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Nonlinear Dynamics of a SMA Large-
Scale Space Structure  
Large-scale structures are of special interest of aerospace applications, especially the 
ones involving smart materials. This paper deals with an archetypal system with two 
degrees of freedom that resembles the use of SMA elements as vibration isolation systems 
on a sparse aperture satellite array. The system has SMA elements in two perpendicular 
directions connected to a mass. Each SMA element is connected to a base structure. 
Imperfections are represented by establishing a comparison between two different systems: 
ideal and perturbed configuration system. The perturbed configuration is characterized by 
a situation where all SMA elements are in a stress-free state. The thermomechanical 
behavior of SMA elements is described by a constitutive model with internal constrains. 
Numerical tests of this system are of concern showing its general dynamical behavior. 
Periodic and chaotic motions are investigated showing the complex behaviors of this kind 
of system. The effect of imperfection in system dynamics is also discussed. 
Keywords: shape memory alloys, smart structures, aerospace structures, nonlinear dynamics 
 
 
 
 
 
 
 
 
 
 
 

Introduction 

The unique thermomecanical characteristics of shape memory 
alloys (SMAs) are motivating the conception of several applications 
related to aerospace, biomedicine, and robotics. General overviews 
about SMAs application can be found in different references, as for 
instance: Lagoudas (2008); Paiva and Savi (2006); Machado and 
Savi (2003); Denoyer et al. (2000); Webb et al. (2000); Van 
Humbeeck (1999). 

Dynamical applications of systems built with SMA elements 
explore the high dissipation capacity related to the hysteretic 
behavior and the property changes due to temperature variations. 
Several research efforts presented different aspects of SMA 
applications in dynamical systems that include vibration absorbers 
and composite structures (Williams et al., 2005; Rustighi et al., 
2005; Elahinia et al., 2005; Nae et al., 2004; Birman, 2008; Tiseo et 
al., 2010; Savi et al., 2011). 

The dynamical response of SMA systems presents a very rich 
and complex behavior. Periodic, quasi-periodic and chaotic 
responses are usually presented for dynamical system with SMA 
elements. There are several research efforts dealing with this kind of 
system. Bernardini and Rega (2011a,b) presented a general 
overview of SMA dynamical response. 

Savi and Braga (1993) treated the dynamical response of SMA 
systems showing periodic and chaotic behaviors. Machado et al. 
(2004) discussed bifurcation and crises in a SMA oscillator. Both 
articles treated one-degree of freedom oscillators (1DOF) employing 
a polynomial constitutive model to describe the thermomechanical 
behavior of SMAs. Lacarbonara et al. (2004) investigated the 
nonlinear response of a 1DOF SMA oscillator numerically 
demonstrating that a rich class of solutions, including discontinuity 
of frequency responses, quasi-periodicity and chaos could arise in 
nearly adiabatic conditions. Bernardini and Rega (2005) 
investigated a 1DOF system by considering a different 
thermomechanical model presenting the same richness for SMA 
oscillators. Aspects as nonlinear resonant conditions and 
thermomechanical coupling influence were treated. Savi et al. 
(2008) discussed the SMA response by considering a constitutive 
model that matches experimental data for quasi-static analysis. 
Investigations included tension-compression asymmetry and showed 

interesting results as multistability and chaos. Machado et al. (2009) 
proposed a procedure to evaluate Lyapunov exponents in hysteretic 
systems, presenting SMA as an application of the general procedure. 
Once again, a rich response is related to the SMA system. Recently, 
SMA oscillators with constraints have been investigated considering 
a discontinuous support that can be employed for vibration 
reduction. Sitnikova et al. (2010) and Santos and Savi (2009) 
explored this idea using different constitutive models for the 
thermomechanical description of SMAs, establishing comparisons 
with the dynamical response of an oscillator with elastic support.  

The dynamical behavior of SMA systems with multi-degrees of 
freedom seems to be much more complex. Savi and Pacheco (2002) 
presented an investigation considering one- and two-degree of 
freedom systems. Machado et al. (2003) revisited the 2DOF system 
showing different aspects of bifurcation and chaos. Large-scale 
structures might contain hundreds of connected nodes, being related 
to multi-degree of freedom systems. This kind of structure is of 
special interest for aerospace applications including antennas. 
Therefore, aerospace industry demands for a general comprehension 
of dynamical behavior of multi-degree of freedom SMA systems.  

A typical large-scale structure with embedded SMA actuators is 
shown in Fig. 1, representing a two-dimensional lattice connected 
by SMA elements. An archetypal model of this large-scale structure 
is also represented in Fig. 1, being composed of a single mass 
connected by SMA elements. 

