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Stochastic Modeling of Flexible 
Rotors 
Flexible rotors are characterized by inherent uncertainties affecting the parameters that 
influence the dynamic responses of the system. In this context, the handling of variability in 
rotor dynamics is a natural and necessary extension of the modeling capability of the 
existing techniques of deterministic analysis. Among the various methods used to model 
uncertainties, the stochastic finite element method has received major attention, as it is 
well adapted for applications involving complex engineering systems of industrial interest. 
In the present contribution, the stochastic finite element method applied to a flexible rotor 
system, with random parameters modeled as random fields is presented. The uncertainties 
are modeled as homogeneous Gaussian stochastic fields and are discretized according to 
the spectral method by using Karhunen-Loève expansions. The modeling procedure is 
confined to the frequency and time domain analyses, in which the envelopes of frequency 
response functions, the Campbell’s diagram and the orbits of the stochastic flexible rotor 
system are generated. Also, Monte Carlo simulation method combined with the Latin 
Hypercube sampling is used as stochastic solver. After the presentation of the underlying 
theoretical formulations, numerical applications of moderate complexity are presented and 
discussed aiming at demonstrating the main features of the stochastic modeling procedure 
of flexible rotor systems. 
Keywords: uncertainty quantification, rotor dynamics, stochastic finite elements 
 
 

Introduction1 

In the development of many types of engineering products, an 
increasing demand for durability, reliability, safety, comfort, low 
cost manufacturing and fast solutions time is observed. As a result, 
during the design phase or during the analysis of an existing system, 
there is a compromise between the operational conditions and the 
vibration and noise levels, which are important aspects to be 
considered in up-to-date engineering.  

In the context of new rotor dynamics design, in the last decades, 
much effort has been devoted to the development of deterministic 
models capable of accounting for the typical variations of 
construction features and material properties of flexible rotors. The 
understanding of the dynamic behavior of such systems has been 
investigated under several aspects. Comprehensive studies on this 
subject have been reported in the monographs by Lallane and 
Ferraris (1998) and Vance et al. (2010). 

A natural extension of the deterministic modeling procedure is 
to account for the uncertainties in physical and/or geometrical 
parameters aiming at evaluating the degree of influence of 
variability on the performance predictions. Such uncertainty 
analysis becomes especially interesting for improving model 
reliability for various purposes, such as, system identification (Assis 
et al., 2003), balancing (Saldarriaga et al., 2010), crack and fatigue 
damage analyses (Morais et al., 2008), active vibration control and 
optimal design (Simões et al., 2007; Lei et al., 2008; Koroishi et al., 
2011). As an example, Ritto et al. (2011) have considered uncertain 
parameters in order to propose a new performance optimization 
methodology for flexible rotors. Rémond et al. (2011) have studied 
the dynamics of a flexible rotor system assessing uncertain 
parameters by using the so-called Polynomial Chaos Expansion 
(PCE) technique (Ghanem and Spanos, 1991). The results obtained 
have been compared with those from the Monte Carlo simulation 
(MC) to assess response variability.  

It is important to mention that most of those studies claim that 
one of the main limitations in taking uncertainty propagation into 
account in structural dynamics is the high computational cost that 
results from the necessity of computing a large number of response 
samples to achieve the necessary statistical significance. Moreover, 
few works, such as the one in reference (Ritto et al., 2011), have 
addressed the influence of uncertainties on the response variability 
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of flexible rotors, in which ad-hoc procedures must be used to cope 
with the variations in the physical and/or geometrical parameters.  

Starting from the previous contributions regarding the 
deterministic modeling of flexible rotors, the present paper intends 
to propose a stochastic finite element modeling of a flexible rotor, 
for which a parameterization approach has been suggested in such a 
way to enable the introduction of parametric variations in a 
straightforward manner. Also, a model condensation strategy 
specially adapted to flexible rotor systems, in which the dynamic 
response of the rotor is projected on a truncated modal basis of the 
non-gyroscopic associated conservative system, has been used. 
Numerical simulations are carried-out to appraise the response 
variability in terms of the envelopes of the frequency response 
functions (FRFs), the Campbell diagram and the orbits for the 
different uncertainty scenarios. 

