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Numerical Experimental Comparison 
of Dam Break Flows with non-
Newtonian Fluids 
The dam-break flow involving non-Newtonian fluids is a type of flow commonly 
observed in nature as well as in common industrial processes. Experiments of non-
Newtonian dam-break flows were conducted in horizontal channels and aqueous 
solutions of Carbopol 940 were used, which were modeled by the Herschel-Bulkley 
constitutive equation. Their flows were filmed and the frames were compared with 
numerical simulations. Two particular results were analyzed: the front wave evolution 
with time and its stop distance. The CFX software was employed and the simulations 
were conducted with the VOF method. Both results, numerical and experimental, were 
compared with shallow water approximation solutions found in literature. The 
numerical code, which uses complete momentum equations, showed better agreement 
with the experiments than those using shallow water equations. It seems that the 
hypotheses used by the shallow water approximated equations are not appropriate for 
the first instants of the flow, just after the dam-break and errors are introduced. 
Probably, these errors are propagated producing the differences encountered. 
Keywords: dam-break, Herschel-Bulkley fluids, shallow water, complete solution, VOF 

Introduction1 

Dam-break flows can be described as the flow caused by the 
sudden release of a contained portion of fluid. Many environmental 
flows can be modeled as dam-break flows. It is common to see mud 
flows generated by clay-water solutions that slumps in mountainous 
regions after torrential rain or even by the collapse of a barricade. 
Other examples includes debris flows, lava flows and snow 
avalanches, which unfortunately, often produces catastrophic 
effects. But it is not only in nature that dam-break flows occur. 
Many industrial applications involve the usage of fluids being 
released suddenly. Food processing, transport of liquid substances in 
chemical factories, concrete transport in civil constructions and 
Bostwich consistometers (Balmforth et al., 2007) are just a few 
examples of industrial related dam-break flows. Therefore, the 
knowledge of the applicability limits of the existing theories used 
for the solution of dam-break flows are vital for better engineering 
projects in industry and also in preventing geological related 
accidents, like those mentioned above. The main aim of the work 
presented herein is to show that the most common used theory, the 
shallow water theory, must be used with care and be reduced, in 
many cases, only to initial studies. 

In free surface problems, like dam-break ones, the surface 
position introduces difficulties in solving the motion equations. The 
most common strategy is the usage of shallow water approximation, 
transforming two phase flows into monophasic problems. Shallow 
water equations are obtained by the vertical integration of the 
motion equations. This procedure requires the following 
considerations: 

- Small vertical velocities; 
- Hydrostatic pressure field, and 
- The independence of the velocity horizontal component with 

the vertical coordinate, i.e.: u = u(x, t). 
It is not unusual the fluids existing in this type of flow to have 

non-Newtonian rheologies. The inclusion of non-Newtonian 
constitutive equations into the Cauchy equation of motion 
introduces another difficulty in dealing with this subject and 
numerous developments have been made in the last decades.  

However, the modern computational tools allow solutions to this 
issue without the need of shallow water approximation. Therefore, 
the complete solution of these flows could be used for more detailed 
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analysis leaving more simplified studies for the shallow water 
approximation developments. The aforementioned considerations of 
shallow water approximation are generally related to small ratio 
problems, i.e.: 
 

ε << 1                            (1) 
 

For dam-break flows this is equivalent to: 
 

 ε = H0/L0 << 1                           (2) 
 
where, generally, H0 is the reservoir initial high and L0 is the 
reservoir length. 

In this paper some shallow water solutions found in the 
literature are compared with numerical simulations that use the 
complete motion equations (without the shallow water approach). 
Both kinds of results are also compared with experimental data. 

