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Stability Analysis of Carbon 
Nanotubes Based on a Novel Beam 
Model and Its Comparison with 
Sanders Shell Model and Molecular 
Dynamics Simulations 
We study the effects of small-scale parameter on the buckling loads and strains of 
nanobeams, based on nonlocal Timoshenko beam model. However, the lack of higher-
order boundary conditions leads to inconsistencies in critical buckling loads. In this paper, 
we apply a novel approach based on nonlocal Timoshenko kinematics, strain gradient 
approach and variational methods for deriving all classical and higher-order boundary 
conditions as well as governing equations. Therefore, closed-form and exact critical 
buckling loads of nanobeams with various end conditions are investigated. Moreover, the 
dependence of buckling loads on the small-scale parameter as well as shear deformation 
coefficient is studied using these new boundary conditions. Then, numerical results from 
this new beam model are presented for carbon nanotubes (CNTs). They illustrate a more 
accurate buckling response as compared to the previous works. Furthermore, the critical 
strains are compared with results obtained from molecular dynamic simulations as well as 
Sanders shell theory and are found to be in good agreement. Results show that unlike the 
other beam theories, this model can capture correctly the small-scale effects on buckling 
strains of short CNTs for the shell-type buckling. Moreover, the value of nonlocal constant 
is calculated for CNTs using molecular dynamic simulation results. 
Keywords: stability, nonlocal elasticity, carbon nanotubes, molecular dynamics 
 

 
 
 

Introduction1 

Structural elements like beams in nano-length scale are 
commonly used in nanotechnology devices such as NEMS. For 
devices of this size, the lengths are in the order of interatomic 
distances, so the nonlocal and small-scale effects can be significant. 
Generally, classic continuum theories are found to be inadequate 
because of their scale-free constitutive equations. In fact, these 
classic theories cannot capture the size effects. On the other hand, 
computational methods like Molecular Dynamics (MD) are not 
suitable for large-scale nano-structures because of their restricted 
capacities. Size-dependent continuum theories have thus received 
increasing attention in modeling nano-scale structures and devices. 
Among these, the theory of nonlocal continuum mechanics 
introduced by Eringen (1972; 1976; 1983 and 2002) and Eringen 
and Edelen (1972) has been widely used in nanomechanics for the 
small-scale effects. The characteristics of such theories are taking 
the internal length-scale and inter-atomic forces into consideration. 

Nonlocal continuum mechanics has been applied in the areas of 
lattice dispersion of phonon waves, fracture and damage mechanics, 
wave propagation in nano composites, dislocation mechanics and 
surface tension in fluids, etc. (Eringen, 1983).  

In particular, one property that has been extensively studied is 
the buckling of carbon nanotubes (CNTs), under axial compression 
(Yakobson et al., 1996; Peddieson et al., 2003; Wang et al., 2006; 
Sudak, 2003; Reddy and Pang, 2008; Reddy, 2007; Wang et al., 
2010; Kumar et al., 2008; Feliciano et al., 2011; Zhang et al., 2004; 
Silvestre et al., 2011; Ma et al., 2008; Wang et al., 2010). Recently, 
some researchers investigated the free vibration and wave 
propagation of CNTs using nonlocal beam theories (Lu et al., 2006; 
Wang, 2005; Wang, C.M. et al., 2007; Wang, Q. and Wang, C.M., 
2007; Yang et al., 2010; and Chang et al., 2002). 
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As mentioned before, the buckling equation of nanobeams 
modeled by nonlocal Timoshenko beam theory is a sixth-order 
differential equation and requires six boundary conditions including 
four classic (local) and two non-classic (higher-order) boundary 
conditions (Reddy and Pang, 2008). Researchers usually solve this 
equation without considering higher-order boundary conditions by 
neglecting the sixth-order term of the differential equation, because 
the higher-order boundary conditions are not determined clearly 
(Reddy and Pang, 2008). This approximation leads to inaccurate 
critical buckling loads. 

