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Stochastic Modeling of Flexible
Rotors

Flexible rotors are characterized by inherent urtagties affecting the parameters that
influence the dynamic responses of the systerhidreontext, the handling of variability in
rotor dynamics is a natural and necessary extengibtthe modeling capability of the
existing techniques of deterministic analysis. Agntire various methods used to model
uncertainties, the stochastic finite element methad received major attention, as it is
well adapted for applications involving complex ieregring systems of industrial interest.
In the present contribution, the stochastic firstement method applied to a flexible rotor
system, with random parameters modeled as randeldsfis presented. The uncertainties
are modeled as homogeneous Gaussian stochastis feld are discretized according to
the spectral method by using Karhunen-Loéve expmasiThe modeling procedure is
confined to the frequency and time domain analyiseghich the envelopes of frequency
response functions, the Campbell's diagram andotitéts of the stochastic flexible rotor
system are generated. Also, Monte Carlo simulatieethod combined with the Latin
Hypercube sampling is used as stochastic solvéer Atie presentation of the underlying
theoretical formulations, numerical applicationsmbderate complexity are presented and
discussed aiming at demonstrating the main featafeéke stochastic modeling procedure

of flexible rotor systems.
Keywords: uncertainty quantification, rotor dynamics, stoslia finite elements

I ntroduction

In the development of many types of engineeringdpets, an
increasing demand for durability, reliability, sgfecomfort, low
cost manufacturing and fast solutions time is olesbrAs a result,
during the design phase or during the analysisiabasting system,
there is a compromise between the operational tondiand the
vibration and noise levels, which are important eatp to be
considered in up-to-date engineering.

In the context of new rotor dynamics design, inltds decades,
much effort has been devoted to the developmemtetérministic
models capable of accounting for the typical vaoiet of
construction features and material properties eiffile rotors. The
understanding of the dynamic behavior of such systbas been
investigated under several aspects. Comprehensidées on this
subject have been reported in the monographs biareland
Ferraris (1998) and Vance et al. (2010).

A natural extension of the deterministic modelimggedure is
to account for the uncertainties in physical andgeometrical
parameters aiming at evaluating the degree of enflte of
variability on the performance predictions. Such certainty
analysis becomes especially interesting for imprgvimodel
reliability for various purposes, such as, systdentification (Assis
et al., 2003), balancing (Saldarriaga et al., 2ptfjck and fatigue
damage analyses (Morais et al., 2008), active tidracontrol and
optimal design (Simdes et al., 2007; Lei et alQ&0Koroishi et al.,
2011). As an example, Ritto et al. (2011) have ilmmed uncertain
parameters in order to propose a new performantieniaption
methodology for flexible rotors. Rémond et al. (2phave studied
the dynamics of a flexible rotor system assessimgerain
parameters by using the so-called Polynomial CHamgansion
(PCE) technique (Ghanem and Spanos, 1991). Thégehitained
have been compared with those from the Monte Csirtwlation
(MC) to assess response variability.

It is important to mention that most of those stgdclaim that
one of the main limitations in taking uncertaintsopagation into
account in structural dynamics is the high componal cost that
results from the necessity of computing a large memof response
samples to achieve the necessary statistical gignde. Moreover,
few works, such as the one in reference (Rittol.et2@11), have
addressed the influence of uncertainties on thegorese variability
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of flexible rotors, in whichad-hocprocedures must be used to cope
with the variations in the physical and/or geoneeirparameters.

Starting from the previous contributions regardirge
deterministic modeling of flexible rotors, the peas paper intends
to propose a stochastic finite element modeling dexible rotor,
for which a parameterization approach has beenestigg in such a
way to enable the introduction of parametric véoisd in a
straightforward manner. Also, a model condensati&rategy
specially adapted to flexible rotor systems, in ahhthe dynamic
response of the rotor is projected on a truncatedambasis of the
non-gyroscopic associated conservative system, bes used.
Numerical simulations are carried-out to appraie tesponse
variability in terms of the envelopes of the fremae response
functions (FRFs), the Campbell diagram and theterfor the
different uncertainty scenarios.

