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Nonlinear Dynamics of a SMA Large-
Scale Space Structure

Large-scale structures are of special interest efospace applications, especially the
ones involving smart materials. This paper dealthvein archetypal system with two
degrees of freedom that resembles the use of Sdents as vibration isolation systems
on a sparse aperture satellite array. The system 8KIA elements in two perpendicular
directions connected to a mass. Each SMA elemenbrisected to a base structure.
Imperfections are represented by establishing apaoieon between two different systems:
ideal and perturbed configuration system. The pled configuration is characterized by

a situation where all SMA elements are in a stfess-state. The thermomechanical
behavior of SMA elements is described by a cotisttunodel with internal constrains.

Numerical tests of this system are of concern shgits general dynamical behavior.

Periodic and chaotic motions are investigated simgwthe complex behaviors of this kind
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of system. The effect of imperfection in systerardigs is also discussed.
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Introduction

The unique thermomecanical characteristics of shmapmory
alloys (SMAs) are motivating the conception of salapplications
related to aerospace, biomedicine, and roboticeefad overviews
about SMAs application can be found in differerferences, as for
instance: Lagoudas (2008); Paiva and Savi (2006chddo and
Savi (2003); Denoyer et al. (2000); Webb et al.0@0 Van
Humbeeck (1999).

Dynamical applications of systems built with SMAemlents
explore the high dissipation capacity related te thysteretic
behavior and the property changes due to temperatariations.
Several research efforts presented different aspeft SMA
applications in dynamical systems that include afilon absorbers
and composite structures (Williams et al., 2005stigihi et al.,
2005; Elahinia et al., 2005; Nae et al., 2004; Binm2008; Tiseo et
al., 2010; Savi et al., 2011).

The dynamical response of SMA systems presentsarigh
and complex behavior. Periodic, quasi-periodic acdkdaotic
responses are usually presented for dynamical mystith SMA
elements. There are several research efforts dealth this kind of
system. Bernardini and Rega (2011la,b) presentedereral
overview of SMA dynamical response.

Savi and Braga (1993) treated the dynamical regpohSMA
systems showing periodic and chaotic behaviors.hddao et al.
(2004) discussed bifurcation and crises in a SMAillasor. Both
articles treated one-degree of freedom oscillatiisOF) employing
a polynomial constitutive model to describe thertt@mechanical
behavior of SMAs. Lacarbonara et al. (2004) ingzdtd the
nonlinear response of a 1DOF SMA oscillator nunalyc
demonstrating that a rich class of solutions, iditlg discontinuity
of frequency responses, quasi-periodicity and cltaogd arise in
nearly adiabatic conditions. Bernardini and Rega008)

interesting results as multistability and chaoscMalo et al. (2009)
proposed a procedure to evaluate Lyapunov expoiireritgsteretic
systems, presenting SMA as an application of tineige procedure.
Once again, a rich response is related to the Siéfem. Recently,
SMA oscillators with constraints have been investid considering
a discontinuous support that can be employed fdoration
reduction. Sitnikova et al. (2010) and Santos amdi $2009)
explored this idea using different constitutive reisd for the
thermomechanical description of SMAs, establishiognparisons
with the dynamical response of an oscillator wittstc support.

The dynamical behavior of SMA systems with multgrees of
freedom seems to be much more complex. Savi anldeBag2002)
presented an investigation considering one- and-degyee of
freedom systems. Machado et al. (2003) revisited2bOF system
showing different aspects of bifurcation and chaboarge-scale
structures might contain hundreds of connected s\dueing related
to multi-degree of freedom systems. This kind oficture is of
special interest for aerospace applications inolgidantennas.
Therefore, aerospace industry demands for a gecenmgbrehension
of dynamical behavior of multi-degree of freedom /S8y stems.

A typical large-scale structure with embedded SMAuators is
shown in Fig. 1, representing a two-dimensiondidatconnected
by SMA elements. An archetypal model of this lasgele structure
is also represented in Fig. 1, being composed sfngle mass
connected by SMA elements.