Nomenclature 

C = concentration, %  
f = function (rheological model) defined by Eq. (3) 
H0 = reservoir initial high, mm 
k = consistency index, Pa sn 

L0 = reservoir length, mm 
n = flow index, dimensionless 
p = pressure, Pa 
pH = hydrogen potential, dimensionless 
S = source term, kg/(m2 s2) 
t = time, s 
T = temperature, °C 
u = vector velocity, mm/(s) 
ut = total uncertainty, % 
VF = volume fraction, dimensionless 
x = horizontal distances, mm 
y = vertical distances, mm 

Greek Symbols 

α = auxiliary variable defined by Eq. (15), 1/(s) 
ε = aspect ratio, dimensionless 
Ḋ = strain rate tensor, 1/(s) 
ḊII  = second invariant of the strain rate tensor, 1/(s2) 
Ḋinf = inferior limit of strain rate, 1/(s) 
Ḋsup = superior limit of strain rate, 1/(s) 
η = apparent viscosity, Pa s 
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ρ = specific mass, kg/(m3) 
τ = deviatoric tensor, Pa 
τII  = second invariant of the deviatoric tensor, Pa2 

τc = yield stress, Pa 
µ = Newtonian viscosity, Pa s 

Subscripts 

carb = relative to Carbopol 
i = relative to phase 

Superscripts 

T = symbol for transpose of a matrix  

Rheology: Herschel-Bulkley Fluids 

The constitutive equation for non-Newtonian fluids can be 
considered as an expansion of the constitutive equation for 
Newtonian fluids, replacing the Newtonian viscosity, µ, by an 
expression for viscosity as function of ḊII: 
 

τ = f (ḊII):Ḋ                           (3) 
 
where Ḋ = (∇u + ∇uT)/2  is the strain rate tensor, τ is the deviatoric 
tensor and ḊII =[(tr(Ḋ))2-tr(Ḋ2)]/2 is the second invariant of Ḋ. 

For fluids that present yield stress, such equation can be written 
as follows (Coussot, 1997): 
 

τ = τc Ḋ(-ḊII)
-1/2+f (ḊII) Ḋ                         (4) 

 
where τc is the yield stress. 

The yield stress is a concept used for practical purposes. It was 
first developed because, in some applications, many fluids appear to 
behave like solids for stresses below some stress threshold (in fact, 
it is most probable that the behavior is similar to an elastic solid). 
Although there have been many discussions on this subject, it is out 
of the scope of this paper. 

In the experiments, aqueous solutions of Carbopol 940 were 
used. Carbopol is a family of polymers used to produce non-
Newtonian fluids, and it was developed by NOVEON™. Many 
publications use aqueous solutions of Carbopol as test fluid in 
rheological problems and, in most cases, its rheology is modeled by 
the Herschel-Bulkley viscosity equation (e.g. in dam-break flows: 
Ancey and Cochard, 2009; Balmforth et al., 2007; Cochard and 
Ancey, 2009; Debiane, 2000; Piau and Debiane, 2005; among 
others), in which: 
 

f (ḊII) = 2n k Ḋ (-ḊII)
(n-1)/2                             (5) 

 
where n is the flow index and k is the consistency index.  

And then, replacing Eq. (5) into Eq. (4) we have: 
 

τ = τc Ḋ(-ḊII)
-1/2+2n k Ḋ (-ḊII)

(n-1)/2                         (6) 
 

Although, there is a constant discussion in the scientific 
community about the validity of using Herschel-Bulkley model for 
Carbopol solutions, Ancey et al. (2007) affirm that there is much 
evidence of Carbopol behaving differently than predicted by the 
equation (6). In fact, it is known that Carbopol presents thixotropy 
(a time dependent phenomena characterized by differences in the 
viscosity even when submitted by constant strain rate), 
viscoelasticy and slip effects. All of these phenomena are 
macroscopic manifestations of the microstructure of complex 
material and so have the same origin, which is not contemplated 
by the Herschel-Bulkley model (see Møller et al., 2006). Roberts 
and Barnes (2001) comment that although there is the existence of 
such effects, the usage of Herschel-Bulkley model for Carbopol 
solutions is reasonable in most engineering applications.  

The usage of the yield stress can produce some difficulties in 
numerical simulations. Rewriting Eq. (4), 
 

τ = η(-ḊII) Ḋ                           (7) 
 
where η(-ḊII) = τc (-ḊII)

-1/2+f (ḊII) is the apparent viscosity, and 
defining the second invariant of τ as: 
 

τII  =[(tr(τ))2-tr(τ 2)]/2                                         (8) 
 
it is possible to see that, invoking the Von Mises Criterion 
(Papanastasiou, 1987), for: 
 

|τII | →  τc
2                           (9) 

 
the effective viscosity tends to infinity.  