Archetypal models are usually employed in stability analysis of 
structures, providing a global comprehension of the system behavior 
(Bazant and Cedolin, 1991). The two-bar truss is an example of this 
kind of model that presents the snap-through behavior. This system 
allows one to analyze bifurcation scenarios related to stability 
changes associated with different characteristics of buckling 
behavior. Symmetric two-bar truss, also known as the von Mises 
truss, represents one of the most popular systems related to stability 
analysis. Concerning smart structures, Savi et al. (2002a) analyzed a 
two-bar truss built with SMAs that presents a very complex 
behavior. Recently, Savi and Nogueira (2010) revisited this truss 
using a more realistic constitutive model. The combination of 
geometrical and constitutive nonlinearities makes nonlinear 
dynamics of this structure especially complex. 
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Figure 1. SMA lattice. 

 
 
Machado (2007) investigated the use of shape memory alloys 

for vibration isolation and damping of mechanical systems. 
Specifically, it is treated a device composed of a mass connected to 
a frame through two SMA wires subjected to a series of continuous 
acceleration functions in the form of a sine sweep. This system is a 
one-dimensional version of the one treated in this work. Numerical 
and experimental investigations were performed analyzing 
frequency responses and transmissibility of the device as well as 
temperature variations of the SMA wires. 

This article deals with the dynamical response of a 2D-SMA 
grid. Adaptive aerospace structures with shape memory alloy 
actuators are examples of dynamical systems that may behave as the 
structure considered in this paper. An iterative numerical procedure 
based on the operator split technique (Ortiz et al., 1983), the 
orthogonal projection algorithm (Savi et al., 2002b) and the classical 
fourth order Runge-Kutta method is developed to deal with 
nonlinearities in the formulation. Numerical investigation is carried 
out considering free and forced responses of the pseudoelastic 
structure showing a number of interesting, complex behaviors. The 
influence of imperfections is of concern and chaotic behavior is of 
special interest. 

Mathematical Model  

The SMA lattice archetypal model is composed of SMA 
elements in two perpendicular directions linked by a mass. Each 
SMA element is connected to a base structure, as shown in the 
schematic picture of Fig. 2, which shows the SMA lattice at the 
ideal configuration, where all SMA elements have the same length, 

L0. Besides this ideal situation, it is important to describe a non-
ideal situation where a perturbed configuration may represent some 
geometrical imperfection, for example. The perturbed configuration 
represents a situation with perturbations from the ideal configuration 
in which all SMA elements are in a stress-free state. Figure 3 
presents the perturbed configuration and the deformed 
configuration. Figure 3 also presents the system of coordinates and 
the restitution forces acting in the mass. 
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Figure 2. Schematic picture of the SMA lattice.  

 
 
 
 
 
 
 

    

 
 

Figure 3a. Different configurations of the SMA lattice (geometrical aspects). 
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Figure 3b. Different configurations of the SMA lattice (coordinates and forces). 

 
The SMA grid stress-free state is defined by bar-variables:

4321 ,,,,, ϕϕϕϕyx . This state defines the length of each SMA 

actuator, 4321 ,,, llll , and the origin of the coordinate system (x, y). 

With the help of geometric considerations, it is possible to write: 
 

xxX +=  
yyY +=  

iii ϕϕφ +=       (i = 1,2,3,4)                                                     (1)  

 
The length of each bar is given by: 
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111 )()cos( yyxlL +++= ϕ , 22

111 )cos( yll += ϕ  

22
222 )()cos( xxylL ++−= ϕ , 22

222 )cos( xll += ϕ  

22
333 )()cos( yyxlL ++−= ϕ , 22

333 )cos( yll += ϕ        

22
444 )()cos( xxylL +++= ϕ ,  22

444 )cos( xll += ϕ
   

(2) 

 
These lengths can be used to evaluate the deformation of each 

bar as follows: 
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The angles that define the SMA actuator position are described 

as follows: 
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It is assumed that the mass m is excited by an external force 

characterized by a sinusoidal excitation with amplitude Fx and Fy in 
direction x and y, respectively, and frequency ωx and ωy in the same 
directions. Moreover, although the gravity can vary significantly in 
aerospace applications, it is assumed a gravitational force in the y 
direction in terms of Earth patterns. Besides, it is assumed that all 
dissipations different from hysteretic behavior are due to a viscous 
damping, described by the coefficient c. The balance of momentum 
is expressed through the following equations of motion: 
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where Fi (i = 1,2,3,4) is the force on actuator i. The 
thermomechanical description of this force may be done by a proper 
constitutive model described in the next subsection. 