Archetypal models are usually employed in stabgibalysis of
structures, providing a global comprehension ofsygtem behavior
(Bazant and Cedolin, 1991). The two-bar truss isxample of this
kind of model that presents the snap-through benaVhis system
allows one to analyze bifurcation scenarios relatedstability
changes associated with different characteristié¢s bockling
behavior. Symmetric two-bar truss, also known as\tbn Mises
truss, represents one of the most popular systelated to stability

investigated a 1DOF system by considering a differe analysis. Concerning smart structures, Savi €8D2a) analyzed a

thermomechanical model presenting the same richfssSMA
oscillators. Aspects as nonlinear resonant congitioand
thermomechanical coupling influence were treatedvi St al.
(2008) discussed the SMA response by consideriegnatitutive
model that matches experimental data for quasestbalysis.
Investigations included tension-compression asymyraetd showed
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two-bar truss built with SMAs that presents a veagmplex
behavior. Recently, Savi and Nogueira (2010) readsithis truss
using a more realistic constitutive model. The comation of
geometrical and constitutive nonlinearities makesnlinear
dynamics of this structure especially complex.

Special Issue 2012, Vol. XXXIV / 401



Figure 1. SMA lattice.

Machado (2007) investigated the use of shape memaltoys
for vibration isolation and damping of mechanica}stems.
Specifically, it is treated a device composed ofi@s connected to
a frame through two SMA wires subjected to a sesfesontinuous
acceleration functions in the form of a sine swédps system is a
one-dimensional version of the one treated in wWask. Numerical
and experimental investigations were performed ez
frequency responses and transmissibility of theicteas well as
temperature variations of the SMA wires.

This article deals with the dynamical response fDaSMA
grid. Adaptive aerospace structures with shape menatioy
actuators are examples of dynamical systems thathelaave as the
structure considered in this paper. An iterativenatical procedure
based on the operator split technique (Ortiz et B983), the
orthogonal projection algorithm (Savi et al., 20Pahd the classical
fourth order Runge-Kutta method is developed tol dedh
nonlinearities in the formulation. Numerical invgstion is carried
out considering free and forced responses of theudmelastic
structure showing a number of interesting, comgdeRaviors. The
influence of imperfections is of concern and chabihavior is of
special interest.

Mathematical M odel

De Paula et al.

LO. Besides this ideal situation, it is importantdescribe a non-
ideal situation where a perturbed configuration megresent some
geometrical imperfection, for example. The pertdrbenfiguration
represents a situation with perturbations fromideal configuration
in which all SMA elements are in a stress-free estdtigure 3
presents the perturbed configuration and the defdrm
configuration. Figure 3 also presents the systemmoofdinates and
the restitution forces acting in the mass.

Figure 2. Schematic picture of the SMA lattice.

The SMA lattice archetypal model is composed of SMA

elements in two perpendicular directions linked dynass. Each
SMA element is connected to a base structure, awrshin the
schematic picture of Fig. 2, which shows the SM#ida at the
ideal configuration, where all SMA elements have #ame length,
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Figure 3a. Different configurations of the SMA lattice (geometrical aspects).
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Figure 3b. Different configurations of the SMA lattice (coordinates and forces).

The SMA grid stress-free state is defined by baiabdes:

I, v+
cosg = —Ilcosfl X sing = _yL y
1 1
I, - X+
cosg, = Izcol_ﬂ , sin% = X|_ X
2 2
1,COSP5 — X v
cosg, :% . sing =YY
3 Ls
cosgy = m , sin¢4 = X+X (4)
4 4