 

Nomenclature 

M  = mass matrix, kg 
K  = stifness matrix, N/m 
C  = viscous damping matrix, N.s/m 
G  = gyroscopic matrix, kg/s 

M , K , C , G = parameterized matrices 

( )tq  = vector of the generalized displacements, m 

( )tF  = vector of the generalized loads, N 

( )Ω,ωH  = frequency response function matrix 

( )yN  = matrix containing the shape functions 

( )yB  = matrix formed by the differential operators 

E  = matrix of the isotropic material properties, Pa 
T  = nominal reduction basis 

( )θ,yH  = random field 

( )21, yyC  = covariance function 

( )yfr , rλ  = eigenfunction and eigenvalue of the covariance 

E  = Young’s modulus, N/m 
N  = number of global degrees of freedom (DOFs) 
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Greek Symbols 

Ω  = rotor speed, rad/s 
ω  = excitation frequency, rad/s 
α  = proportional coefficient of mass matrix 
β  = proportional coefficient of stiffness matrix 

KLΩ  = geometric domain, m 
θ  = random process 
ρ  = mass density, kg/m3 

( )θξr  = random variable 

Subscripts 
B = bearing 
D = disk 
S = shaft  
P = proportional damping 
e = finite element 

Deterministic Modeling of a Flexible Rotor 

In this section, the formulation of a flexible rotor finite element 
composed of a shaft, rigid discs and bearings is summarized based 
on the original developments made by Lallane and Ferrraris (1998). 
Figure 1 depicts the beam element used to model the shaft 
composed of two nodes, and four degrees of freedom (DOFs) per 
node, representing the nodal displacements along the x and z 
directions (denoted by u  and w , respectively) and the cross-

section rotations about axes x  and z  axes (denoted by yw ∂∂=θ  

and yu ∂∂=ψ , respectively). 

 

 
Figure 1. Illustration of the shaft finite element.  

 
In the development of the theory, the following assumptions are 

adopted: (i) the material involved is homogeneous and isotropic and 
present linear mechanical behavior; (ii ) the beam element is 
modeled according to Euler-Bernoulli’s theory (transverse shear is 
neglected); (iii ) the effects of inertial rotations are taken into 
account. 

The discretization of the displacement fields within the element 
is made by using cubic interpolation functions for the translational 
displacements u  and w , according to the general relation 

( ) )()(),( tyty euNu = , where )(yN  is the matrix formed by the 

shape interpolation functions, and [ ] T
iiiie wut ψθ=)()(u  with 

2to1=i  represents the vector containing the mechanical nodal 

variables as a function of time. The strain-displacement relations 
( ) ( ) ( )( )tyty, euBε =  are used and the resulting strains for the beam 

element are generated. 
Following standard analytical developments of variational 

principles, the strain and kinetic energies of the beam finite element 

can be formulated and the elementary mass, gyroscopic and stiffness 
matrices are obtained, respectively, as follows: 
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where ( ) ee NNe
S R ×∈M  is the elementary mass matrix formed by the 

contributions of the mass and the inertia of the shaft element, 
( ) ee NNe
S R ×∈G  designates the gyroscopic matrix, ( ) ee NNe

S R ×∈K  

represents the stiffness matrix, and E  is the isotropic matrix 

containing the elastic material properties. Matrix ( )yB  is formed 

by differential operators appearing in the strain-displacement 

relations, and T
miN  and T

gN represent, respectively, the mass and 

inertia contributions on the matrix formed by the shape interpolation 

functions. 8=eN  is the number of elementary DOFs. 

At this point, the contribution of a rigid disc on the system can 
be introduced by formulating its kinetic energy associated with the 
node of attachment nd  in the elementary coordinate system, where 

( ) ee NNe
D R ×∈M  represents the elementary mass matrix of the rigid 

disc, and ( ) ee NNe
D R ×∈G  designates its gyroscopic matrix. Also, the 

inclusion of the stiffness and damping effects of the bearings can be 
easily done by using the concept of dyadic structural modifications 
(Maia and Montalvão e Silva, 1997), in which the force vector is 

first written as ( ) ( ) ( )ttt BBB qCqKf &+= , where p
nd
B

T
pB IKIK =  and 

p
nd
B

T
pB ICIC = , and pI designates the p-th column of the identity 

matrix of order N, according to the node of attachment.  
From the elementary finite element matrices computed for each 

element, and assuming that the flexible rotor presents inherent 
proportional damping, the global system of equations of motion for 
the system containing N  DOFs are constructed accounting for node 
connectivity, using standard FE assembling procedures: 
 