A way to avoid this kind of behavior is the usage of the so called 
regularization methods, which, in this kind of problems, consists in 
replacing the viscosity at Eq. (7) such that it could be defined for Ḋ 
tending to zero. Friggard and Nouar (2005) revised some existing 
regularization methods and concluded that they can improve the 
convergence of simulations, but for |τII | too close to the yield stress, 
the regularization methods should be avoided. 

Dam-Break Flows 

As mentioned, dam-break flows correspond to an abrupt release 
of fluid. At first, the bulk flow is dominated by inertia effects and a 
rapid transient behavior. Afterwards, the viscous forces become 
more and more important, until a viscous regime can be 
characterized. 

The study of dam-break problems began a century ago with 
Ritter, in 1892 (apud Whitham, 1954), who studied the dam-break 
flow of inviscid fluids in horizontal channels using the shallow 
water approach. Whitham (1954) introduced the hydraulic resistance 
effect and, by the Pohlhausen integration of shallow water 
equations, he produced better results than previous work (Ritter’s, 
1892, and Dressler (apud Whitham, 1954), who used the Chèzy 
resistance term). 

Over the twentieth century many authors analyzed dam-break 
flows of inviscid and Newtonian fluids. In the last decades, the 
study of non-Newtonian fluids and their flow behavior started to be 
more preeminent and, with that, also dam-break flows of non-
Newtonian fluids. The main question is how to solve the front wave 
position. After the release, when viscous dissipation became 
dominant (viscous regime), the major part of the flow is nearly 
steady and uniform, but the front is characterized by a sheared 
region at the bottom followed by a plug zone near the surface. 
Unlike dam-break flows of Newtonian fluids, fluids presenting yield 
stress tends to asymptotically arrest. This arrested state is 
characterized by two kinds of force balances. For steep slopes, the 
balance is between gravitational and viscous forces and, for nearly 
horizontal channels there is a balance between pressure cross flow 
gradient and viscosity (Ancey and Cochard, 2009). 

Huang and García (1998) studied the dam-break flows of 
Herschel-Bulkley fluids on steep flumes. They used lubrication 
theory, similar, for this case, to shallow water approach, and 
analyzed the effect of some rheological parameter variations 
(varying n and k). Debiane (2000) obtained analytical solutions for 
Newtonian and non-Newtonian Herschel-Bulkley fluids, in 
rectangular channels with infinite and finite reservoirs. The flow 
was divided into three regimes, an inertial regime, followed by two 
viscous ones. It was found that such regimes have distinct and 
asymptotic behaviors. An individual equation for the stop distances 
was also proposed, based on the yield stress. Yabuchi (2004), also 
working with Newtonian and Herschel-Bulkley fluids, separated the 
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flow in only an inertial regime and one viscous regime, solving the 
shallow water equations by the Pohlhausen method. Piau and 
Debiane (2005) applied the analytical results of Debiane (2000) in 
Bostwick consistometers and Balmforth et al. (2007) analyzed that 
same device through the shallow water approach and neglecting the 
inertial forces. 

Matson and Hogg (2007) and Ancey and Cochard (2009) used 
the lubrication theory for Herschel-Bulkley dam-break flows. 
Matson and Hogg (2007) found asymptotic equations for the 
arrested state. Ancey and Cochard (2009) found equations for the tip 
position and surface position. They found good agreement with 
experimental data for calculating the shape surface and tip position 
for bigger times, i.e., for the viscous regime. However, in the first 
instances, the solution presented some errors, owing to the small 
ratio assumption. Hogg and Matson (2009) studied the approach to 
the arrested state of Herschel-Bulkley fluids in dam-break flows 
with steep slopes by approximating the free surfaces as Lambert-W 
functions. Dubash et al. (2009) used a spline method to construct the 
interface shape for any aspect ratio. They affirmed that the shallow 
water results are only reasonable for small yield stress fluids. 
Cochard and Ancey (2009) introduced a new experimental 
procedure for the 3-D surface reconstruction of dam-break flows. 
Finally, concerning other rheological aspects, Chanson et al. (2006) 
characterized dam-break flows of thixotropic fluids using three 
categories based on the initial jamming degree. 