It is assumed that the mass m is excited by arnrredtéorce
characterized by a sinusoidal excitation with atopleF, andF, in
directionx andy, respectively, and frequenay, andw, in the same
directions. Moreover, although the gravity can vsignificantly in
aerospace applications, it is assumed a gravitdtifmce in they
direction in terms of Earth patterns. Besidessiassumed that all
dissipations different from hysteretic behavior duee to a viscous
damping, described by the coefficiantThe balance of momentum
is expressed through the following equations ofiomot

mX + cx + Fy cosg — F5 sing, + F3cosgy + Fysing, =

5
= Fy sin(wyt) ®)
my+cy + Fysing + F, cosgpy — Fasing; + Fycosgy = ©6)
=-mg + Fy sin(wyt)
where F; (i = 1,2,34) is the force on actuator i. The

thermomechanical description of this force may beedby a proper
constitutive model described in the next subsection

X,Y,91.9,,83.84. This state defines the length of each SMA  Constitutive model

actuator,l 1 ,,I5,1,, and the origin of the coordinate systemy.
With the help of geometric considerations, it isgible to write:

X=X+Xx
Y=y+y
@a=¢+¢ (=1234) 1)

The length of each bar is given by:

Ly =/(ico +X)2 + (7 +y)? . Iy = (0o ? + 72
L= x/(l_zcosfz -2 +(X+X? Iy = \/(|_200972)2 +x2
Ly =00 -2 +(F+ )2 , Iy =1/(acoshs)? + 2

L4=Wﬂa@h+w2+&+xﬁ,i;:ﬂha@aﬁ+i2(a

These lengths can be used to evaluate the defarmatieach
bar as follows:

L |

§ =1 (=1234) 3

The angles that define the SMA actuator positian described

as follows:
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The description of each SMA actuator fokeis related to the
SMA thermomechanical behavior and it is assumed pimse
transformations are homogeneous through the eleriémre are
different ways to describe the SMA behavior, seg kagoudas
(2008) and Paiva and Savi (2006) for an overviewcafstitutive
models. Here, a constitutive model with internalrialsles
previously discussed in different references (Setvial., 2002b;
Baéta-Neves et al., 2004; Paiva et al., 2005; SadliPaiva, 2005;
Monteiro et al., 2009; Aguiar et al., 2010; Olieiet al., 2010) is
employed.

In order to present the constitutive equations,uketconsider
strain ), temperatureT), and three more state variables associated
with the volume fraction of each phage: is associated with tensile
detwinned martensitef~ is related to compressive detwinned
martensite,f4 represents austenite. Actually, it is considered a
fourth phasgs™ related to twinned martensite, that can be obtaine
from phase coexistence conditioff'(= 1 —g* + g~ + p%). With
these assumptions, it is possible to obtain a cetapket of
constitutive equations that describes the thermbargcal behavior
of SMAs as follows:

o=Ee+[a+Ea"(f - ) -2(T-Ty) )
B =i+{ ag+ M +[2a"a +E@")) (B -B) +

(8)
+aﬂEs—g?ﬁ-4bﬂ—a+;,}+a*%m
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B =i_{ —ae+ M -[2a"a +E@"(B - B+
n

9)
-a"Ee-0-T1,)-073, }+6_JX
o=l Ser e fevari - pf e e
7 (10)
+(QA—_QM)(T—TO)[£+ah(/3_—/3+)]—6AJ7[ }+6AJX

where E=EM +/3A(EA—EM) is the elastic modulus while

=0M +,8A(_QA—QM) is related to the thermal expansion

coefficient. Note that subscripA® refers to austenitic phase, while

De Paula et al.

Equations of Motion

Based on the constitutive modeling, it is possiblealculate the
force in each SMA actuator as follows:

_BA
L

F +la +Ea (B -5 -2 (T -To) (13)

where volume fractiong" and# are calculated from the evolution
equations presented in the previous section iamd1,2,3,4. By
defining the dimensionless variables:

)‘(:i, )’{:L7 )A/:l7 Y’\:i7 H:l, T:a,bt (14)
Lo Lo Lo Lo TR

wherel, is a reference length defined in the ideal confagion

. y (X=y=0; ¢ =¢,=¢3=¢,=0) as shown in Fig. 2.
M” refers to martensite. Moreover, parametéts = /4" (T) and  pimensionless equations of motion are given by:
M= /IA(T ) are associated with phase transformations stegstsl R R _ )
Paramete, is introduced in order to define the horizontatithi of X'+ §X +[ycosp = 5Sing, + 300805 + 7 singy = (15)
the stress-strain hysteresis loop, white controls the vertical = 0y sin@yT)
hysteresis size on stress-strain diagrams.
The termsd"J,, (n = +, —, A) are sub-differentials of the V' +EY +singt + 1, cosgy — [ sings + /7, cosgy = (16)
indicator function J,, with respect tg8" (Rockafellar, 1970). The =__Mmg +0, sin@, 1)
ERA
indicator function J,, = J,,(ﬂ+,ﬁ_,,8A) is related to a convex set
1, which provides the internal constraints relatedtite phases’ ri = uFe +[a; + uEaM (g - B - u? (gi _go)
coexistence. With respect to evolution equations valume (i=1234) 17
fractions, 7+, 7— and 7" represent the internal dissipation related to o
phase transformations. Moreov@:”\]/Y (n =+ - A are sub- \here
differentials of the indicator functiod , with respect to,l?" (n=+,
. _ERA _Cc . ~__OA _a.
-, A) (Rockafellar, 1970). This indicator function associated with aﬁ —Eﬁ 5—m— ;o a= ag “E
the convex sety, which establishes conditions for the correct b mly R
description of internal subloops due to incomplephase ~h ahERA h Fy Fy
transformations. a :—wﬁ:g 0 Ox = = E A;
Concerning the parameters definition, temperatugpeddent mlo mio R
relations are adopted fet* andA* as follows: 5= F, Ry o= RATR _ ORTR .
M 7 omigef  ErA migaf  Er
M, : E Q w
M_ )= +——(T-Ty) if T>Ty uE=— =" =" (18)
N y T . (11) Er r b
- it T<Ty
o A From now ong, X, y and?¥ will be respectively replaced by
-+ = (T - i > X, yandY.
P = o TM(T Ty) if T>Ty (12) y
A ; . } .
-/ if T<Ty Numerical Simulations

Here, Ty is the temperature below which the martensiticspha
becomes stable in a stress-free state. Besi,dgls, /IQ’I , /Ié and

/llA are parameters related to critical stress for @ha%

transformation.

In order to contemplate different characteristit$he kinetics of
phase transformation for loading and unloading gsees, it is
possible to consider different values to the irderdissipation

parameter” (n = +, - , A:: 7' and 7] during loading and
unloading process, respectively. For more detaioua the
constitutive model, see Paiva et al. (2005) and &ay Paiva (2005).
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Nonlinearities of the equations of motion are teedatby
considering an iterative procedure associated thighoperator split
technique. This approach allows the solution of twmupled
overning equations by uncoupled system where ickdss
rocedures can be employed. Therefore, numerioallations are
performed employing the fourth-order Runge-Kuttesne together
with the projection algorithm employed for the clitugive
equations. Time steps are chosen to be less Alzan 77(4000).
Material properties presented in Table 1 are usedllisimulations,
which represents typical SMA behavior obtaineddatrain driving
quasi-static simulation at = 373 K. A pseudoelastic system is
treated, which means that the austenitic phaselidesat stress-free
state. Besides, it is considered that all SMA &oisahave length of
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Lo = 2.236 m at ideal configuration and a cross sectiea ofA =
0.25 nf. Therefore, the parameters defined in Egs. (18)-&bsume
the values of.g = 6x10°, 6 =1.2€ 4 = 2.78x107%, 2 =9.17x107%,

Table 1. SMA constitutive parameters.

Ea Ewm a o Ay
(GPa) (GPa) (MPa) (MPa)
54 54 150 0.052 0.15
i s AR o o
(MPa) (MPa) (MPa, | (MPa/K) | (MPa/K)
415 0.63 185 0.74 0.17
Tu Ta n
(K) (K) (MPa.s)
291.4 307.7 10

Simulations are performed considering two differgitations:
an ideal configuration wherec = y = 0; and a perturbed
configuration wherec = ¥ = 0.1. Free and forced vibrations are
treated. Concerning forced vibrations, only vettieacitation is
treated, and thereforg, = 0.
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Figure 4. Free response of the ideal configuration: state space projections.
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Figure 5. Free response of the perturbed configuration: state space projections.