( ) ( ) ( ) ( ) ( )tttt FqKqGCqM =+Ω++ &&&                           (2) 

 
where ( ) NN

DS R ×∈+= MMM  and ( ) NN
BS R ×∈+= KKK  represent, 

respectively, the mass and stiffness matrices, ( ) NN
pB R ×∈+= CCC  is 

the damping matrix formed by the contributions of the viscous damping 
matrix, BC , and the inherent proportional damping matrix, 

KMC βα +=p , and ( ) NN
SD R ×∈+= GGG  designates the gyroscopic 

matrix formed by the gyroscopic contributions of the rigid discs and the 

shaft. ( ) NRt ∈q  and ( ) NRt ∈F are, respectively, the vectors of the 

amplitudes of the harmonic generalized displacements and external 
loads, Ω  is the angular speed of the shaft, and α and β  represent, 
respectively, the proportional coefficients of mass and stiffness. 

The interest herein is also focused on frequency domain 
responses. In this case, Eq. (2) can be directly used for calculating 
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the steady-state harmonic responses of the rotor in the frequency 
domain, by assuming ( ) ( ) tiet ωωFF =  and ( ) ( ) tiet ωω Ω= ,Qq . Thus, 

by substituting these expressions into Eq. (2) the following relation 
is obtained between the amplitudes of the excitation forces and the 
amplitudes of the harmonic responses: 
 

( ) ( ) ( )ωωω FHQ Ω=Ω ,,  (3) 
 
where the receptance or frequency response function (FRF) matrix 
is expressed as follows: 
 

( ) ( )[ ] 1
2,

−
−Ω++=Ω MGCKH ωωω i  (4) 

Parameterization of the Deterministic FE Model 

At this point, it is important to consider that, in order to study 
the system behavior when uncertainties are to be considered, the 
random responses have to be computed with respect to a set of 
uncertain geometrical and/or physical parameters associated with 
the flexible rotor. In general, such random variables intervene in a 
rather complicated manner in the finite element matrices. Hence, for 
evaluating the variability of the responses associated with these 
uncertainties, it becomes interesting to perform a parameterization 
of the FE model, which is understood as a means of making the 
design parameters factored-out of the elementary matrices. At the 
expense of lengthy algebraic manipulations, this procedure makes it 
possible to introduce not only the uncertainties into the flexible rotor 
model, but also to perform a sensitivity analysis in a straightforward 
way, leading to significant cost savings in iterative robust 
optimization and/or model updating processes. After manipulations, 
those parameters of interest can be factored-out of the elementary 
matrices as indicated below: 
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where Sρ , SA , SI  and SE  represent, respectively, the mass 

density, the cross-section area, the inertia and the Young’s modulus 

of the shaft. xxd , zzd  and xxk , zzk  designate, respectively, the 

damping and stiffness coefficients of the bearings.  
It is worth mentioning that the matrices appearing in the right 

hand side of Eqs. (5) are those from which the design parameters of 
interest have been factored-out. 

Stochastic Modeling of a Flexible Rotor 

In order to model the system behavior when uncertainties are 
present in the shaft and bearing elements, the design parameters 
which have been factored-out of the elementary matrices appearing 
in expressions (5) are considered to be random. In this paper, the 
well-known Karhunen-Loève (KL) decomposition, which is a 
continuous representation for random fields expressed as the 
superposition of orthogonal random variables weighted by 
deterministic spatial functions (Ghanem and Spanos, 1991), is used. 
According to this technique, a random field can be viewed as a 

spatial extension of a random variable that describes the spatial 
correlation of a structural parameter that fluctuates randomly (de 

Lima et al., 2010). A one-dimensional random field ( )θ,yH  can be 

defined by its mean value, ( ) ( )[ ]θε ,yHyE = , and its covariance 

function ( ) ( ) ( )[ ] ( ) ( )[ ]{ }221121 ,,, yEyHyEyHyyC −−= θθε , where 

y  denotes the spatial dependence of the field, θ  represents a 

random process, and ( )•ε  is the expectation operator (Nieuwenhof 
and Coyette, 2003).  