Constitutive model 

The description of each SMA actuator force Fi is related to the 
SMA thermomechanical behavior and it is assumed that phase 
transformations are homogeneous through the element. There are 
different ways to describe the SMA behavior, see e.g. Lagoudas 
(2008) and Paiva and Savi (2006) for an overview of constitutive 
models. Here, a constitutive model with internal variables 
previously discussed in different references (Savi et al., 2002b; 
Baêta-Neves et al., 2004; Paiva et al., 2005; Savi and Paiva, 2005; 
Monteiro et al., 2009; Aguiar et al., 2010; Oliveira et al., 2010) is 
employed.  

In order to present the constitutive equations, let us consider 
strain (ε), temperature (T), and three more state variables associated 
with the volume fraction of each phase: �� is associated with tensile 
detwinned martensite, �− is related to compressive detwinned 
martensite, �� represents austenite. Actually, it is considered a 
fourth phase �� related to twinned martensite, that can be obtained 
from phase coexistence condition (βM = 1 – β+ + β− + βA). With 
these assumptions, it is possible to obtain a complete set of 
constitutive equations that describes the thermomechanical behavior 
of SMAs as follows: 
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where ( )MAAM EEEE −+= β  is the elastic modulus while 

( )MAAM ΩΩβΩΩ −+=  is related to the thermal expansion 

coefficient. Note that subscript “A” refers to austenitic phase, while 

“M” refers to martensite. Moreover, parameters )(TMM ΛΛ =  and 

)(TAA ΛΛ =  are associated with phase transformations stress levels. 

Parameter αh is introduced in order to define the horizontal width of 
the stress-strain hysteresis loop, while α controls the vertical 
hysteresis size on stress-strain diagrams.  

The terms πJn∂  (n = +, −, A) are sub-differentials of the 

indicator function πJ  with respect to �� (Rockafellar, 1970). The 

indicator function ( )AJJ βββππ ,, −+=  is related to a convex set 

π, which provides the internal constraints related to the phases’ 
coexistence. With respect to evolution equations of volume 
fractions, η+ , η−  and ηA represent the internal dissipation related to 

phase transformations. Moreover χJn∂  (n = +, −, A) are sub-

differentials of the indicator function χJ  with respect to nβ&  (n = +, 

−, A) (Rockafellar, 1970). This indicator function is associated with 
the convex set χ, which establishes conditions for the correct 
description of internal subloops due to incomplete phase 
transformations.  

Concerning the parameters definition, temperature dependent 
relations are adopted for ΛM and ΛA as follows:  
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Here, TM is the temperature below which the martensitic phase 

becomes stable in a stress-free state. Besides, M
0Λ , M

1Λ , A
0Λ  and 

A
1Λ  are parameters related to critical stress for phase 

transformation. 
In order to contemplate different characteristics of the kinetics of 

phase transformation for loading and unloading processes, it is 
possible to consider different values to the internal dissipation 

parameter ηn (n = +, − , A): n
Lη  and n

Uη  during loading and 

unloading process, respectively. For more details about the 
constitutive model, see Paiva et al. (2005) and Savi and Paiva (2005). 

Equations of Motion 

Based on the constitutive modeling, it is possible to calculate the 
force in each SMA actuator as follows: 
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where volume fractions β+ and β− are calculated from the evolution 
equations presented in the previous section and i = 1,2,3,4. By 
defining the dimensionless variables: 
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where L0 is a reference length defined in the ideal configuration  
( 0== yx ; 04321 ==== ϕϕϕϕ ) as shown in Fig. 2. 

Dimensionless equations of motion are given by: 
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From now on, ��, �	, 
�

 
and �	 will be respectively replaced by x, 

X, y and Y. 

Numerical Simulations 

Nonlinearities of the equations of motion are treated by 
considering an iterative procedure associated with the operator split 
technique. This approach allows the solution of the coupled 
governing equations by uncoupled system where classical 
procedures can be employed. Therefore, numerical simulations are 
performed employing the fourth-order Runge-Kutta scheme together 
with the projection algorithm employed for the constitutive 
equations. Time steps are chosen to be less than ∆τ = π/(400ϖ). 
Material properties presented in Table 1 are used in all simulations, 
which represents typical SMA behavior obtained for a strain driving 
quasi-static simulation at T = 373 K. A pseudoelastic system is 
treated, which means that the austenitic phase is stable at stress-free 
state. Besides, it is considered that all SMA actuators have length of 
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L0 = 2.236 m at ideal configuration and a cross section area of A = 
0.25 m2. Therefore, the parameters defined in Eqs. (15)-(18) assume 
the values of 92

0 106×=ω , 28.1=θ , 31078.2ˆ −×=α , 41017.9ˆ −×=Ω .  
 