This paper presents a novel method to derive the governing 
equations and all the classic and higher-order boundary conditions 
based on nonlocal continuum theory, strain gradient elasticity and 
variational method, simultaneously. Moreover, the exact and closed-
form solutions of the critical buckling loads for nanobeams with 
various end conditions are investigated. The presented model 
includes the small-scale parameter and can simply degenerate into 
the other beam theories such as nonlocal Euler-Bernoulli, classical 
Timoshenko and classical Euler-Bernoulli beam models by ignoring 
either shear deformation parameter or nonlocal parameter or both of 
them, respectively. 

In this paper, we investigate the use of the more refined 
Timoshenko beam model for modeling the buckling behavior of 
CNTs with small-scale effects. The numerical results for the axial 
buckling of CNTs are derived and the proposed beam model based 
on nonlocal boundary conditions is validated through comparison 
with results from MD simulations and Sanders shell theory, and 
consistent values for the nonlocal elasticity constant of nanotubes 
are determined. It will be shown herein how surprisingly well the 
Timoshenko beam model is able to investigate buckling strains of 
CNTs that are length dependent and relatively close to those 
predicted by MD simulations. 
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Nonlocal Timoshenko Beam Theory 

The nonlocal elasticity model was first presented by Eringen 
(1983). According to this model, the stress at a reference point in 
the body is dependent not only on the strain state at that point, but 
also on the strain state at all of the points throughout the body. The 
constitutive equation of the nonlocal elasticity can be written as 
follows (Eringen, 1983): 
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where ijklC  is the elastic module tensor of the classical isotropic 

elasticity; and ijσ and klε  are the stress and strain tensors, respectively. 

In addition, 0e  is a nondimensional material constant, determined by 

experiments, and a  is an internal characteristic length (e.g., a lattice 

parameter, granular distance). Therefore, ae0  is a constant parameter 

showing the small-scale effect in nano-structures. 
The assumed displacement field of the Timoshenko beam 

kinematics is  
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where φ  denotes the rotation of the cross section at point x about y-
axis. The remaining nonzero axial and transverse shear strains are 
given by 
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The rotation of the cross section and the transverse shear strain 

are illustrated in Fig. 1 for a Timoshenko beam element as below: 
 

 
Figure 1. Deformation components of a Timoshenko beam element. 

 
Using Eq. (1), the nonlocal stress tensor components are 
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The nonlocal stress resultants of axial force, shear, and bending 
moment are derived from the above equations, respectively: 
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where E, G, A and I are the Young's modulus, shear modulus, cross-
sectional area of beam and area moment of inertia of beam cross 
section, respectively. Additionally, SK  denotes the shear correction 

factor, defined by 
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This factor corrects the assumption of constant shear strain on 

the cross section of beam in Timoshenko model, depending on the 
material and geometry of the cross section. 

Strain Gradient Approach 

Solving Eq. (4), the nonlocal axial and shear stresses as a 
function of displacement field can be determined as follows: 
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Assuming 1)( 20 <<
L

ae
, where L  is the length of the beam, and 

neglecting the higher powers of the nonlocal parameter, ( )2

0ae , the 

solution could be simplified to  
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In fact, Eqs. (10a) and (10b) can be thought of as constituting a 

strain gradient form of the nonlocal beam model (Peddieson et al., 
2003). Considering strain gradient approach, for a Timoshenko beam 
subjected to an external compressive and conservative force field, 

0N , and laterally distributed load, )(xp , the total potential energy, 

Π , given by Kumar et al. (2008) is generalized in the presence of 
shear deformation effects as follows: 
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Thus, the second term is added to the original equation for 

capturing the shear deformation effects in Timoshenko beam theory. 
Furthermore, Chang et al. (2002) proved the original form of this 
equation for strain gradient theory without higher-order stress. They 
used characteristic size coefficient ( 62d ) instead of nonlocal 

parameter and derived the potential energy density using integration 
by parts. The last three terms of Eq. (11) are also the work done by 
the axial load, lateral load and von Karman effect, respectively. 