Nomenclature

= mass matrix, kg

= stifness matrix, N/m

= viscous damping matrix, N.s/m
gyroscopic matrix, kg/s

§|OO7<§
I

,K,C,G= parameterized matrices
= vector of the generalized displacements, m

o]
—
~

F(t) = vector of the generalized loads, N

H (w,Q) = frequency response function matrix

N (y) = matrix containing the shape functions
B(y) = matrix formed by the differential operators

= matrix of the isotropic material properties, Pa
= nominal reduction basis

H(y,e) = random field
C(yl, y2) = covariance function

= m

f, (y) A, = eigenfunction and eigenvalue of the covariance

E = Young’s modulus, N/m
N = number of global degrees of freedom (DOFs)
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Stochastic Modeling of Flexible Rotors

Greek Symbols can be formulated and the elementary mass, gyrasaaop stiffness
Q = rotor speed, rad/s matrices are obtained, respectively, as follows:

a = excitation frequency, rad/s .

a = proportional coefficient of mass matrix Mée) - J‘N;“ ( y AL
B = proportional coefficient of stiffness matrix

QuL = geometric domain, m

[ = random process T

P = mass density, kgfn Gée) = I Ng (y)N g (y)dy (1.b)
¢ (H) = random variable

Subscripts © L

B = bearing K = _[BT(y)E B(y)dy (1.c)
D =disk

S = shaft

: Zga?t%o;tllé):]aeln?ampmg where M ée) ORY¥™e is the elementary mass matrix formed by the

contributions of the mass and the inertia of thaftskelement,
Deter ministic M odeling of a Flexible Rotor Gge)DRNeXNe designates the gyroscopic rTh’cltri)ng)DRN‘*XNe

In this section, the formulation of a flexible rofinite element 'ePresents the stiffness matrix, arid is the isotropic matrix
composed of a shaft, rigid discs and bearings fisnsarized based containing the elastic material properties. MatB(y) is formed

on the original developments made by Lallane andr&ies (1998). py differential operators appearing in the straispthcement
Figure 1 depicts the beam element used to model staft
composed of two nodes, and four degrees of free@@Fs) per
node, representing the nodal displacements aloegxtrand z  inertia contributions on the matrix formed by tiweyse interpolation
directions (denoted byu and w, respectively) and the cross- functions. N, =8 is the number of elementary DOFs.

section rotations about axes and z axes (denoted by = ow/dy At this point, the contribution of a rigid disc ¢me system can
_ . be introduced by formulating its kinetic energyasated with the
=au . ) )

and ¢ =0u/dy, respectively) node of attachmenid in the elementary coordinate system, where

relations, andN |, and NgT represent, respectively, the mass and

%4 ) ) Mg") ORYMNe represents the elementary mass matrix of the rigid

disc, andG(Ef) ORNeNe designates its gyroscopic matrix. Also, the

inclusion of the stiffness and damping effectshef bearings can be
A easily done by using the concept of dyadic strattorodifications
(Maia and Montalvdo e Silva, 1997), in which thecto vector is

g . first written as fB(t): KBq(t)+CBC](t), where Kg =1 ,T)Kgdl p and

Cs =1 ,T)ngl p» and | , designates thp-th column of the identity

X 2 matrix of ordem, according to the node of attachment.

From the elementary finite element matrices congdbe each
element, and assuming that the flexible rotor pressenherent
proportional damping, the global system of equatiohmotion for
In the development of the theory, the followinguaeptions are  the system containiné DOFs are constructed accounting for node

adopted: i) the material involved is homogeneous and isotrepid connectivity, using standard FE assembling procssiur
present linear mechanical behavioii) (the beam element is

Figure 1. Illustration of the shaft finite element.

modeled according to Euler-Bernoulli's theory (saerse shear is .. . _
neglected); i{i) the effects of inertial rotations are taken into M q()+(C +QG)q(t)+Kq(t)—F(t) 2)
account.