For a one-dimensional homogeneous Gaussian random field, it 
is possible to find a single projection of ( )θy,H  on an orthonormal 

truncated random basis as follows (Ghanem and Spanos, 1991): 
 

( ) ( ) ( ) ( )θξλθ ∑
=

+=
n

r
rrr yfyEyH

1

,  (6) 

 

where the deterministic functions( )yfr and the scalar valuesrλ are, 

respectively, the eigenfunctions and the eigenvalues of the 

covariance ( )21,yyC . Also, the eigenfunctions ( )yfr  and the 

random variables ( )θξr  are orthonormal. 

The KL expansion is defined with respect to a particular 

geometric domain KLΩ , so that in the case of modeling an 

uncertain parameter of a structural model by means of a random 
field, this geometry includes at least the domain of the structure 
under consideration. Furthermore, for relatively simple geometric 
configurations, such as the one-dimensional flexible rotor model 
shown in Fig. 1, the analytical solution of the eigenproblem 
proposed by Ghanem and Spanos (1991) for the KL expansion into 
the domain, ( )21, yyy =Ω , is given by: 

 

( ) ( )ycorLyyyyC ,2121 exp, −−=  (7) 

 

where ( ) [ ]Lyy ,0, 21 ∈  and ycorL ,  indicates the correlation length 

characterizing the decreasing behavior of the covariance with the 
distance between the observation points in the y  direction. Also, it 

can be noted that this continuous model of covariance function 
corresponds to homogeneous Gaussian stochastic fields.  

Taking into account the property of the covariance function, the 
eigenvalues and eigenfunctions are given as a function of the roots 

( )1≥rrω  of two transcendental equations in a procedure 

summarized as follows: 
 

• For r  odd, with 1≥r : 
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where ( ) rrr LL ωωα 2sin21 += and the root rω  is the solution 

of the following transcendental equation: 
 

( ) 0tan1 , =+ LL rrycor ωω  (8.b) 
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• For r  even, with 1≥r : 
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where ( ) rrr LL ωωα 2sin21 −= and the root rω is the solution 

of the following transcendental equation: 
 

( ) 0tan, =+ LL rrycor ωω  (9.b) 
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For illustration purposes Figs. 2 and 3 represent the graphs of 
the first four eigenfunctions of the covariance function (7) for two 
cases, respectively: first, by assuming mL ycor 1, =  and [ ]1,0=Ω y ; 

and second, by considering mL ycor 10, =  and [ ]10,0=Ω y . The 

first four eigenvalues of the covariance function are the following: 
for the first test case 7388.01 =λ , 1380.02 =λ , 0451.03 =λ , 

0213.04 =λ ; for the second case 3881.71 =λ , 3800.12 =λ , 

4509.03 =λ , 2133.04 =λ .  

 

 
Figure 2. Graphs of the first four eigenfunctions o f the covariance for 

mL ycor 1, =  and [ ]1,0=Ω y . 

 

 
Figure 3. Graphs of the first four eigenfunctions o f the covariance for 

mL ycor 10, =  and [ ]10,0=Ω y . 

 
It can be noted that both the correlation length of the random 

field and the length of the definition domain influence the 
eigenvalues and eigenfunctions. 

The expansion detailed previously has been chosen in order 
to model the elementary random matrices of the shaft element, 
as follows: 
 

( )( ) ( ) ( ) ( )∑
=

+=
n

r
r

e
S

e
S

e
S r

1

θξθ MMM  (10.a) 

 

( )( ) ( ) ( ) ( )∑
=

+=
n

r
r

e
S

e
S

e
S r

1

θξθ KKK  (10.b) 

 

( )( ) ( ) ( ) ( )∑
=

+=
n

r
r

e
D

e
S

e
S r

1

θξθ GGG  (10.c) 

 
where ( )e

SM , ( )e
SK  and ( )e

SG  are the mean elementary matrices 

computed according to Eqs. (1) and the random matrices are 
computed as follows:  
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whereE  represents the elastic material property matrix in which the 
parameters SE , SA  and SI  have been factored-out. 