Substituting Eq. (3) into Eq. (11) and integrating over the cross-
sectional area, the following expression is obtained for Π : 
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(12) 

Governing Equations and Boundary Conditions 

The classical axial force, CLN , acting on the beam cross-section 

is defined as 
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Using the above expression for CLN and ignoring the laterally 

distributed loads, p , for buckling analysis, the variation of Eq. (12) 

with respect to ( )xu  and equating to zero can be written as 
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Integrating by parts, we obtain the governing equation and 
boundary conditions in the x  direction as 
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Performing the variation with respect to ( )xw  for Eq. (12) and 

equating to zero gives 
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Integrating by parts, we obtain the governing equation and 
boundary conditions for w  as 
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In the same way, applying the variational operator to ( )xφ  for 

Eq. (12) and equating to zero, we obtain 
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Using integration by parts, the governing equation is given by 
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and the following boundary conditions are derived:  
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By substituting the nonlocal shear force and bending moment 

defined in Eqs. (6) and (7) into the governing Eqs. (19) and (23), 
and omitting the similar terms from both sides of the equations, we 
obtain  
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Solving Eq. (26a) for φ  gives 
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By differentiating Eq. (26b) and inserting Eq. (27) in Eq. (26b), 

the transverse equilibrium equation in terms of lateral displacement 
for an axially loaded beam using a nonlocal strain gradient theory is 
obtained as 
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where 0N  is an external axial compressive load. This equation is 

similar to that obtained by Reddy and Pang (2008) for buckling of 
the nonlocal Timoshenko beam using Hamilton's Principle. 

In addition, for solving the above equation six boundary 
conditions are required (three for each end), but eight boundary 
conditions appear in Eqs. (20)-(21) and (24)-(25). It means that 
there is one additional boundary condition for each end. So, the 
main objective is to select three independent boundary conditions 
which can satisfy all four boundary conditions for each end. In the 
next part, the boundary conditions for various beam supports are 
obtained. 

The nondimensional form of Eq. (28) using length of the beam,
L , as a nondimensionalizing parameter can be rewritten as 
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where Ω  and µ  are the nondimensional forms of shear 
deformation and nonlocal parameters, respectively, and r  is the 
ratio of the critical buckling loads as follows: 
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where NL

crN  is obtained from solving Eq. (28) and LcrN  is that given 

by classic Euler columns for simply supported end conditions.  
We may simply switch to nonlocal Euler-Bernoulli beam 

model by ignoring the shear deformation terms. Also, the local 
Timoshenko beam model is obtained by letting the nonlocal 
parameter to be zero and by setting the shear deformation and 
nonlocal parameters to zero, the local Euler-Bernoulli beam 
model appears. 

Buckling Solutions 

Here we consider analytical solutions for nonlocal Timoshenko 
beams under a constant axial compressive load, using the buckling 
equation obtained in Eq. (28) for different end conditions. This sixth 
order equation exhibits different solutions which depend on the ratio 

r, and the nonlocal and shear deformation parameters µ  and Ω . 
The discriminant of the characteristic equation corresponding to the 
differential Eq. (28) is defined as follows: 
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If 0>∆ , one of the solutions is 
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where 621 ,...,, ccc  are constants of integration and determined by 

six boundary conditions. P  and Q  are given by 
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If 0<∆ , the other solution is defined as 
 

( ) ( )
( ) ( ),sincos

sincos)(

65

4321

SxecSxec

SxecSxecxccxw
RxRx

RxRx

−− ++

+++=

 
(34) 

 
where R  and S  are 
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The first solution in Eq. (32) is found to be valid depending on 

the sign of ∆ . Therefore, the second solution is not used in this 
research and is only stated for completeness.  