As can be seen, shallow water equations can predict the final 
shape of dam-break flows of non-Newtonian fluids, but care is 
needed for its application in the inertial phase of the flow. Shao and 
Lo (2003) presented a SPH (Smoothed Particle Hydrodynamics) 
model to simulate free surface flows. They simulated dam-break 
flows as test problem and, using the complete motion equations, 
they founded good agreement between their results and VOF 
solution. They applied their method to Newtonian and non-
Newtonian fluids using the Cross and Bingham constitutive 
equations. They also mention that shallow water results are only 
applicable after a certain time from the initial dam-break, mainly, 
when the dam is high.  

Experimental Procedures 

All the experiments were conducted at the facilities of the 
Rheology Laboratory, Paulista State University–UNESP, Campus of 
Ilha Solteira. First of all, many rheological tests were performed to 
characterize Carbopol 940 aqueous solutions. All the Carbopol 
solutions were made using deionized water (with electrical 
conductance 0.4 µS/cm).  Carbopol is a very hydrophilic powder 
and most care was necessary in its mixture with water. In fact, 
preparing Carbopol for rheological tests still needs a development of 
an adequate protocol (Ancey et al., 2007), because preparing it for 
commercial purposes produces many bubbles (NOVEON™, 1993) 
which is not permissible for rheological tests.  

After calculating the necessary masses of Carbopol and 
deionized water, the powder was gently dispersed on the water 
surface. After that, its recipient was left at rest until total Carbopol 
dissolution (which takes between 8 to 24 hours). This procedure 
diminishes the possibility of Carbopol entrapment and the 
production of gas bubbles. 

Carbopol only exhibits its true rheological properties when it is 
fully neutralized (pH = 7.0). For the neutralization, a portion of 
NaOH 3.2 times the mass of Carbopol was necessary. This value 
was found by a titration procedure of many samples with different 
concentrations. After the complete dissolution of Carbopol into the 

water, the NaOH solutions were slowly mixture until reaching 
complete neutralization. 

Rheological tests were performed using a Brookfield 
Engineering R/S Rheometer (with coaxial cylinders – bobs and 
spindles), with controlled shear stress, varying the Carbopol mass 
concentration, the pH value and temperature. During these tests no 
evidence of slip material at the inner cylinder was observed. 
Furthermore, thixotropy tests were also carried out imposing loading 
and unloading cycles on samples. For the problem herein, thixotropy 
found was negligible. For more information about the tests, their 
observations and the determination of experimental uncertainties, 
please reference Minussi (2007).  

The dam-break tests were made using an acrylic channel. The 
channel was composed of a barricade, activated by a hydraulic piston, 
and a reservoir. A guide grid, spaced by 5 mm, was positioned at one 
of the lateral walls. More details are presented in Fig. 1. 

Five different Carbopol 940 mass concentrations, C, were used 
and its rheometric properties are shown in Table 1. Three samples of 
each fluid were used to calculate the total uncertainty, ut. The 
hydrogen potential, pH, and the temperature, T, were also 
controlled. 

Thirteen tests were performed on the channel, varying the initial 
reservoir high, H0, and the fluid used. In Table 2 the dam-break tests 
are resumed. 

Before each test, the correct amount of fluid was introduced at 
the reservoir and the channel was verified to make sure it was in the 
horizontal position. For tests 1 to 8 a ball level was used and for 
tests 9 to 13 a laser inclinometer was used. With this last instrument, 
a very small inclination of 0.13° ascendant on the previous tests was 
noted. The dam wall opening time was about 0.2 s. The fluid was 
then released and its flow started. The flow was filmed with a JVC 
(GY DV 500) digital camera. The measures of the channel, the 
initial height and the concentration of Carbopol were chosen to be of 
the same order as those used by Debiane (2000). 

 

 
 

 
Figure 1. Channel. (a) Dimensions; (b) photo of the  channel (empty) with 
the dam opened. 
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Table 1. Properties of the fluids used on the dam-b reak experiments. 