It must be emphasized that in the simulations that follow, the 
choice of the uncertain parameters associated with the shaft and the 
bearings according to the parameterization scheme (5) are 
considered as being the relevant random variables to be taken into 
account. It should be pointed out that the bearing parameters have to 
be identified since they are not available in real applications. Also, 
as the damping and stiffness coefficients of the applied discrete 
bearings have been factored-out from the elementary matrices of 
such elements obtained by applying a dyadic structural 
transformation rather than an integration scheme as it is the case for 
the shaft, the corresponding uncertainties are introduced in a 
different way, by using the relations ( ) ( )θξδθ kkkk 00 +=  and 

( ) ( )θξδθ dddd 00 += , where 0k  and 0d  designate, respectively, 

the mean values of the stiffness and damping coefficients of the 

bearings with the corresponding dispersion levels kδ  and dδ , 

respectively, where( )θξ represents a Gaussian random variable. 
Having obtained the stochastic finite element matrices and after 

performing the standard FE matrix assembling procedure, the 
frequency domain random equations of motion for the stochastic 
flexible rotor subjected to a deterministic harmonic excitation can be 
expressed as follows: 
 

( ) ( ) ( ) ( )[ ] ( ){ } ( )ωθωθθωθθω FMGCKQ
12,,

−
−Ω++=Ω i  (12) 
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where ( )θM , ( )θC , ( )θG  and ( )θK  are the global random mass, 
damping, gyroscopic and elastic stiffness matrices, respectively, and 

( )θω ,,ΩQ  designates the stochastic response.  
It must be emphasize that the stochastic model of the flexible 

rotor system (12) is to be solved by using a stochastic solver. With 
this aim, and in accordance with the purpose of this paper, Monte 
Carlo simulation in combination with Latin-Hypercube sampling 
method is used (Florian, 1992). In addition, the probability 
distributions of the uncertainty parameters are chosen a priori.  

Condensation of the Stochastic Flexible Rotor Model 

In most cases of industrial interest, it becomes practically 
impossible to compute the receptance matrix by directly inverting 
the dynamic stiffness matrix from Eq. (12), due to the high 
computation cost and storage memory required, in addition to the 
large number of computations of the MC samples required to 
evaluate the FRFs variability with granted convergence for the 
stochastic flexible rotor system. These difficulties motivate the use 
of a model condensation procedure, which aims at reducing the rotor 
model size and the associated computational cost, while keeping an 
acceptable predictive capacity of the numerical model. This can be 
achieved based on the assumption that the exact responses, given by 
the resolution of Eq. (12) for each realization �, can be 
approximated by projecting the response vector on a reduced vector 
basis as follows (Lallane and Ferraris, 1998): 
 

( ) ( )θωθω ,,ˆ,, Ω=Ω QTQ  (13) 

 

where NRNC ×∈T  is the transformation matrix formed column-wise 

by a vector basis related to the flexible rotor, ( ) NRC∈Ω θω ,,Q̂  are 
generalized coordinates, and NNR<<  is the number of reduced 
vectors in the basis. The generalized coordinates representing the 
contribution of each column of T  are chosen arbitrarily so that the 
reduced model provides a reasonable predictive capacity into a 
given frequency bandwidth. Also, the frequency band of interest is 
taken into account by computing a number of normal modes of the 
non-gyroscopic conservative associated rotor and retaining those 
below a certain frequency (1.5 times the last frequency of interest is 
typically accepted). 

By considering expressions (12) and (13), the receptance matrix 
of the stochastic model can be rewritten as follows: 
 

( ) ( ) ( ) ( )[ ] ( )
1

2 ˆˆˆˆ,,ˆ
−







 −Ω++=Ω θωθθωθθω MGCKH i  (14) 

 

where ( )TKTK θT=ˆ , ( ) ( )TCTC θθ T=ˆ , ( ) ( )TGTG θθ T=ˆ  and 

( ) ( )TMTM θθ T=  are the reduced matrices. 
For models containing viscous or structural damping, it is 

relatively common to use constant projection basis formed by the 
eigenvectors of the associated conservative structure, as the matrices 
are invariant. However, for rotor systems, the selection of the 
reduction basis is more delicate as this condition does not hold. Due 
to the dependence of the gyroscopic matrix with respect to rotation 
speeds of the shaft, the reduction basis should be able to represent 
the changes of the dynamic behavior of the rotor as rotation speed is 
varied in a band of interest. In this work, the strategy proposed 
consists in using a reduction basis formed by a constant modal basis 
of the deterministic non-gyroscopic conservative associated system 
(Ω = 0). Thus, the basis can be obtained by the resolution of the 
following eigenvalue problem: 

 
( )

[ ] ( )NRNR

ii
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λ

,,,

,,10

10210 KK

K

==

==−

ΛΛΛΛϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ

ϕϕϕϕMK

 (15) 