The discretization of the displacement fields witttie element whereM = (Mg + M )ORY™N and K =(Kg +Kg)ORY™ represent,
is made by using cubic interpolation functions floe translational
displacementsu and w, according to the general relation

u(y,t) = N(y) ug) (), where N(y) is the matrix formed by the

respectively, the mass and stiffness matric]es,(CB +Cp)D RVN s
the damping matrix formed by the contributionshaf viscous damping
matrix, Cg, and the inherent proportional damping matrix,
shape interpolation functions, and(e)(t) :[q w 4 l,[/i] T with C,=aM+pK, and G=(GD +GS)[|RN*N designates the gyroscopic
i =1to2 represents the vector containing the mechanicdbino matrix formed by the gyroscopic contributions af tigid discs and the
variables as a function of time. The strain-disptaent relations shaft. q(t)D RN and F(t)l] RN are, respectively, the vectors of the
&(yt)=B(y)u(t) are used and the resulting strains for the beagmplitudes of the harmonic generalized displacesnent! external

element are generated. loads, Q is the angular speed of the shaft, amdnd S represent,
Following standard analytical developments of Wil respectively, the proportional coefficients of masd stiffness.
principles, the strain and kinetic energies oflteam finite element The interest herein is also focused on frequencynaio

responses. In this case, Eq. (2) can be directy dier calculating
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the steady-state harmonic responses of the roténanfrequency
domain, by assuming (t) = F (w)e' and q(t) = Q(w,Q)e'“ . Thus,
by substituting these expressions into Eq. (2)ftllewing relation
is obtained between the amplitudes of the excitafiimces and the
amplitudes of the harmonic responses:

Q@)= H(w.Q)F () @3)
where the receptance or frequency response fun@&Bi) matrix
is expressed as follows:

H(@Q)=[K +iw(c +QG)-wM] @)

Parameterization of the Deterministic FE M oddl

At this point, it is important to consider that, ander to study
the system behavior when uncertainties are to Imsidered, the
random responses have to be computed with respeat get of
uncertain geometrical and/or physical parametesocated with
the flexible rotor. In general, such random vamabintervene in a
rather complicated manner in the finite elementrivas. Hence, for
evaluating the variability of the responses assediavith these
uncertainties, it becomes interesting to perforpasameterization
of the FE model, which is understood as a meanmaiing the
design parameters factored-out of the elementaryicea. At the
expense of lengthy algebraic manipulations, thicedure makes it
possible to introduce not only the uncertaintige the flexible rotor
model, but also to perform a sensitivity analysisistraightforward
way, leading to significant cost savings in iterati robust
optimization and/or model updating processes. Aftanipulations,
those parameters of interest can be factored-othefelementary
matrices as indicated below:

M g*) = Pshs '\Tée)
shaft: { K &) =E J K (5.a)
G(se) =pgl sés(e)
© -k KO +K KO
5 . B XX By 22" By 5D
bearings: ©og 5@sg 50 (5.b)
B XX~ By 22~ By

where ps, As, lg and Eg represent, respectively, the mas
density, the cross-section area, the inertia aadrtbung’s modulus

of the shaft.d,,, d,, and K,,, k,, designate, respectively, the

damping and stiffness coefficients of the bearings.

It is worth mentioning that the matrices appearimghe right
hand side of Egs. (5) are those from which thegteparameters of
interest have been factored-out.

Stochastic Modeling of a Flexible Rotor

In order to model the system behavior when unceits are
present in the shaft and bearing elements, thegnlgsarameters
which have been factored-out of the elementary inestrappearing
in expressions (5) are considered to be randonthithpaper, the
well-known Karhunen-Loeve (KL) decomposition, whids a
continuous representation for random fields exm@sas the
superposition of orthogonal random variables weidghtby
deterministic spatial functions (Ghanem and Spah®81), is used.
According to this technique, a random field canvieved as a
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spatial extension of a random variable that desserithe spatial
correlation of a structural parameter that fluatdsatandomly (de

Lima et al., 2010). A one-dimensional random figt{y,&) can be
defined by its mean vaIueE(y):g[H(y,H)], and its covariance

function (v, y,) = & [H(y1.6) - E)l[H(y2.6) - E(y, )]}, where
y denotes the spatial dependence of the figdd,represents a

random process, and(°) is the expectation operator (Nieuwenhof

and Coyette, 2003).
For a one-dimensional homogeneous Gaussian ranigdbah it

is possible to find a single projection dﬂ(y,H) on an orthonormal
truncated random basis as follows (Ghanem and Spase1):

