshenko and exact Timoshenktisons are
presented in Tables 1-4.

April-June 2012, Vol. XXXIV, No. 2/ 131
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Figure 2. Plots of the ratios of the buckling loads for different values of ﬁand 5 and various boundary conditions.

Table 1. Comparison of the ratio of the critical buckling loads for simply supported beams with respect to nonlocal Euler-Bernoulli, Timoshenko and

exact Timoshenko solutions.

Q =0.00075

Q =0.00042

Q =0.00170
H NEBT NTBT Exactr a

NEBT NTBT Exactr U

NEBT NTBT Exactr

0 1 0.98350.9835 0
0.0025 0.9759 0.9602 0.9598
0.01 0.9102 0.8965 0.8952
0.0225 0.8183 0.8072 0.8048
0.04 0.7170 0.7085 0.7051

0.01

1

0.99270.9927 O 1

0.0011 0.9893 0.9820 0.9819
0.0044 0.9584 0.9516 0.9513
0.91020.9041 0.9035
0.0178 0.8506 0.8452 0.8443

0.99590.9959
0.0006 0.9939 0.9900 0.9900
0.00250.9759 0.9720 0.9719
0.0056 0.9474 0.9437 0.9434
0.01 0.91020.9067 0.9064

Table 2. Comparison of the ratio of the critical buckling loads for clamped beams with respect to nonlocal Euler-Bernoulli, Timoshenko and exact

Timoshenko solutions.

Q=0.00170

Q =0.00075

Q =0.00042

H NEBT NTBT Exactr M

NEBT NTBT Exactr H

NEBT NTBT Exactr

0 4 3.7491 3.7491 O
0.0025 3.6407 3.4317 3.4123
0.01 2.8678 2.7365 2.6880
0.0225 2.1184 2.0458 1.9855
0.04 1.5509 1.5117 1.4536

0.01

4

3.88453.8845 O 4

0.0011 3.8335 3.7273 3.7228
0.0044 3.4080 3.3238 3.3096
2.86782.8079 2.7850
0.0178 2.3492 2.3089 2.2813

3.93423.9342
0.0006 3.9030 3.8403 3.8389
0.0025 3.6408 3.5861 3.5808
0.0056 3.2727 3.2285 3.2188
0.01 2.86792.8339 2.8207
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Table 3. Comparison of the ratio of the critical buckling loads for cantilever beams with respect to nonlocal Euler-Bernoulli, Timoshenko and exact

Timoshenko solutions.

Q =0.00170 Q =0.00075 Q =0.00042
H NEBT NTBT Exactr a NEBT NTBT Exactr H NEBT NTBT Exactr
0 0.25 0.24900.2490 O 0.25 0.24950.2495 0 0.25  0.24970.2497

0.0025 0.2485 0.2474 0.2474
0.01 0.2440 0.2430 0.2430
0.0225 0.2368 0.2359 0.2359
0.04 0.2275 0.2267 0.2266

0.01

0.0011 0.2489 0.2489 0.2489
0.0044 0.2469 0.2469 0.2469
0.24350.2436 0.2435
0.0178 0.2390 0.2390 0.2390

0.0006 0.2496 0.2494 0.2494
0.00250.2485 0.2482 0.2482
0.0056 0.2466 0.2463 0.2463
0.01 0.24400.2438 0.2438

Table 4. Comparison of the ratio of the critical buckling loads for propped cantilever beams with respect to nonlocal Euler-Bernoulli, Timoshenko and

exact Timoshenko solutions.

Q =0.00170 Q =0.00075 Q =0.00042
H NEBT NTBT Exactr [ NEBT NTBT Exactr [ NEBT NTBT Exactr
0 2.0449 19773 1.9773 O 2.04492.0143 2.0143 O 2.04492.0276 2.0276

0.0025 1.9467 1.8853 1.8823
0.01 1.7014 1.6543 1.6451
0.0225 1.4062 1.3739 1.3597
0.04 1.1313 1.1103 1.0939

0.01

0.0011 2.0005 1.9712 1.9705
0.0044 1.8781 1.8522 1.8500
1.70141.6801 1.6760
0.0178 1.5043 1.4877 1.4818

0.0006 2.0193 2.0023 2.0022
0.00251.9467 1.9309 1.9302
0.0056 1.8362 1.8222 1.8207
0.01 1.70151.6894 1.6870

As it may be observed from Tables 1-4, the first iaf each
table indicates the local form (i.efZ =0) and in this state the

solution of the nonlocal Timoshenko beam withoughter-order
boundary conditions and exact nonlocal Timoshenganb are the
same. This is due to ignoring the nonlocal paramitat leads to
ignoring the higher-order boundary conditions.