 
Thus, the nominal basis of reduction for the non-gyroscopic 

conservative associated rotor system is given as follows: 
 

0ϕϕϕϕ=T  (16) 

Numerical Applications 

In this section, numerical simulations are presented in order to 
illustrate the main features and capabilities of the stochastic rotor 
finite element modeling methodology. In the simulations that follow 
the flexible rotor shown in Fig. 4 is considered as composed by a 
horizontal flexible steel shaft discretized into 20 Euler-Bernoulli’s 
beam elements, two rigid steel discs (1D  and 2D ) and three 

asymmetric bearings(1B , 2B  and 3B ). The values of the physical 

and geometrical characteristics used to generate the FE model are 
given in Tab. 1.  
 

 
Figure 4. Scheme of the flexible rotor system used in the simulations. 

 
Table 1. Physical and geometrical properties of the  rotor system. 

Elements Properties Values 

Shaft 

Length (m) 0.588 

Diameter (m) 0.010 

Young's Modulus (Pa) 2.0 x 1011 

Density (Kg/m3) 7800 

1D  

Thickness (m) 0.005 

Diameter (m) 0.100 

Density (Kg/m3) 7800 

2D  

Thickness (m) 0.010 

Diameter (m) 0.150 

Density (Kg/m3) 7800 

1B , 2B , 3B  

xxk  (N/m) 49 x 103 

zzk (N/m) 60 x 103 

xxD  (Ns/m) 5.0 

zzD  (Ns/m) 7.0 

Proportional coefficients 
α  1.0 x 10-1 

β  1.0 x 10-5 
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In a first step, one is interested in verifying the accuracy of the 
reduced deterministic model of the flexible rotor. The computations 

consist in obtaining the reduced dynamic response FRF ( )Ω,ωĤ  in 
the frequency band [0-250 Hz], comprising the first four vibration 
modes of the flexible rotor, corresponding to the displacement at point 

2B  in direction x  for an excitation applied in the same direction at 

point 1D , which have been chosen arbitrarily. One considers two 

nominal bases of reduction: (a) ( )301 ϕϕϕϕ=T  (3 eigenvectors, computed 

according to Eq. (16)); (b) ( )602 ϕϕϕϕ=T  (6 eigenvectors). These bases 

have been computed from the model corresponding to the nominal 
values of the design parameters defined in Table 1. 

Figures 5 and 6 represent the amplitudes of the FRFs 
computed by using the two bases of reduction, as compared to the 
amplitudes of the FRF computed by using a reference basis 
formed by a far larger number of eigenvectors (30). It can be 
clearly seen that the use of the second basis represents quite 
accurately the dynamic behavior of the flexible rotor system into 
the frequency band of interest. 
 

 
Figure 5. FRF amplitudes of the reference and reduc ed systems by using 

the basis 1T . 

 

 
Figure 6. FRF amplitudes of the reference and reduc ed systems by using 
the basis 2T . 

 
In the sequence, the interest is to verify the convergence of the 

response variability of the stochastic model regarding the number of 
terms retained in the truncated KL expansion series ( KLn ) and the 

number of samples (sn ) used in the Monte Carlo simulation. For 

the numerical simulations, a mean-square convergence analysis 

(RMS) with respect to independent realizations θ  of the reduced 

dynamic response of the stochastic rotor model, ( )θω ,,ˆ ΩH , was 
performed according to the following expression: 
 

( ) ( )∑
=

Ω−Ω=
sn

j
jj

sn
RMS

1

2
,ˆ,,ˆ1 ωθω HH  (17) 

 

where ( )Ω,ˆ ωH  represents the reduced response calculated for the 
corresponding deterministic model of the flexible rotor. 

Equation (17) has been performed a priori for the two test 
scenarios depicted in Table 2 (identified as (a) and (b)) for the 
different dispersion levels of the random parameters related to the 
shaft, in order to determine the values of KLn  and sn  to be used in 

the numerical simulations. It must be emphasized that it has been 
assumed a correlation length ycorL ,  equal to the shaft finite element 

length according to the finite element discretization. 
 

Table 2. Parameters used in the convergence analysi s. 

Test scenario KLn  sn  

(a) 501 ≤≤ KLn  100 

(b) 10 2501 ≤≤ sn  

 
 

 
Figure 7. Convergence in the mean-square sense for the number of terms 
retained in the KL expansion. 
 