Simply supported beams 

Considering the classic continuum mechanics for simply 
supported boundary conditions, the deflection and bending moment 
are zero at each end. We note that the essential boundary conditions 
are the same for the local and nonlocal boundary conditions. 
However, the natural boundary conditions should be transformed to 
the nonlocal form, in order that they can be used in higher-order 
theories. To this end, we use the classic boundary conditions as well 
as the newly derived boundary conditions in Eqs. (20)-(21) and 
(24)-(25) for deriving the following boundary conditions in order to 
satisfy all four boundary conditions: 

 
,0=w   (36) 
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Inserting Eq. (36) into Eq. (32), we obtain a system of six 

homogeneous algebraic equations. In order to have a nontrivial 
solution, we should enforce the determinant of the coefficient 
matrix for the system of equations to be zero.  

For simply supported conditions, the critical buckling load is 
obtained as 
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Manipulating the above equation using the dimensionless 

parameters µ  and Ω , the critical buckling load becomes 
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This result is exactly the same as that obtained by Reddy (2007) 

using Fourier series and shows the perfect compatibility to the 
presented method. Reddy (2007) introduced the equation (38) as an 
exact solution for buckling of only simply supported beams. In his 
method, the series expansions of the generalized displacements are 
defined in order to satisfy the boundary conditions. However, it is 
not easy to define these series expansions of the generalized 
displacements for other boundary conditions such as clamped, 
cantilever or propped cantilever beams, but in the case of simply 
supported beams, it can verify Eq. (38) and new boundary 
conditions. 

In addition, this result is similar to that obtained by Reddy and 
Pang (2008) using Hamilton's principle, except for an additional 

term which is the product of µ  and Ω . This is due to neglecting 
the sixth-order term in solving the differential equation in the work 
of Reddy and Pang (2008). This equation is presented as follows: 
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Moreover, this result could transform into the nonlocal Euler-

Bernoulli for 0=Ω , classical Timoshenko beam for 0=µ  and 

classical Euler-Bernoulli beam by letting 0==Ω µ . 

Clamped beams 

Regarding the classic continuum mechanics for clamped 
boundary conditions, the deflection and rotation of the cross-section 
are zero at each boundary. Thus, we use these classical as well as 
the newly derived boundary conditions in Eqs. (20)-(21) and (24)-
(25) to derive the following boundary conditions. In this way we 
satisfy all four boundary conditions. 
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Substituting these boundary conditions in Eq. (32) and setting 

the determinant of the coefficient matrix to be zero, the critical 
buckling load is derived as 
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The critical buckling load using the dimensionless parameters 

µ  and Ω  is 
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(42) 

 
Again, this equation may be transformed into either the nonlocal 

Euler-Bernoulli theory, for the shear parameter set to zero, ; the 

classical Timoshenko beam theory, for the nonlocal parameter set to 
zero, 0=µ ; or classical Euler-Bernoulli beam theory, for both the 

shear and the nonlocal parameters set to zero, 0==Ω µ . 

Cantilever beams 

The boundary conditions for the fixed end of a cantilever beam 
at 0=x  are derived in Eq. (40) for clamped beams. However, the 

boundary conditions for the free end of a cantilever beam at Lx =  

are obtained based on the newly derived boundary conditions in 
Eqs. (20)-(21) and (24)-(25). Considering the classic boundary 
conditions, the shear force and bending moment are zero at the free 
end. Thus, we use these classic boundary conditions as well as the 
newly derived boundary conditions in Eqs. (20)-(21) and (24)-(25) 
to derive the following boundary conditions: 
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(43) 

Again, these boundary conditions satisfy Eqs. (20)-(21) and 
(24)-(25). Applying these boundary conditions and solving the 
transcendental equation corresponding to the determinant of the 
coefficient matrix, the critical buckling load is obtained  
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Simplifying the above equation by means of the nonlocal 

parameter, µ , and shear deformation parameter, Ω , the critical 
buckling load becomes 
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This result is similar to that obtained by Reddy and Pang (2008) 

for cantilever beams, except an additional term which is the product 

of µ  and Ω . Again, this is due to neglecting the sixth-order term 
in solving the differential equation in their work. This equation is 
presented as below: 
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Thus, in the case of cantilever beams, it can verify Eq. (45) and 

new boundary conditions in Eqs. (40) and (43) derived from 
variational approach. 