H(y.6)= E(y)+il\/I t (v)E (0) ©)

where the deterministic functiorf$(y) and the scalar valugkare,
respectively, the eigenfunctions and the eigenwl# the
covariance dyl,yz). Also, the eigenfunctionsfr(y) and the

random variables, (49) are orthonormal.
The KL expansion is defined with respect to a patér
geometric domainQy, , so that in the case of modeling an

uncertain parameter of a structural model by mezfna random
field, this geometry includes at least the domdinthe structure
under consideration. Furthermore, for relativeljngie geometric
configurations, such as the one-dimensional flexitdtor model
shown in Fig. 1, the analytical solution of the exigroblem
proposed by Ghanem and Spanos (1991) for the Karesipn into
the domain,Q, = (y,,y,). is given by:

qyl! y2) = eXF(_|y1 - y2|/ I-cor,y) )

where (Y1v yZ)EI[O, L] and L, , indicates the correlation length

characterizing the decreasing behavior of the ¢amae with the
distance between the observation points in yhdirection. Also, it

can be noted that this continuous model of covagafunction
corresponds to homogeneous Gaussian stochastis.fiel

Taking into account the property of the covariafwection, the
eigenvalues and eigenfunctions are given as aiamof the roots

a;(rzl) of two transcendental equations in a procedure
summarized as follows:

 Forr odd, withr >1:

/1 — 2 Lcor,y

) (8.a)
r
I—ior,ywr2 +1

f.(y)=a, codwry)

where a, ::I/\/L/2+sin(a)r L)/Za)r and the rootwy is the solution
of the following transcendental equation:

1+ Loy @ tan(ew L) =0 (8.b)

defined into the domai{(r —1)’{ , [r

ol
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For r even, withr =1

— 2Lcor,y — H
_m, f, (y)—a'r sn‘(a,} y) (9.9)

r

where @, :]/\/L/Z—sin(a)r L)/2a, and the roote is the solution

of the following transcendental equation:

Loor,y @ +tan(ew,L)=0 (9.b)

defined into the domaid r -= | Z 72 |
2L L

For illustration purposes Figs. 2 and 3 represkatdgraphs of
the first four eigenfunctions of the covariancedtion (7) for two

cases, respectively: first, by assuming, , =1m and Q, =[O, 1];
and second, by considering., , =10m and Q, = [0,10]. The

first four eigenvalues of the covariance functioe the following:
for the first test casel, = 07388, A, = 01380, A; = 00451,

A, = 00213; for the second casel, = 73881, A, = 13800,
A; = 04509, A, = 02133.

1
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04 , \ J
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~ e I
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Figure 2. Graphs of the first four eigenfunctions o f the covariance for

Leor,y =1m and Q, =[0,1].
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Figure 3. Graphs of the first four eigenfunctions o f the covariance for

Leory =10mand Q, =[0,10].
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It can be noted that both the correlation lengththef random
field and the length of the definition domain irdhce the
eigenvalues and eigenfunctions.

The expansion detailed previously has been choserder
to model the elementary random matrices of the tshl@iment,
as follows:

ME(g)=mE +> MEe (6) (10.a)
r=1
kE()=KE +Y KL (0) (10.b)
r=1
c¥(e)=6¥+3 Gl (6) (10.c)
r=1

whereM ge), Kée) and Gg") are the mean elementary matrices

computed according to Egs. (1) and the random oestriare
computed as follows:

7(6)= [\ 1, (ONLOIN oy

(11.a)
G¥(e)= T\//T £ (YN (YN (y)dy (11.b)
RE0)= [ (/)8 (EB(3)ay (110)

y=0

whereE represents the elastic material property matriwfiich the
parametersEg, Ag and |5 have been factored-out.

It must be emphasized that in the simulations folbow, the
choice of the uncertain parameters associated thittshaft and the
bearings according to the parameterization sche®e dre
considered as being the relevant random variabldrettaken into
account. It should be pointed out that the beapggmeters have to
be identified since they are not available in @aplications. Also,
as the damping and stiffness coefficients of thpliap discrete
bearings have been factored-out from the elementaairices of
such elements obtained by applying a dyadic stratctu
transformation rather than an integration schemi¢ iaghe case for
the shaft, the corresponding uncertainties areodiited in a

different way, by using the relationk(9)=k0+k05k{(9) and

d(ﬁ) =dy+ doddf(ﬁ), where k, and d, designate, respectively,
the mean values of the stiffness and damping effis of the
bearings with the corresponding dispersion levels and Jy,

respectively, wheré(H) represents a Gaussian random variable.