 
Figure 8. Convergence in the mean-square sense for the number of 
samples used in the MC simulation. 
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Figures 7 and 8 present, respectively, the convergence results in 
the mean-square sense for KLn  and sn . It is worth mentioning that 

the computations consist in obtaining the RMS values for both 
upper and lower limits of the envelopes of the amplitudes of the 

random FRF ( )θω ,ˆ Ω,H . It has been verified that the solutions 

always converge for 10≥KLn  and 70≥sn .  

To provide a sense of the degree of influence of the 
uncertainties introduced in the random variables over the amplitudes 
of the FRFs, the Campbell’s diagrams and the orbits of the flexible 
rotor system were computed for the four test scenarios depicted in 
Table 3 (identified as (a), (b), (c) and (d)). The computations of the 
stochastic matrices of the shaft element are performed by assuming 
the correlation length mL ycor 02725.0, = , corresponding to the 

length of the beam elements, according to FE mesh. 
 

Table 3. Definition of the uncertainty scenarios us ed in the simulations. 

Scenarios Shaft Bearings  

SE  xxk  zzk  xxd  zzd  

(a) 5% ─ ─ ─ ─ 
(b) 10% ─ ─ ─ ─ 
(c) ─ 5% 5% 5% 5% 
(d) 5% 5% 5% 5% 5% 

 
 

 
Figure 9. Envelopes of random FRFs of the rotor for  the test scenario ( a). 

 

 
Figure 10. Envelopes of random FRFs of the rotor fo r the test scenario ( b). 

 

Figures 9 and 10 illustrate, respectively, the envelopes of the 
amplitudes of the random FRFs of the flexible rotor system for the 
dispersion levels reported by the test scenarios (a) and (b). In 
particular, it is possible to observe that as the parameter dispersion 
levels increase, the response dispersions increase accordingly, being 
larger for higher frequencies. Thus, as the frequency increases, the 
confidence region (the confidence that the dynamic response will be 
inside the envelope) becomes larger, showing the larger influence of 
uncertainties at high frequencies. Also, it must be emphasized that 
the limits of the samples enclose the amplitudes of the frequency 
response functions of the mean model of the flexible rotor. 

In order to investigate the degree of influence of the variability 
on the Young’s modulus of the shaft over the critical speeds of the 
flexible rotor, the Campbell diagram corresponding to the test 
scenario (a) has been computed, as illustrated in Fig. 11. As 
expected, it can be clearly seen that as the critical speed increases, 
the confidence region becomes larger. Also, the most immediate use 
of such Campbell’s diagram is the quantitative determination of the 
degree of influence of the parameter uncertainty over the critical 
speeds: the larger the range of the envelopes with respect to a given 
parameter uncertainty level, the larger the influence of this 
parameter on the critical speed. 

As a complementary demonstration of the influence of the 
uncertainties on the time domain analysis of the flexible rotor system, 
the orbits of the stochastic rotor were also computed for the 
uncertainty scenario (a), by considering a rotation speed of 600 RPM, 
in which the rotor operates above its first two critical speeds 
(supercritical rotor).  

 

 
Figure 11. Envelopes of the Campbell’s diagrams for  the test scenario ( a). 

 

 
Figure 12. Envelopes of the orbits for the test sce nario ( a). 
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As can be seen in Fig. 12, the influence of the uncertainties in 
the amplitude of the displacement is not negligible. In addition, it is 
possible to conclude that this influence is more evident in the inner 
orbit, since the outer orbit is close to the response of the mean 
model of the flexible rotor. 

Figure 13 shows the amplitudes of the random FRFs for the test 
scenario (c) reported in Table 3. By comparing Figs. 13 and 9 it can 
be noted that contrary to what has been observed in the previous 
example (for test scenario (a) or (b)), in which the elastic modulus 
of the shaft has been taken as uncertain, the dispersion of the 
random amplitudes of the frequency response functions do not 
becomes larger as the frequency increases. This is confirmed by 
noting a small confidence region around the critical speed of 165 Hz 
for the test scenario (c) when compared to the confidence region 
corresponding to the same critical speed for the test scenario (a) or 
(b). Thus, the trend of increased dispersions for higher frequencies 
is not noticed. This can be explained by observing the nominal 
values of the stiffness parameters of the bearings as compared to the 
stiffness of the shaft itself.  