 Propped cantilever beams 

The boundary conditions for propped cantilever beams are the 
combination of clamped and simply supported boundary conditions, 
derived before. Assuming the fixed end at 0=x  and hinged end at 

Lx = , we have Eqs. (40) and (36) for the fixed and hinged 
boundary conditions, respectively. 

Solving the determinant equation of the coefficient matrix, 
results the critical buckling load as below: 
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Hence, the critical buckling load using the dimensionless 

parameters µ  and Ω  is 
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Generalizing, the closed-form and exact solution of critical 

buckling load for nonlocal Timoshenko beam with various end 
conditions is investigated as 
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where k  is a constant depending on different boundary 

conditions and defined as 1=k  for simply supported, 2=k  for 
clamped, 5.0=k  for cantilever and 43.1=k  for propped cantilever 
beams considered for the fundamental mode of buckling load. This 
is a remarkable result which can relate the nonlocal solutions with 
the small-scale effects to the classical solutions of the beams.  

Defining the equivalent values for length, nonlocal and shear 
deformation parameters as follows: 
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where eql  is an equivalent length, defined for buckling of columns 

with different boundary conditions. 
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Simplifying Eq. (49) by using equivalent values in Eq. (50), 

we obtain 
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In addition, this result can simply degenerate into the nonlocal 

Euler-Bernoulli beam theory for 0=Ωeq , classical Timoshenko 

beam theory for 0=eqµ  and classical Euler-Bernoulli beam model 

by letting 0==Ω eqeq µ . 

Numerical Results 

Comparison of critical buckling loads for beam theories 

In this section, we consider numerical solutions for CNTs 
modeled as nanobeams with circular cross sections. The numerical 
results are presented in the form of graphs and tables for different 
types of end conditions, using the following effective properties of 
carbon nanotubes (Reddy and Pang, 2008): 
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Plots of the critical buckling loads for nonlocal Timoshenko 
beam for different values of shear deformation and nonlocal 
parameters are presented in Fig. 2.  

As illustrated in Fig. 2, the solid lines for 0=Ω  denote Euler-
Bernoulli beam which are the upper bound solutions.  By increasing 

the shear deformation parameter, Ω , the critical buckling loads 
decrease. The effect of shear deformation is quantified for different 
boundary conditions. This effect is negligible for dL /  ratios more 

than 20 (or Ω  less than 0.0005), but significant by increasing the 

Ω , for dL /  ratios less than 20. 
Moreover, the intersections of the curves and the y-axes (i.e., 
0=µ ) are the ratios of the local critical buckling loads. 

Specifically, for 0=Ω , these values are the same as the local 
Euler-Bernoulli beam solutions. 

Furthermore, the comparison of the ratio of the critical buckling 
loads, r, for different end conditions and with respect to the nonlocal 
Euler-Bernoulli, Timoshenko and exact Timoshenko solutions are 
presented in Tables 1-4. 
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Figure 2. Plots of the ratios of the buckling loads for different values of µ and Ω  and various boundary conditions. 

 

Table 1. Comparison of the ratio of the critical buckling loads for simply supported beams with respect to nonlocal Euler-Bernoulli, Timoshenko and 
exact Timoshenko solutions. 

00170.0=Ω  00075.0=Ω  00042.0=Ω  
µ  NEBT NTBT Exact r µ  NEBT NTBT Exact r µ  NEBT NTBT Exact r 

0 1 0.9835 0.9835 0 1 0.9927 0.9927 0 1 0.9959 0.9959 
0.0025 0.9759 0.9602 0.9598 0.0011 0.9893 0.9820 0.9819 0.0006 0.9939 0.9900 0.9900 
0.01 0.9102 0.8965 0.8952 0.0044 0.9584 0.9516 0.9513 0.0025 0.9759 0.9720 0.9719 
0.0225 0.8183 0.8072 0.8048 0.01 0.9102 0.9041 0.9035 0.0056 0.9474 0.9437 0.9434 
0.04 0.7170 0.7085 0.7051 0.0178 0.8506 0.8452 0.8443 0.01 0.9102 0.9067 0.9064 

 
 
Table 2. Comparison of the ratio of the critical buckling loads for clamped beams with respect to nonlocal Euler-Bernoulli, Timoshenko and exact 
Timoshenko solutions. 