In general, the shear deformation and nonlocalrpeters have
the effect of reducing the buckling loads. Thiseeffis the most
significant for clamped beams (up to 7%) and trestiesignificant
for cantilever beams (about 1%).

Validation of critical buckling strains

In this subsection, the numerical results for caiti buckling
strains obtained from this continuum mechanics heare
compared with those obtained from MD simulationsl &anders
shell theory (Silvestre et al., 2011). Since the MDnulations
referenced herein consider the CNTs with fixed ende also
consider the NTBT model with fully clamped boundapnditions.

In addition, CNT(5,5) is analyzed with a diameter 671A and
CNT(7,7) with a diametedt = 940A , for different lengths. Both

nanotubes are modeled using a thickndss 066A, Young's
modulus E=55TPa and Poisson’s ratiov =0.19 (Yakobson et

al., 1996). The results from MD simulations, nolo€imoshenko
beam and Sanders shell models are compared in $able

It is seen that the critical buckling strains areggpood agreement
as compared with the results obtained from MD satiohs as well
as Sanders shell theory. Moreover, the results ghatvunlike the
other beam theories, this model could capture ctiyr¢he length-
dependent buckling strains of short CNTs for thelenof shell-type
buckling. In fact, the available beam models arableto show the
correct trend in critical axial buckling strains stiort CNTs, while
the proposed nonlocal beam model shows much bagierement
with the molecular dynamics simulation results.

Finally, based on the MD simulation results, thdugaof
nonlocal constant is determined for CNTs based oraweraging
process. The best match between MD simulations rasdocal
formulations is achieved for a nonlocal constaritieaf ga= 03

for CNT(5,5) ande,a = 053 for CNT(7,7), with good accuracy (the
error is less than 10%).

Table 5. Comparison between critical buckling strains of CNT(5,5) and CNT(7,7) obtained from MD simulations, Sanders shell theory (SST) (Silvestre et

al., 2011), and proposed nonlocal Timoshenko beam theory (NTBT).

Critical buckling strains of CNT(5,5) and CNT(Y,7

LA  d@A) MD (pL\C')Tp%Ze o ST Local Buckling Global Buckling
1609 671 008146 0.08461 0.08729 0.08779 0.85862
21.04 671  0.07528 0.08280 0.08288 0.08050 0.50210
28.46 671  0.06992 0.06964 0.07858 0.06955 0.27430
2829 94  0.06514 0.06568 0.06582 0.06164 0.54467
4059 94  0.04991 0.05825 0.05885 0.05384 0.26469
52.88 94  0.04710 0.04607 0.05600 0.04776 0.15591
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Conclusions

Nonlocal Timoshenko beam model was developed acHling
behavior of CNTs was analyzed using a mixed apprdesed on
the strain gradient theory and variational methédotal potential
energy. This approach provides the governing eguostiand
variationally consistent sets of boundary condgidor various end
supports.

In addition, the exact and closed-form eigenvalwésthe
nonlocal critical buckling loads for nanobeams withrious end
conditions were investigated, which are more cotepded accurate
compared with those available in the literature e§éh solutions
could simply be reduced to the nonlocal Euler-Batloclassical
Timoshenko and classical Euler-Bernoulli beam medgl ignoring

the nondimensional shear deformation paramef_br nonlocal
parameterz or both of them, respectively.

Moreover, the small-scale effects and shear deftoma
parameter are specifically highlighted for this rabdsing higher-
order boundary conditions. In this case, it is dleabserved that
the critical buckling loads obtained from Eq. (52} all different
boundary conditions are always smaller than thaedigted by the
classical model. In fact, the nonlocal paramefer and shear

deformation parametef have the effect of reducing the buckling
load. This effect is the most significant for claedpbeams (up to
7%) and the least significant for cantilever bedaimut 1%).
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