Fluid C (%) + 10-4 T + 0.1 (ºC) pH Sample τc (Pa) k (Pa.sn) n 

1 0.116 28 
7.418 ±  
0.265 

1 28.829 3.884 0.491 
2 29.556 4.046 0.484 
3 31.622 4.959 0.464 

mean value 30.002 4.297 0.479 
ut (%) 8.19 16.69 6.90 

2 0.099 28 
6.945 ±  
0.140 

1 17.794 1.742 0.540 
2 18.828 1.853 0.535 
3 18.103 2.116 0.517 

mean value 18.242 1.904 0.531 
ut (%) 6.88 13.09 6.55 

3 0.139 30 
7.003 ±  
0.114 

1 49.351 8.021 0.437 
2 48.723 8.348 0.434 
3 49.462 7.143 0.455 

mean value 49.179 7.837 0.442 
ut (%) 6.07 10.97 6.72 

4 0.112 30 
7.184 ±  
0.157 

1 30.693 4.514 0.472 
2 31.395 4.288 0.476 
3 32.010 4.848 0.462 

mean value 31.366 4.550 0.470 
ut (%) 6.472 9.33 6.28 

5 0.139 18 
6.726 ±  
0.197 

1 38.301 6.363 0.462 
2 39.837 7.523 0.442 
3 39.371 7.902 0.436 

mean value 39.170 7.263 0.446 
ut (%) 6.43 14.09 6.95 

  Note: the specific mass, ρ, is equal to 1000 kg/m3 for all fluids. 
 

Table 2. Dam-break experiments. 

Test H0 + 5 (mm) Fluid Test H0 + 5 (mm) Fluid 
1 100 1 8 130 3 
2 130 1 9 100 4 
3 70 2 10 130 4 
4 100 2 11 70 5 
5 130 2 12 100 5 
6 70 3 13 130 5 
7 100 3 - - - 

 
 

Numerical Simulations 

The numerical simulations were conducted using the VOF 
(Volume of Fluid Method) in a two dimensional domain through the 
numerical package ANSYS CFX software. 

The different fluids, i.e., the carbopol aqueous solution and the 
air, were considered to be, respectively, a homogeneous liquid 
mixture and a pseudo pure substance, both immiscible and separated 
by an interface. A volume fraction variable was defined as being the 
ratio of the volume of the heavier phase in a computational cell 
divided by its total volume. For instance, in the case of two phases, 
if a cell contains both phases, i.e. the interface passes through such a 
cell, the volume fraction will be a value between 0 and 1, in the 
other cells the volume fraction will be equal to 0 (lighter phase: air) 
or 1 (heavier phase: carbopol solution). The method is divided into 
two steps, first there is the reconstruction step (algorithm), in which 
the interface is built, and second the propagation step (algorithm) 
propagates the interface (Scardovelli and Zaleski, 1999). 

The equations solved were the mass conservation equation: 
 

∂ρ/∂t + ∇.(ρu) = 0                      (10) 
 
and the momentum conservation equation: 

 
∂ρu/∂t + ∇.[ρ (u⊗u) – η(∇u + ∇uT)] = S                     (11) 

 
where η is the apparent viscosity; u is the velocity vector; S is the 
source term and p is the pressure. 

However, ρ and η corresponds to average values in the control 
volumes with volume fraction different from 1 and 0, and are 
calculated as: 
 

ρ = Σi=1,N (VFi ρi )        η = Σi=1,N (VFi ηi )                        (12) 
 
where i represents each phase; N is the total number of phases and 
VF is the volume fraction. 

From Eqs. (3), (5) and (9) the use of the Herschel-Bulkley 
model sets the liquid viscosity as: 
 

η = ηcarb = 1/2[τc (-ḊII)
-1/2 + 2n k (-ḊII)

(n-1)/2]                     (13) 
 

To avoid non physical behavior, ANSYS (2005) recommend, 
for power-law fluids 
 

η = 1/2[k (-ḊII)
(n-1)]                               (14) 
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the following modification: 
 

η = k{min[Ḋsup ,(α + Ḋinf)]}
 n-1            (15) 

 
where Ḋinf is an imposed inferior limit of the strain rate; Ḋsup is a 
superior one and α is an auxiliary variable defined as: α = 2(-ḊII)

-1/2. 
In this work, this model is extended to the yield stress term in 

the following manner: 
 

ηcarb = τc {max[Ḋinf , α]} -1 +  
k {min[Ḋsup , (α + Ḋinf)]}

n-1                             (16) 
 

Such modification prevents the numerical code from having 
convergence problems when ḊII  tends to zero. 