Table 1. SMA constitutive parameters.  

EA  
(GPa) 

EM  
(GPa) 

α  
(MPa) 

αh 
M
0Λ

(MPa) 
54 54 150 0.052 0.15 

M
1Λ

(MPa) 

A
0Λ  

(MPa) 

A
1Λ

(MPa) 

ΩA 
(MPa/K) 

ΩM 
(MPa/K) 

41.5 0.63 185 0.74 0.17 
TM  
(K) 

TA  
(K) 

ηL 
(MPa.s) 

  

291.4 307.7 10   
 

 
Simulations are performed considering two different situations: 

an ideal configuration where �̅ = 

 = 0; and a perturbed 
configuration where �̅ = 

 = 0.1. Free and forced vibrations are 
treated. Concerning forced vibrations, only vertical excitation is 
treated, and therefore, δx = 0. 
 

 

 

 
Figure 4. Free response of the ideal configuration: state space projections. 

 

 

 
Figure 5. Free response of the perturbed configuration: state space projections. 

Free Vibrations 

Let us start with the free vibration analysis. Initially, it is 
assumed the ideal configuration where �̅ = 

 = 0. Therefore, it is 
expected that an initial condition related to Y-direction is 
associated with a movement restricted to the Y-direction. In order 
to observe this behavior, let us consider a velocity in the Y-
direction as initial condition. Results from simulations are 
presented in Fig. 4, which presents three subspaces of the phase 
space related to the free-response of the structure. We called X-
space built with (X, X´); Y-space built with (Y, Y´); and XY-space 
built with (X, Y). Note that in the Y-space, hysteretic behavior 
dissipates energy until elastic response is reached in the steady-
state. The X-space is stationary. The XY-space clearly shows that 
the movement is restricted to the Y-direction. 

A perturbed configuration is now treated by assuming that �̅ = 


 = 0.1. The same initial conditions of the previous simulation are 
considered, which means that we are imposing a velocity in the Y-
direction as initial conditions. Results from simulations are 
presented in Fig. 5, which presents three subspaces of the phase 
space related to the free-response of the structure: (X, X´); (Y, Y´); 
and (X, Y). Note that in the Y-space, hysteretic behavior dissipates 
energy until elastic response is reached in the steady-state. The X-
space presents response only in elastic regime. Note that, under 
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this condition, the system presents a movement that is not 
restricted in the Y-direction, presenting a movement in the X-
direction as well. This behavior can be understood by observing 
the thermo-mechanical behavior of each SMA element. Figure 6 
presents volume fraction evolution of each phase at each actuator 
while Fig. 7 presents the stress-strain curves of each SMA 
actuator.  It is noticeable that phase transformations only occur in 
elements 2 and 4, both related to Y-direction. 

 

 

 

 
Figure 6. Volume fraction evolutions of the free response. 

 

 

 

 
Figure 7. Stress-strain curves of the free response. 

Forced Vibrations 

This section considers the forced vibration analysis of the 
system. Initially, let us consider the ideal configuration ( 0== yx ). 
Excitation is applied only in Y-direction and therefore, the system 
dynamics is restricted to this direction. By considering an excitation 
with δy = 0.04 and yϖ  = 0.45, the system presents a periodic 

response presented in the left panel of Fig. 8. By increasing the 
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excitation parameters to δy = 0.4 and yϖ  = 0.45, the system 

presents a different periodic response (Fig. 8, right panel). Figure 8 
presents Y-space together with the Poincaré section. The X-X  ́
projection is stationary in the same way of the free vibration 
analysis shown in Fig. 4. 

 
 

 
 

 
Figure 8. Forced vibration of the system when undeformed configuration 

coincides with ideal situation ( 0== yx ). Left panel: δy = 0.04 and     

yϖ  = 0.45; Right panel: δy = 0.4 and yϖ  = 0.45. 

 
The perturbed configuration with 1.0== yx  is now on focus. 

Initially, let us consider an excitation with δy = 0.04 and yϖ  = 0.45. 

Under this condition, the system presents a periodic response as 
shown in Fig. 9. This steady-state response is related to phase 
transformations that preponderantly occur in vertical elements (2 
and 4). It is noticeable that the perturbed configuration promotes a 
coupling between X-Y directions. Large transients are expected, 
especially in the X-direction due to a less amount of phase 
transformation. But it should be highlighted that the system presents 
the same periodic pattern from the one of the ideal configuration. 