In terms of the Campbell diagram, Fig. 14 shows that the 
variations of the critical speeds associated with the test scenario (c) 
are smaller than that observed for the test scenario (a) (see Fig. 11). 
This point enables to conclude that the uncertainty introduced in the 
elastic material modulus of the shaft has more influence on the 
response of the flexible rotor system than that introduced in the 
parameters associated with the bearings.  
 

 
Figure 13. Envelopes of random FRFs of the rotor fo r the test scenario ( c). 

 

 
Figure 14. Envelopes of the Campbell’s diagrams for  the test scenario ( c). 

 

Figure 15 depicts the random response of the rotor system in 
terms of the orbits. Also, by comparing Figs. 15 and 12, it can be 
perceived that the uncertainties introduced on the parameters of the 
bearings result in a significant change in the localized stiffness of 
the flexible rotor, resulting in a small variation in its displacement as 
illustrated in Fig. 15. This behavior is related to the values used for 
the stiffness parameters of the bearings as compared with the 
stiffness of the shaft. 

It must be also noted that for all the test scenarios investigated, 
the limits of the samples enclose the dynamic responses of the mean 
model of the flexible rotor. Clearly, it should be reminded that this 
kind of reasoning is strictly dependent on the uncertainties levels 
introduced on the random variables. 

Figures 16 to 18 show the envelopes of the random responses of 
the flexible rotor system for the test scenario (d). The most 
immediate consequence is the great influence of the introduced 
uncertainties on the dynamic responses of the flexible rotor. In 
particular, by examining the amplitudes of the random FRFs, the 
influence of the uncertainty on the Young's modulus is observed in 
the highest critical speed, while the uncertainties in the bearings 
cause more influence on the first two critical speeds. This aspect is 
also shown in the Campbell diagram illustrated in Fig. 17. 
Nevertheless, in terms of the orbits, the uncertainties in the 
parameters of the bearings influence the outer orbit and the 
uncertainty introduced in the shaft influences the inner orbit, as 
demonstrated by Fig. 18. 

 

 
Figure 15. Envelopes of the orbits for the test sce nario ( c). 

 

 
Figure 16. Envelopes of random FRFs of the rotor fo r the test scenario ( d). 
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Figure 17. Envelopes of the Campbell’s diagrams for  the test scenario ( d). 

 

 
Figure 18. Envelopes of the orbits for the test sce nario ( d). 

 
The general trend observed is that the dispersion of the 

responses increase as the number of random variables is increased, 
as expected. Also, for all the test scenarios investigated, the limits of 
the samples enclose the dynamic responses of the mean model of the 
flexible rotor.  

Concluding Remarks 

In this paper the stochastic modeling of a flexible rotor system 
was proposed and implemented. The uncertainties in the design 
variables that characterize the flexible rotor system are introduced 
directly through a parametric approach, by performing a Monte 
Carlo simulation based on the Latin Hypercube sampling approach. 

The numerical applications show that the envelopes of the 
random responses convey valuable information regarding the degree 
of influence of the random variables on the dynamic behavior of the 
flexible rotor. Thus, the presented procedure has proved to be a 
useful tool for the design and analysis of modified rotor systems and 
structural optimization.  

The choice of the design variables (modulus of elasticity of the 
shaft and the parameters of the bearings) as uncertain parameters 
was made based on previous knowledge regarding their sensitivities 
with respect to the frequency response functions. It is worth 
mentioning that these parameters are directly associated with the 
dynamic behavior of the rotor as represented by the rotor orbits for 
the various test scenarios investigated. Thus, as demonstrated by the 
numerical results, the uncertainties introduced in the parameters 
associated with the shaft and bearings represent an important aspect 

to be investigated during the design phases of a flexible rotor 
system, due to their great influence on the critical speeds. 

It must be emphasized that the limitations of the adopted 
discretization procedure of the random variables regarding the 
previous knowledge of the probability distribution function of the 
stochastic variables should not be disregarded. 

Finally, the proposed strategy demonstrates the relevance of 
introducing uncertainties in the design variables from the general 
design perspective of rotating machinery. Further studies will 
encompass non-parametric studies and new applications of 
uncertainties analyses in rotor active control and the balancing of 
complex flexible rotors. Also, localized nonlinearities will be 
included in the rotor system. 
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