Having obtained the stochastic finite element roatiand after
performing the standard FE matrix assembling prooed the
frequency domain random equations of motion for $hechastic
flexible rotor subjected to a deterministic harnwoexcitation can be
expressed as follows:

Qw.6)= {K(0)+ia)[C(9) +QG(6)] -’ M (9)}'1F (@) 12

O 2012 by ABCM Special Issue 2, 2012, Vol. XXXIV / 577



whereM (6),C(6), G(6) and K(6) are the global random mass,

damping, gyroscopic and elastic stiffness matrioespectively, and
Q(a),Q,H) designates the stochastic response.

It must be emphasize that the stochastic modeheffiexible
rotor system (12) is to be solved by using a stsiib&olver. With
this aim, and in accordance with the purpose o pgaper, Monte
Carlo simulation in combination with Latin-Hyperaitsampling
method is used (Florian, 1992). In addition, theobability
distributions of the uncertainty parameters areseha priori.

Condensation of the Stochastic Flexible Rotor M odel

In most cases of industrial interest, it becomeactially
impossible to compute the receptance matrix byctirénverting
the dynamic stiffness matrix from Eq. (12), due ttee high
computation cost and storage memory required, ditiad to the
large number of computations of the MC samples ireduto
evaluate the FRFs variability with granted converge for the
stochastic flexible rotor system. These difficidtimotivate the use
of a model condensation procedure, which aimsdataiag the rotor
model size and the associated computational cdsle keeping an
acceptable predictive capacity of the numerical @hodhis can be
achieved based on the assumption that the exgminsss, given by
the resolution of Eqg. (12) for each realizatigh can be
approximated by projecting the response vector cedaced vector
basis as follows (Lallane and Ferraris, 1998):

Q@.6)=TQ(w.Q,6) (13)

where T OCMNR is the transformation matrix formed column-wise ,

by a vector basis related to the flexible rotQ{w,Q,8)0C"® are
generalized coordinates, andR<< N is the number of reduced
vectors in the basis. The generalized coordinapsesenting the

contribution of each column of are chosen arbitrarily so that the

reduced model provides a reasonable predictive citgpato a
given frequency bandwidth. Also, the frequency bahéhterest is
taken into account by computing a number of normatles of the
non-gyroscopic conservative associated rotor andiniag those
below a certain frequency (1.5 times the last fezgqy of interest is
typically accepted).

By considering expressions (12) and (13), the rece® matrix
of the stochastic model can be rewritten as follows

ﬁ(w,Q,a):{R(a)nw[é(e)mé(e)] -7 |\7|(9)}_1 (14)

where K =TTK(8)T, C(8)=T"c(8)T, G(6)=T G(6)T and
M(H):TTM(H)T are the reduced matrices.

For models containing viscous or structural dampiitgis
relatively common to use constant projection bésimed by the
eigenvectors of the associated conservative steicas the matrices
are invariant. However, for rotor systems, the c@a of the
reduction basis is more delicate as this conditioes not hold. Due
to the dependence of the gyroscopic matrix witipeesto rotation
speeds of the shaft, the reduction basis shouldbleto represent
the changes of the dynamic behavior of the rotootsgion speed is
varied in a band of interest. In this work, theastgy proposed
consists in using a reduction basis formed by ateon modal basis
of the deterministic non-gyroscopic conservativeoagated system
(Q = 0). Thus, the basis can be obtained by the uisnl of the
following eigenvalue problem:
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(K-AM)g =0 i=1..,N

(15)
P =[¢1 ¢ - ¢NR]’ A =diag(Al""’/1NR)
Thus, the nominal basis of reduction for the noreggopic
conservative associated rotor system is given |&snfe:

T=

o (16)

Numerical Applications

In this section, numerical simulations are presgrnteorder to
illustrate the main features and capabilities & gtochastic rotor
finite element modeling methodology. In the simisias that follow
the flexible rotor shown in Fig. 4 is consideredcasnposed by a
horizontal flexible steel shaft discretized into BQler-Bernoulli’'s

beam elements, two rigid steel disc®,( and D,) and three
asymmetric bearing®,, B, and B;). The values of the physical

and geometrical characteristics used to generad-Eh model are
given in Tab. 1.