By considering a higher forcing amplitude δy = 0.4, the system 
response dramatically changes. In order to analyze the global 
behavior of this system, bifurcation diagrams are constructed by 
assuming a stroboscopically quasi-static increase of the frequency. 
Figure 10 presents the bifurcation diagram that presents the X and Y 
values by increasing the forcing frequency yϖ . It is noticeable the 

bifurcation scenarios that result in chaotic behaviors related to a 
cloud of points for some frequency values. The lower panel of Fig. 
10 presents enlargements of some frequency range showing the 
details of the bifurcation scenarios. 

Based on the global analysis obtained by the bifurcation 
diagrams, let us investigate different kinds of responses related to 
distinct values of frequency. Essentially, results are presented by 

considering different projections of the phase space also indicating 
Poincaré section: (X, X´); (Y, Ý ); and (X, Y). 

Figure 11 shows a period-1 behavior when yϖ  = 0.48. By 
considering yϖ  = 0.49 the system presents a period-2 behavior 
(Fig. 12).  

A frequency value of yϖ  = 0.432 is related to a chaotic 

behavior (Fig. 13). Figure 14 presents details of the chaotic 
attractors for this response. The consideration of an external viscous 
damping in the system highlights the fractal structure of the 
attractor. Figure 15 presents the same results by increasing the 
system dissipation by assuming ξ = 0.05. It is important to highlight 
that viscous damping is considered to represent all kinds of 
dissipation different from the one related to the hysteretic behavior. 
Therefore, it is representing different dissipative aspects of the 
system as the media where the structure is. 

 
 
 

  
 

 
 

 
Figure 9. Periodic response due to an excitation δy = 0.04 and yϖ  = 0.45. 
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Figure 10. Bifurcation diagram with δy = 0.4 and increasing the forcing 

frequency yϖ . 

 
 

 
 

 
 

 
Figure 11. Period-1 behavior for δy = 0.4 and yϖ  = 0.48: projections of 

the phase space. 
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Figure 12. Period-2 behavior for δy = 0.4 and yϖ  = 0.49: projections of 

the phase space. 

 
 

 
 

  

 
Figure 13. Chaotic behavior for δy = 0.4 and yϖ  = 0.432: projections of 

the phase space. 

 
 

 
 

 
 

 
Figure 14. Chaotic attractors for δy = 0.4 and yϖ  = 0.432. 
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Figure 15. Chaotic behavior for δy = 0.4 and yϖ  = 0.45: projections of the 
phase space. 

 
Figure 16 presents the chaotic attractors that show a different 

chaotic pattern. Once again, the increase in system dissipation by 
assuming ξ = 0.05 highlights the fractal structure of the attractor as 
shown in Fig. 17. 

Conclusions 

This article deals with the dynamical response of a 2D-SMA 
grid that represents adaptive structures with shape memory alloy 
actuators. This archetypal system has SMA elements in two 
perpendicular directions connected to a mass and each SMA 
element is connected to a base structure. Imperfections are 
represented by a perturbed configuration where all SMA elements 
are in a stress-free state. Therefore, two different systems are of 
concern: ideal and perturbed configuration system. The 
thermomechanical behavior of SMA elements is described by a 
constitutive model with internal constrains. An iterative numerical 
procedure based on the operator split technique, the orthogonal 
projection algorithm and the classical fourth order Runge-Kutta 
method is developed to deal with nonlinearities in the formulation. 
Numerical investigation is carried out considering free and forced 
responses of the pseudoelastic structure showing a number of 

interesting, complex behaviors. It is important to highlight the 
comparison between ideal and perturbed configuration systems that 
shows how imperfections can alter system characteristics providing 
a coupling between both directions. Chaotic responses are discussed 
showing different patterns of this kind of response. In general, the 
increase of geometrical imperfections tends to increase the 
complexity of the system response. Therefore, the system has 
greater possibility to present chaotic motion. These results show the 
importance of proper description of geometrical imperfections in 
nonlinear analysis. The qualitative different patterns related to ideal 
and perturbed configuration systems is an important aspect that 
should be considered in system dynamics. The design of aerospace 
structures should consider this kind of possibility in order to avoid 
unexpected undesirable behaviors. 
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Figure 16. Chaotic attractors for δy = 0.4 and yϖ  = 0.45. 
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Figure 17. Chaotic attactors for δy = 0.4, yϖ  = 0.45 and ξ = 0.05. 
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