FreeVibrations

Let us start with the free vibration analysis. iy, it is
assumed the ideal configuration whare y = 0. Therefore, it is
expected that an initial condition related té-direction is
associated with a movement restricted to Yhdirection. In order
to observe this behavior, let us consider a vejodait the Y-
direction as initial condition. Results from simides are
presented in Fig. 4, which presents three subspaicése phase
space related to the free-response of the structee calledX-
space built with X, X); Y-space built with X, Y'); and XY-space
built with (X, Y). Note that in theY-space, hysteretic behavior
dissipates energy until elastic response is readhdtie steady-
state. TheX-space is stationary. TheY-space clearly shows that
the movement is restricted to tiedirection.

A perturbed configuration is now treated by assgnimtx =
y = 0.1. The same initial conditions of the previsumulation are
considered, which means that we are imposing ecitgln theY-
direction as initial conditions. Results from simtibns are
presented in Fig. 5, which presents three subspaicéise phase
space related to the free-response of the strucdreX’); (Y, Y');
and X, Y). Note that in ther-space, hysteretic behavior dissipates
energy until elastic response is reached in thadststate. The-
space presents response only in elastic regimee Nwtt, under

Special Issue 2012, Vol. XXXIV / 405



this condition, the system presents a movement thanot

restricted in theY-direction, presenting a movement in the

direction as well. This behavior can be understbgdobserving
the thermo-mechanical behavior of each SMA elemEigure 6

presents volume fraction evolution of each phaseaah actuator
while Fig. 7 presents the stress-strain curves athe SMA

actuator. It is noticeable that phase transforomastionly occur in
elements 2 and 4, both relatedytalirection.

Zgo,a E 5_’
y .l'm —
) oo HMHH m m“mmll
1 €

QWHMMH ‘

T
Figure 6. Volume fraction evolutions of the free response.
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Figure 7. Stress-strain curves of the free response.

Forced Vibrations

This section considers the forced vibration analysf the
system. Initially, let us consider the ideal configtion (X =y =0).

Excitation is applied only irY-direction and therefore, the system
dynamics is restricted to this direction. By comesidg an excitation
with 6, = 0.04 andw, = 0.45, the system presents a periodic

response presented in the left panel of Fig. 8.ilBRyeasing the
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excitation parameters t6, = 0.4 andw, = 0.45, the system

presents a different periodic response (Fig. $itrganel). Figure 8
presentsY-space together with the Poincaré section. ThaX’

projection is stationary in the same way of theefndbration
analysis shown in Fig. 4.

considering different projections of the phase spalso indicating
Poincaré sectionX X'); (Y, Y); and &, Y).

Figure 11 shows a period-1 behavior wher, = 0.48. By
considering @y = 0.49 the system presents a period-2 behavior
(Fig. 12).