00170.0=Ω  00075.0=Ω  00042.0=Ω  
µ  NEBT NTBT Exact r µ  NEBT NTBT Exact r µ  NEBT NTBT Exact r 

0 4 3.7491 3.7491 0 4 3.8845 3.8845 0 4 3.9342 3.9342 
0.0025 3.6407 3.4317 3.4123 0.0011 3.8335 3.7273 3.7228 0.0006 3.9030 3.8403 3.8389 
0.01 2.8678 2.7365 2.6880 0.0044 3.4080 3.3238 3.3096 0.0025 3.6408 3.5861 3.5808 
0.0225 2.1184 2.0458 1.9855 0.01 2.8678 2.8079 2.7850 0.0056 3.2727 3.2285 3.2188 
0.04 1.5509 1.5117 1.4536 0.0178 2.3492 2.3089 2.2813 0.01 2.8679 2.8339 2.8207 
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Table 3. Comparison of the ratio of the critical buckling loads for cantilever beams with respect to nonlocal Euler-Bernoulli, Timoshenko and exact 
Timoshenko solutions. 

00170.0=Ω  00075.0=Ω  00042.0=Ω  
µ  NEBT NTBT Exact r µ  NEBT NTBT Exact r µ  NEBT NTBT Exact r 

0 0.25 0.2490 0.2490 0 0.25 0.2495 0.2495 0 0.25 0.2497 0.2497 
0.0025 0.2485 0.2474 0.2474 0.0011 0.2489 0.2489 0.2489 0.0006 0.2496 0.2494 0.2494 
0.01 0.2440 0.2430 0.2430 0.0044 0.2469 0.2469 0.2469 0.0025 0.2485 0.2482 0.2482 
0.0225 0.2368 0.2359 0.2359 0.01 0.2435 0.2436 0.2435 0.0056 0.2466 0.2463 0.2463 
0.04 0.2275 0.2267 0.2266 0.0178 0.2390 0.2390 0.2390 0.01 0.2440 0.2438 0.2438 

 
 
Table 4. Comparison of the ratio of the critical buckling loads for propped cantilever beams with respect to nonlocal Euler-Bernoulli, Timoshenko and 
exact Timoshenko solutions. 

00170.0=Ω  00075.0=Ω  00042.0=Ω  
µ  NEBT NTBT Exact r µ  NEBT NTBT Exact r µ  NEBT NTBT Exact r 

0 2.0449 1.9773 1.9773 0 2.0449 2.0143 2.0143 0 2.0449 2.0276 2.0276 
0.0025 1.9467 1.8853 1.8823 0.0011 2.0005 1.9712 1.9705 0.0006 2.0193 2.0023 2.0022 
0.01 1.7014 1.6543 1.6451 0.0044 1.8781 1.8522 1.8500 0.0025 1.9467 1.9309 1.9302 
0.0225 1.4062 1.3739 1.3597 0.01 1.7014 1.6801 1.6760 0.0056 1.8362 1.8222 1.8207 
0.04 1.1313 1.1103 1.0939 0.0178 1.5043 1.4877 1.4818 0.01 1.7015 1.6894 1.6870 

  
As it may be observed from Tables 1-4, the first row of each 

table indicates the local form (i.e., 0=µ ) and in this state the 
solution of the nonlocal Timoshenko beam without higher-order 
boundary conditions and exact nonlocal Timoshenko beam are the 
same. This is due to ignoring the nonlocal parameter that leads to 
ignoring the higher-order boundary conditions. 