; D,
Dy s
hKX Dll’ kll DIX
O o S | I e
a0 b
B B, .
0409 0418 0428 0413 0420

Figure 4. Scheme of the flexible rotor system used in the simulations.

Table 1. Physical and geometrical properties of the rotor system.

Elements Properties Values
Length (m) 0.588
Diameter (m) 0.010
Shaft
a Young's Modulus (Pa) 2.0x¥o
Density (Kg/m) 7800
Thickness (m) 0.005
D, Diameter (m) 0.100
Density (Kg/m) 7800
Thickness (m) 0.010
D, Diameter (m) 0.150
Density (Kg/m) 7800
Ky (N/m) 49 x 16
k,, (N/m) 60 x 16
B, By, Bs
D, (Ns/m) 5.0
D,, (Ns/m) 7.0
a 1.0x 10"
Proportional coefficients
1.0x10°
ABCM



Stochastic Modeling of Flexible Rotors

In a first step, one is interested in verifying #ecuracy of the

(RMS) with respect to independent realizatiofisof the reduced

reduced deterministic model of the flexible rotbhe computations dynamic response of the stochastic rotor mocﬁa(g)Q 9) was

consist in obtaining the reduced dynamic resporEEl-ﬁ:(a),Q) in
the frequency band [0-250 Hz], comprising the fi@ir vibration
modes of the flexible rotor, corresponding to tieplhcement at point

B, in direction X for an excitation applied in the same direction at

point D;, which have been chosen arbitrarily. One considers
nominal bases of reduction: (&) = ¢, (3) (3 eigenvectors, computed
according to Eq. (16)); (b], = @, (6)

have been computed from the model correspondintpeonominal
values of the design parameters defined in Table 1.

_ whereH
(6 eigenvectors). These bases

performed according to the following expression:

RMS= \/niin (©9.6)-A (@) 7

s j=1

corresponding deterministic model of the flexitxéor.
Equation (17) has been performedpriori for the two test
scenarios depicted in Table 2 (identified a¥ &nd b)) for the

Figures 5 and 6 represent the amplitudes of the sFRigifferent dispersion levels of the random paransetetated to the

computed by using the two bases of reduction, aspeoed to the
amplitudes of the FRF computed by using a referebasis
formed by a far larger number of eigenvectors (30)can be
clearly seen that the use of the second basis gepte quite
accurately the dynamic behavior of the flexibleorosystem into
the frequency band of interest.

Reference system
_____ Reduced system - Basis T,

Displacement in x direction [m]

I L L
o a0 100 150 200 250

Figure 5. FRF amplitudes of the reference and reduc  ed systems by using

the basis T, .

10° . . .

Reference system
Reduced system - Basis T,

Displacement in x direction [m]
z

100 150
Frequency [Hz]

200 250

Figure 6. FRF amplitudes of the reference and reduc
the basis T,.

ed systems by using

In the sequence, the interest is to verify the eogence of the
response variability of the stochastic model regardhe number of

terms retained in the truncated KL expansion serigg ) and the

the numerical simulations, a mean-square conveggamalysis

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright

shaft, in order to determine the valuesmf and n, to be used in

the numerical simulations. It must be emphasized thhas been
assumed a correlation length,, , equal to the shaft finite element

length according to the finite element discretizati

Table 2. Parameters used in the convergence analysi  s.

Test scenario Nk ng
(@ 1<ng <50 100
(b) 10 1<n, <250
w10’
2 . . : ‘
e[z Lower Line
ISl J
E 18
i)
=
B 14p 1
@
)
2120 1
W
c
3 1t J
=
st J

]

1]

li

0 i i 14 20 25 30 35 40 45 a0

nKL

Figure 7. Convergence in the mean-square sense for
retained in the KL expansion.

the number of terms

(2,Q) represents the reduced response calculated for the

w10

Mean Square Value [mm)

09r

0.8

Upper Line | |
Lower Line

0

n
100

1
150

n
200

1
250
n

s

n
300

n
350

1
400

. . . Figure 8. Convergence in the mean-square sense for
number of samplesr( ) used in the Monte Carlo simulation. Forsagmmes used in th% MC simulation. a

0 2012 by ABCM
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Figures 7 and 8 present, respectively, the connergeesults in
the mean-square sense fog, and n, . It is worth mentioning that

the computations consist in obtaining the RMS \alfier both
upper and lower limits of the envelopes of the atmgés of the

random FRFH (w,Q,6).
always converge fon,, =10 andng = 70.