A frequency value ofw, = 0.432 is related to a chaotic

behavior (Fig. 13). Figure 14 presents details loé tthaotic

010 attractors for this response. The consideraticanoéxternal viscous
damping in the system highlights the fractal stiet of the
0054 attractor. Figure 15 presents the same resultsnbyeasing the
system dissipation by assumitigc 0.05. It is important to highlight
that viscous damping is considered to representkatls of
. 0.004 dissipation different from the one related to tlysteretic behavior.
> Therefore, it is representing different dissipatiaspects of the
0.05. system as the media where the structure is.
-0.10
-0|.1 0,‘0 051 0.2
Y
0.04 -
0.00
0.2 X
-0.04 4
{ 0.0
> -0.08 4
-0.1 0.0 0.1
-0.2 X
-O'A4 -OI.2 ofo 0?2 0f4 016
Figure 8. Forced vibration of the system when undeformed configuration 0.041
coincides with ideal situation (X =¥ =0). Left panel: 8y = 0.04 and
@y =0.45; Right panel: 8y = 0.4 and @y =0.45. . 0001
>
. i . _ ) -0.04
The perturbed configuration witkk =y = 0.1 is now on focus.
Initially, let us consider an excitation with = 0.04 andw,, = 0.45. 005
Under this condition, the system presents a periodsponse as '
shown in Fig. 9. This steady-state response isteatldao phase 0.1 00 01
transformations that preponderantly occur in vattielements (2 Y
and 4). It is noticeable that the perturbed corfijon promotes a
coupling betweenX-Y directions. Large transients are expected,
especially in theX-direction due to a less amount of phase 0.2+
transformation. But it should be highlighted tha system presents
the same periodic pattern from the one of the ideafiguration.
By considering a higher forcing amplitudg= 0.4, the system 019
response dramatically changes. In order to analjme global N
behavior of this system, bifurcation diagrams aoastructed by 0.04
assuming a stroboscopically quasi-static incredshen frequency. '
Figure 10 presents the bifurcation diagram thasemts theX andY
values by increasing the forcing frequeny, . It is noticeable the 014
bifurcation scenarios that result in chaotic bebesvirelated to a

cloud of points for some frequency values. The lopanel of Fig.
10 presents enlargements of some frequency rangeirsh the
details of the bifurcation scenarios.

Based on the global analysis obtained by the tafion
diagrams, let us investigate different kinds ofpmsses related to
distinct values of frequency. Essentially, resute presented by

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright O 2012 by ABCM
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T T
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Figure 9. Periodic response due to an excitation 8y = 0.04 and wy =0.45.
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Figure 10. Bifurcation diagram with 8y = 0.4 and increasing the forcing

frequency [Uy .
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Figure 11. Period-1 behavior for 8y = 0.4 and wy = 0.48: projections of

the phase space.
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Figure 12. Period-2 behavior for 8y = 0.4 and wy = 0.49: projections of

the phase space.
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Figure 13. Chaotic behavior for 8y = 0.4 and wy = 0.432: projections of

the phase space.
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Figure 14. Chaotic attractors for 8y = 0.4 and wy =0.432.
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Figure 15. Chaotic behavior for &y = 0.4 and (Dy = 0.45: projections of the
phase space.

Figure 16 presents the chaotic attractors that shadifferent
chaotic pattern. Once again, the increase in systissipation by
assuming? = 0.05 highlights the fractal structure of thaattor as
shown in Fig. 17.

Conclusions

This article deals with the dynamical response ddDaSMA
grid that represents adaptive structures with shapenory alloy
actuators. This archetypal system has SMA elemémtdwo
perpendicular directions connected to a mass arah &MA
element is connected to a base structure. Imp@fectare
represented by a perturbed configuration whereSEIA elements
are in a stress-free state. Therefore, two diftessrstems are of
concern: ideal and perturbed configuration systerfhe
thermomechanical behavior of SMA elements is dbedriby a
constitutive model with internal constrains. Anréve numerical
procedure based on the operator split technigue, othogonal
projection algorithm and the classical fourth ord@mnge-Kutta
method is developed to deal with nonlinearitieshie formulation.
Numerical investigation is carried out consideringe and forced
responses of the pseudoelastic structure showinguraber of
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interesting, complex behaviors. It is important highlight the
comparison between ideal and perturbed configuratistems that
shows how imperfections can alter system charatiesiproviding
a coupling between both directions. Chaotic resesm@se discussed
showing different patterns of this kind of respankegeneral, the
increase of geometrical imperfections tends to dase the
complexity of the system response. Therefore, thgtesn has
greater possibility to present chaotic motion. Ehessults show the
importance of proper description of geometrical énfipctions in
nonlinear analysis. The qualitative different patterelated to ideal
and perturbed configuration systems is an impor&sgect that
should be considered in system dynamics. The desfigrerospace
structures should consider this kind of possibilityorder to avoid
unexpected undesirable behaviors.
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