As already mentioned, the beginning of the flow is dominated 
by inertial effects and as time passes, the viscous dissipation slows it 
until it stops, when the shear stresses are near the yield stress. Note 
that this is an idealized model, in which the yield stress exists and 
there is no surface tension. In the numerical simulations, there is no 
dam and the flow begins by the pressure difference.  

The transient terms were approximated by a totally implicit 
second order scheme. Weighted Upstream Differencing Scheme 
(WUDS scheme) was used as the interpolation function. The 
pressure-velocity coupling was accomplished using a co-located 
grid and the solution of the linear equations system was made by the 
ILU – MG factorization (Incomplete Lower Upper – MultiGrid). 

The simulations were made using a rectangular domain which 
was 1900 mm long, 145 mm high and 5 mm wide. A 5 mm regular 
grid was used, totalizing 11020 cubic volumes. All the simulations 
were made using a time step of 0.001 s, total time equal to 1.5 s and 
convergence criteria with a maximum residuum of 10-4 (based on 
ANSYS, 2005). Mesh refinement and convergence criteria tests are 
shown in the end of the next section. 

Results and Discussions 

The dam-break tests were undertaken using the previously 
explained methodology. The results were compared with numerical 
simulations and two literature shallow water solutions. 

The flow development was analyzed through the obtainment of 
the tip distance with time (i.e. front wave position for 0.1 s time 
intervals). For each test, sixteen frames (0 to 1.5 s) were taken and the 
front wave positions were obtained with the help of the grid installed 
at the flume. The data were then compared with the CFX and the 
results of Debiane (2000) and Yabuchi (2004). The numerical values 
were defined as the maximum horizontal distances of the wave front 
for volume fractions equals to 0.5. And, the experimental uncertainty 
on the front position could be as high as 5 mm. 

Kinematic and run out of the wavefront 

Figure 2 shows the longitudinal view of Test 1 taken as four 
shooting frames and, above each one, the corresponding numerical 
result from CFX software. Figures 3 to 7 contain the front wave 
position with time for all tests. 

Figures 3 and 4 show that Tests 2, 4 and 5 present only one part 
of the experimental curve. This is due to the wave front having 
reached the end of the camera focus area earlier than the end of the 
experiment, i.e., earlier than 1.5 s.  

Analyzing Figs. 2 to 7, the numerical results can be observed to 
have reached bigger horizontal distances than the experimental ones 
in most of the tests. One of the causes may be the friction on the 
lateral walls which was not included in the numerical simulations. It 

is important to notice that a small amount of fluid is retained in the 
dam and this reduces the total amount of fluid. However, an analysis 
of the opening law influence on the solution is out of the scope of 
this work. The non inclusion of the gate influence was intentional as 
the literature solutions used here do not include it. For the same 
reason, the surface tension was also not included.  

 

 
Figure 2. Numerical-experimental comparison of four  frames – Test 1.  

 
At the beginning of the flow, the difference between the 

numerical and experimental results is reduced. One of the possible 
causes is the difficulty that the numerical code has to converge the 
first times. The dam-break is artificially made through the pressure 
difference complicating the interface convergence. This fact could 
balance the previous mentioned effect of the restraint of fluid at the 
dam wall. 

The experimental data is not completely correlated by the 
theoretical curves. In fact, the division of the flow in distinct phases, 
similar to that proposed by Debiane (2000) and Yabuchi (2004), is 
done to enable shallow water equations liable to be analytically 
solved. The viscous dissipation becomes, after the release, more 
important in a continuous way, making it difficult to characterize the 
time when an inertial phase ends and a viscous one begins. For the 
same reason, Debiane’s results were in better agreement than those 
of Yabuchi’s, since Debiane’s used two viscous regimes, instead of 
just one used by Yabuchi (2004), making the transition of inertial to 
viscous regime more realistic.  
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Figure 3. Horizontal positions of the wave front – tests with fluid 1. 

 
 
 
 

 
Figure 4. Horizontal positions of the wave front – tests with fluid 2. 
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Figure 5. Horizontal positions of the wave front – tests with fluid 3. 