In general, the shear deformation and nonlocal parameters have 
the effect of reducing the buckling loads. This effect is the most 
significant for clamped beams (up to 7%) and the least significant 
for cantilever beams (about 1%). 

Validation of critical buckling strains 

In this subsection, the numerical results for critical buckling 
strains obtained from this continuum mechanics theory are 
compared with those obtained from MD simulations and Sanders 
shell theory (Silvestre et al., 2011). Since the MD simulations 
referenced herein consider the CNTs with fixed ends, we also 
consider the NTBT model with fully clamped boundary conditions. 
In addition, CNT(5,5) is analyzed with a diameter Å71.6=d  and 

CNT(7,7) with a diameter Å40.9=d , for different lengths. Both 

nanotubes are modeled using a thickness Å66.0=h , Young’s 

modulus TPaE 5.5=  and Poisson’s ratio 0.19=ν  (Yakobson et 

al., 1996). The results from MD simulations, nonlocal Timoshenko 
beam and Sanders shell models are compared in Table 5. 

It is seen that the critical buckling strains are in good agreement 
as compared with the results obtained from MD simulations as well 
as Sanders shell theory. Moreover, the results show that unlike the 
other beam theories, this model could capture correctly the length-
dependent buckling strains of short CNTs for the mode of shell-type 
buckling. In fact, the available beam models are unable to show the 
correct trend in critical axial buckling strains of short CNTs, while 
the proposed nonlocal beam model shows much better agreement 
with the molecular dynamics simulation results. 

Finally, based on the MD simulation results, the value of 
nonlocal constant is determined for CNTs based on an averaging 
process. The best match between MD simulations and nonlocal 
formulations is achieved for a nonlocal constant value of 3.00 =ae  

for CNT(5,5) and 53.00 =ae  for CNT(7,7), with good accuracy (the 

error is less than 10%). 

 
 

 

Table 5. Comparison between critical buckling strains of CNT(5,5) and CNT(7,7) obtained from MD simulations, Sanders shell theory (SST) (Silvestre et 
al., 2011), and proposed nonlocal Timoshenko beam theory (NTBT). 

  Critical buckling strains of CNT(5,5) and CNT(7,7) 

L (Å) d (Å) MD 
NTBT 

(proposed) 
SST Local Buckling Global Buckling 

16.09 6.71 0.08146 0.08461 0.08729 0.08779 0.85862 
21.04 6.71 0.07528 0.08280 0.08288 0.08050 0.50210 
28.46 6.71 0.06992 0.06964 0.07858 0.06955 0.27430 
28.29 9.4 0.06514 0.06568 0.06582 0.06164 0.54467 
40.59 9.4 0.04991 0.05825 0.05885 0.05384 0.26469 
52.88 9.4 0.04710 0.04607 0.05600 0.04776 0.15591 
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Conclusions 

Nonlocal Timoshenko beam model was developed and buckling 
behavior of CNTs was analyzed using a mixed approach based on 
the strain gradient theory and variational method of total potential 
energy. This approach provides the governing equations and 
variationally consistent sets of boundary conditions for various end 
supports. 

In addition, the exact and closed-form eigenvalues of the 
nonlocal critical buckling loads for nanobeams with various end 
conditions were investigated, which are more complete and accurate 
compared with those available in the literature. These solutions 
could simply be reduced to the nonlocal Euler-Bernoulli, classical 
Timoshenko and classical Euler-Bernoulli beam models by ignoring 

the nondimensional shear deformation parameter Ω , nonlocal 
parameter µ  or both of them, respectively.  

Moreover, the small-scale effects and shear deformation 
parameter are specifically highlighted for this model using higher-
order boundary conditions. In this case, it is clearly observed that 
the critical buckling loads obtained from Eq. (52) for all different 
boundary conditions are always smaller than those predicted by the 
classical model. In fact, the nonlocal parameter µ  and shear 

deformation parameter Ω  have the effect of reducing the buckling 
load. This effect is the most significant for clamped beams (up to 
7%) and the least significant for cantilever beams (about 1%). 
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