Koroishi et al.

Figures 9 and 10 illustrate, respectively, the &pes of the
amplitudes of the random FRFs of the flexible ratgstem for the
dispersion levels reported by the test scenar@safd ). In
particular, it is possible to observe that as themeter dispersion
levels increase, the response dispersions inceeasedingly, being

It has been verified that the solutions|yrger for higher frequencies. Thus, as the frequencreases, the

confidence region (the confidence that the dynaesponse will be

To provide a sense of the degree of influence of thinside the envelope) becomes larger, showing tlyetanfluence of

uncertainties introduced in the random variablesr tlre amplitudes
of the FRFs, the Campbell’s diagrams and the odfithe flexible
rotor system were computed for the four test siesatepicted in
Table 3 (identified asaj, (b), (c) and ¢l)). The computations of the
stochastic matrices of the shaft element are pegdrby assuming
the correlation lengthL ., , =0.02725m, corresponding to the

length of the beam elements, according to FE mesh.

Table 3. Definition of the uncertainty scenarios us  ed in the simulations.

Scenarios  Shaft Bearings
ES kxx kzz d XX d 2z
@ 5% - - - -
(b) 10% — - - -
(©) - 5% 5% 5% 5%
(d) 5% 5% 5% 5% 5%

10 T T T T

Mean madel
Ervelopes

Displacementin x direction [m]

L L L
100 150 200 250

Figure 9. Envelopes of random FRFs of the rotor for the test scenario ( a).
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tean maodel
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L L I
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Freguency [Hz]
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Figure 10. Envelopes of random FRFs of the rotor fo  r the test scenario ( b).
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uncertainties at high frequencies. Also, it mustebghasized that
the limits of the samples enclose the amplitudesheffrequency
response functions of the mean model of the flexibtor.

In order to investigate the degree of influencehef variability
on the Young's modulus of the shaft over the ailtispeeds of the
flexible rotor, the Campbell diagram correspondittg the test
scenario 4 has been computed, as illustrated in Fig. 11. As
expected, it can be clearly seen that as the &kiipeed increases,
the confidence region becomes larger. Also, thet inamediate use
of such Campbell's diagram is the quantitative deteation of the
degree of influence of the parameter uncertaintgr die critical
speeds: the larger the range of the envelopesresihect to a given
parameter uncertainty level, the larger the infaeenof this
parameter on the critical speed.

As a complementary demonstration of the influendethe
uncertainties on the time domain analysis of tagilfle rotor system,
the orbits of the stochastic rotor were also coexgbufor the
uncertainty scenari@), by considering a rotation speed of 600 RPM,
in which the rotor operates above its first twotical speeds
(supercritical rotor).

250

—— Mean model

Envelopes

Frequency [Hz]

o
e
-
-

0 L
0 1000

L L I I L
3000 4000 5000 600D 7000

Rotor speed [RPM)]

L
2000 G000

Figure 11. Envelopes of the Campbell’'s diagrams for the test scenario ( a).
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Displacement in x direction [mm)]

Figure 12. Envelopes of the orbits for the test sce  nario ( a).
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As can be seen in Fig. 12, the influence of theettamties in
the amplitude of the displacement is not negligibtheaddition, it is
possible to conclude that this influence is morl@vt in the inner
orbit, since the outer orbit is close to the reggonf the mean
model of the flexible rotor.

Figure 13 shows the amplitudes of the random FRF¢he test
scenario €) reported in Table 3. By comparing Figs. 13 aritican
be noted that contrary to what has been observdtieirprevious
example (for test scenaria)(or (b)), in which the elastic modulus
of the shaft has been taken as uncertain, the rdispeof the
random amplitudes of the frequency response fungtido not
becomes larger as the frequency increases. Thisriirmed by
noting a small confidence region around the ciiitspeeed of 165 Hz

for the test scenarioc when compared to the confidence region

corresponding to the same critical speed for teedeenariod) or
(b). Thus, the trend of increased dispersions fohélidrequencies
is not noticed. This can be explained by obsentimg nominal
values of the stiffness parameters of the beadsgsompared to the
stiffness of the shaft itself.