 
 
 
 

 
Figure 6. Horizontal positions of the wave front – tests with fluid 4. 
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Figure 7. Horizontal positions of the wave front – tests with fluid 5. 

 
However, it is shown that the numerical approach presented in 

this paper in the majority of the situations is within the uncertainty 
margin of the experimental data. This reveals that the shallow water 
solutions presented herein have some difficulties in dealing with this 
problem. The major cause of these discrepancies is the assumption 
of small aspect ratio, ε << 1, which is not reasonable in the very 
beginning of the flow.  

It is necessary to notice two things: the overall behavior 
obtained in the experiments is very similar to those using shallow 
water, i.e., they achieve the arrested state asymptotically and the 
experimental values were evaluated at the channel wall and not at 
the flow centerline. So, front wave position values smaller then the 
real ones were expected to be obtained, contributing to the 
difference between shallow water solutions and experimental 

values. Lateral friction and gate influences also contribute to these 
differences. 

Debiane (2000) obtained a stop distance equation, also called run 
out equation, which produces results different from those achieved 
by the evolution developments (shown in Figs. 3 to 7). This equation 
is not affected by the problems of applying shallow water equations 
at the beginning and the results are in good agreement with the 
experimental values. Such results are shown in Table 3. 

There are some implications in using the word “stop”. First, the 
arrested state is obtained, theoretically, at t →∞, i.e., asymptotically. 
But, in the experiments it is difficult to affirm if the flow is 
completed arrested or is in very slow motion (only detectable over 
many hours or even days). This difficulty increases in horizontal 
channels, because the effect of gravity is small. 

 
 

Table 3. Stop Distance Comparison (in ascending ord er). 

NUMERIC DEBIANE (2000) EXPERIMENTAL 

Test Fluid H0 
Stop 

distance 
Test Fluid H0 

Stop 
distance 

Test Fluid H0 
Stop 

distance 
6 3 7 77 6 3 7 219 6 3 7 90 

11 5 7 126 11 5 7 299 11 5 7 105 

3 2 7 334 3 2 7 355 3 2 7 280 

7 3 10 209 7 3 10 248 7 3 10 190 

12 5 10 297 9 4 10 392 12 5 10 240 

9 4 10 356 1 1 10 407 1 1 10 330 

1 1 10 423 12 5 10 482 9 4 10 345 

4 2 10 690 4 2 10 592 4 2 10 - 

8 3 13 392 13 5 13 318 8 3 13 330 

13 5 13 516 8 3 13 398 13 5 13 405 

10 4 13 606 10 4 13 568 10 4 13 - 

2 1 13 706 2 1 13 586 2 1 13 - 

5 2 13 > 1030 5 2 13 806 5 2 13 - 
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Figure 8. Initial velocity field of Test 5 (CFX res ults). 

 

Wave front velocity  

Now, it is important to focus on the beginning of the flow. With 
the “instantaneous” removal of the barricade the fluid motion is 
initiated by the pressure gradient. The flow is in the inertial regime, 
which means that the dynamics are governed by a balance between 
inertia and pressure gradient force terms. A very big transient 
behavior happens and the velocity field is almost vertical. This can 
be seen in Fig. 8. 

It can be confirmed that at the beginning of the flow, there is a 
significant vertical velocity. With time, the horizontal velocity 
components tend to become increasingly significant and, of course, 
the local aspect ratio will be smaller. It can be concluded that the 
application of shallow water equation at the beginning of the flow 
introduces errors that propagate with time. 
 

Effect of yield stress apparent viscosity 

Analyzing the numerical results of Table 2 it is possible to 
observe that the tests with fluid 3 have reached the arrested state 
earlier followed by fluids 5, 4, 1 and 2.  In a preliminary analysis it 
is plausible to conclude that such behavior is the result of the yield 
stress. However, by examining the behavior of the apparent 
viscosity with the strain rate showed in Fig. 9, we can observe that 
fluid 3 has the biggest apparent viscosity, followed by fluids 5, 4, 1 
and 2.  

The Herschel-Bulkley model is nonlinear so, to analyze the 
conjugate effect of yield stress and the other parameters, more tests 
would be necessary using hypothetic fluids. Although possible to 
use the experimental apparatus presented here, such analysis is 
outside the scope of this work. 