In terms of the Campbell diagram, Fig. 14 showst tite
variations of the critical speeds associated withtest scenaricc)
are smaller than that observed for the test sceit@yi(see Fig. 11).
This point enables to conclude that the uncertamtpduced in the
elastic material modulus of the shaft has moreuerfce on the
response of the flexible rotor system than thatothiced in the
parameters associated with the bearings.

10° . . . .

Mean model
Ervelopes

Displacementin x direction [m]

L L L
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Frequency [Hz]
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Figure 13. Envelopes of random FRFs of the rotor fo  r the test scenario ( c).
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Figure 14. Envelopes of the Campbell’s diagrams for the test scenario ( ).
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Figure 15 depicts the random response of the rystem in
terms of the orbits. Also, by comparing Figs. 1% dr2, it can be
perceived that the uncertainties introduced onpdrameters of the
bearings result in a significant change in the lized stiffness of
the flexible rotor, resulting in a small variationits displacement as
illustrated in Fig. 15. This behavior is relatedthe values used for
the stiffness parameters of the bearings as compaith the
stiffness of the shaft.

It must be also noted that for all the test scemsainvestigated,
the limits of the samples enclose the dynamic nesp® of the mean
model of the flexible rotor. Clearly, it should beminded that this
kind of reasoning is strictly dependent on the utadeties levels
introduced on the random variables.

Figures 16 to 18 show the envelopes of the randmpanses of
the flexible rotor system for the test scenari). (The most
immediate consequence is the great influence ofitbt@duced

uncertainties on the dynamic responses of the Hlexrotor. In

particular, by examining the amplitudes of the @mdFRFs, the
influence of the uncertainty on the Young's modutusbserved in
the highest critical speed, while the uncertainfireshe bearings
cause more influence on the first two critical sfse€lhis aspect is
also shown in the Campbell diagram illustrated ifg. F17.

Nevertheless, in terms of the orbits, the uncetitsnin the

parameters of the bearings influence the outertoaoid the
uncertainty introduced in the shaft influences theer orbit, as
demonstrated by Fig. 18.
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Figure 15. Envelopes of the orbits for the test sce  nario (¢).
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Figure 16. Envelopes of random FRFs of the rotor fo  r the test scenario ( d).
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Figure 17. Envelopes of the Campbell’'s diagrams for the test scenario ( d).
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Figure 18. Envelopes of the orbits for the test sce  nario (d).

The general trend observed is that the dispersibrthe
responses increase as the number of random variabiacreased,
as expected. Also, for all the test scenarios ithyated, the limits of
the samples enclose the dynamic responses of the medel of the
flexible rotor.

Concluding Remarks

In this paper the stochastic modeling of a flexitdeor system
was proposed and implemented. The uncertaintiethéndesign
variables that characterize the flexible rotor egstare introduced
directly through a parametric approach, by perfagna Monte
Carlo simulation based on the Latin Hypercube sarg@pproach.

The numerical applications show that the envelopgshe
random responses convey valuable information régauttie degree
of influence of the random variables on the dynab&havior of the
flexible rotor. Thus, the presented procedure hawed to be a
useful tool for the design and analysis of modifietbr systems and
structural optimization.

The choice of the design variables (modulus oftiei@g of the
shaft and the parameters of the bearings) as aitguarameters
was made based on previous knowledge regardingg@esitivities
with respect to the frequency response functionisis|worth
mentioning that these parameters are directly &ssoc with the
dynamic behavior of the rotor as represented bydb@ orbits for
the various test scenarios investigated. Thuseasdstrated by the
numerical results, the uncertainties introducedthia parameters
associated with the shaft and bearings represemportant aspect
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to be investigated during the design phases ofeaibile rotor
system, due to their great influence on the clispaeds.

It must be emphasized that the limitations of thiopted
discretization procedure of the random variablegarding the
previous knowledge of the probability distributifumction of the
stochastic variables should not be disregarded.

Finally, the proposed strategy demonstrates thevaelce of
introducing uncertainties in the design variablestf the general
design perspective of rotating machinery. Furthardies will
encompass non-parametric studies and new applicatiof
uncertainties analyses in rotor active control #mel balancing of
complex flexible rotors. Also, localized nonlindgas will be
included in the rotor system.
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