 

 
Figure 9. Apparent viscosity X strain rate. 
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Figure 10. Initial strain rate field of Test 5 (CFX  results). 

 
Strain rate field 

Figure 10 shows the strain rate field of test 5 for some time 
intervals.  

Although there are small viscosities, one can infer that a big 
amount of fluid stays at rest. It can also be seen that, in the front 
vicinity, the fluid is almost totally sheared and, with time, a plug 
zone begins to be more and more significant. This result agrees 
with Ancey and Cochard (2009). But the asymptotic nature of the 
flow raises difficulties in the numerical code, when the yield stress 
is achieved and creates a very big local viscosity. The usage of 
limiting the strain rates, Eq. (14), prevents the solution from 

diverging, though for physical times of order of 1 s more 
computational time spent was observed. 

Hydrostatic pressure condition  

It is also necessary to verify if the hydrostatic pressure condition 
has been respected. Figure 11 shows the pressure field at the 
beginning of Test 5 flow. 

The pressure field is not hydrostatic, mainly in the front wave, but 
the major part of the flow, has an almost hydrostatic pressure field. 

 
 

 
Figure 11. Initial pressure field of Test 5 (CFX re sults). 

 
 
 



Numerical Experimental Comparison of Dam Break Flows with non-Newtonian Fluids 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright   2012 by ABCM April-June 2012, Vol. XXXIV, No. 2 / 177 

Convergence and Mesh Tests 

To complete the results analysis convergence and mesh tests were 
performed. Two tests were performed: test 5, which presented the 
biggest stop distance, and test 6, with the smallest one. The 
convergence criteria tests were performed using a maximum residuum 
of 10-5. The mesh tests were performed using two grids: 1 mm grid 
and a 2.5 mm one. A smaller time step of 0.0005 s was used. The 
results are showed next in Figs. 12 and 13. 

Concerning the convergence tests, no significant differences 
were found. However, we can see some differences on the current 
numerical results and mesh refinement tests showed in Figs. 13, 
mainly, on the results of test 6. We calculated the position 
difference between the horizontal wave front of these tests, and 
the maximum was 18.63% at 1.5 seconds (for the 1 mm grid) and 
8.61% at 1.5 seconds (for the 2.5 mm grid), in comparison with 

the normally used mesh. Although some discrepancies can be seen 
at the end of the 1 mm mesh simulation at time 1.0 second, this is 
possibly the result of a difficult local time step convergence at that 
point in time leading to the difference of 18.63%. 

Taking these arguments into consideration, one conclusion that 
can be drawn is that, although a more refined mesh would have 
theoretically improved the numerical results, the computational time 
spent would not be acceptable for the objectives of this work. 

Analyzing all the results, the assumption of no vertical velocity, 
mainly at the flow beginning, seems to be the most critical 
assumption of shallow water approximation. It also appears that the 
simplifications used on the numerical experiments were reasonable 
and for the experimental conditions herein, the shallow water 
approximation must be reviewed. 

 
 

  

Figure 12. Convergence tests. Comparison of tests 5  and 6 with simulations using a convergence criteri a of 10 -5 residuum. 

 
 
 

 
Figure 13. Mesh tests. Comparison of tests 5 and 6 w ith two simulations: one performed with a 1 mm grid  and the other with a 2.5 mm grid. 
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Conclusions 

The major conclusion of this study is that the complete 
numerical solutions produced better results than the shallow water 
theoretical solutions. The necessity of knowledge of the limits of 
shallow water application and the physical parameters of each 
problem are emphasized (as also mentioned by Dubash et al., 2009). 

The problem with using shallow water approximation is more 
crucial at the beginning of the flow. The errors inset in the 
application of shallow water equations in the problem of dam-break, 
in the early stages, propagate such that the range of distance traveled 
is considerably higher when compared with the equations of the 
mathematical model presented in Eqs. (5) to (9) and the 
experimental results referenced to in this article. One solution could 
be the usage of another theory in that regime. 

However, it is necessary to mention that shallow water 
approximation has been used for a long time and it is useful in 
many applications. Shallow water approximation can be used 
especially in primary studies of complex problems. In all 
problems in which shallow water conditions are verified, their 
use should be implemented. 
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