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Abstract 
his paper aims to study the production and the physical and chemical 

characterization of rice husk, sugarcane bagasse, corn straw, and 

bamboo leaf ashes to use as pozzolans. The ash production steps 

basically consisted of raw material collection, chemical treatment by 

citric acid leaching, conjugated burning (thermal processing) and ultrafine grinding 

(mechanical processing) of the produced ashes. The results indicated that all ashes 

could be classified as pozzolanic additions based on specific standards. The high 

pozzolanicity of the ashes was confirmed by testing the electrical conductivity, 

mechanical performance index, and hydration kinetics of cement pastes by 

isothermal calorimetry. Therefore, the production processes used in this work were 

effective in producing highly reactive pozzolanic materials. 

Keywords: Pozzolan. Agroindustrial ash. Ultrafine grinding. Conjugated burning. Acid 
leaching. 

Resumo 

Este trabalho objetiva estudar a produção e as características físicas e químicas 
de cinzas da casca de arroz, do bagaço da cana-de-açúcar, da folha de milho e da 
folha de bambu com vistas à aplicação como pozolanas. As etapas de produção 
das cinzas consistiram basicamente de coleta e preparação das matérias-primas, 
tratamento químico por lixiviação com ácido cítrico, queima conjugada 
(beneficiamento térmico) e moagem ultrafina das cinzas produzidas 
(beneficiamento mecânico). Os resultados indicaram que todas as cinzas 
atenderam aos requisitos de normas específica e foram classificadas como adições 
pozolânicas. A elevada pozolanicidade das cinzas foi confirmada em ensaios de 
condutividade elétrica, de índice de desempenho e pelas mudanças na cinética de 
hidratação de pastas cimentícias por calorimetria isotérmica. Portanto, os 
mecanismos de beneficiamento utilizados na produção das diferentes cinzas foram 
eficazes para geração de materiais pozolânicos altamente reativos. 

Palavras-chave: Pozolana. Cinza agroindustrial. Moagem ultrafina. Queima conjugada. 
Lixiviação ácida. 

 

 

 

 

 

 

 

T 

1Guilherme Chagas Cordeiro 
1Universidade Estadual do Norte 

Fluminense Darcy Ribeiro 
Campos dos Goytacazes – RJ - Brasil 

 
 

2Mônica Nunes Lemos 
2Universidade Estadual do Norte 

Fluminense Darcy Ribeiro 
Campos dos Goytacazes – RJ - Brasil 

 
 

3Kristian Vinco Xavier 
3Universidade Estadual do Norte 

Fluminense Darcy Ribeiro 
Campos dos Goytacazes – RJ - Brasil 

 
 

4Charles Prado Ferreira de Lima 
4Universidade Estadual do Norte 

Fluminense Darcy Ribeiro 
Campos dos Goytacazes – RJ - Brasil 

 
 

Recebido em 31/01/20 

Aceito em 11/05/20 

https://orcid.org/0000-0001-6844-8360
https://orcid.org/0000-0001-6004-4409
https://orcid.org/0000-0002-9414-9425
https://orcid.org/0000-0001-6901-8741


Ambiente Construído, Porto Alegre, v. 20, n. 4, p. 189-203, out./dez. 2020. 

 

Cordeiro, G. C.; Lemos, M. N.; Xavier, K. V.; Lima, C. P. F. de 190 

Introduction 

Civil construction is characterized by a set of processes that have significant environmental impacts due to 

high energy consumption and natural resources, in addition to greenhouse gas emissions and waste 

generation. One of the main environmental problems of civil construction is associated with the Portland 

cement production, which is the most used construction material around the world (GARTNER, 2004). Civil 

construction-related activities were responsible for around 2.6% of greenhouse gas intensifying emissions in 

Brazil in 2016 (AGÊNCIA FAPESP, 2016), especially CO2, which is released in large quantities during the 

production of Portland clinker. 

Considering this, using industrial and agroindustrial wastes in partial replacement of Portland cement has 

been a viable alternative to mitigate the impacts of cement production, enabling the reuse of these waste 

materials (GANESAN; RAJAGOPAL; THANGAVEL, 2007). Pozzolanic and filler materials are used as 

mineral additions in commercially available cements worldwide. Pozzolans are defined as reactive 

aluminosilicates (AxSy), which can be amorphous (e.g. silica fume) or partially crystalline (e.g. metakaolin). 

Calcium silicate hydrate (C-S-H) and calcium aluminate hydrate (C-A-H) are the main products of the 

pozzolan reaction with portlandite (CH) in the presence of water (H), which are shown in Equation 1. The 

precise composition of the CSH and CAH varies with the reaction conditions and the presence of other 

components (GARTNER, 2004). Calcium aluminosilicates (C-A-S-H) can also be formed in reactions 

involving pozzolans with significant amounts of amorphous alumina (RICHARDSON; GROVES, 1993). 

AxSy + mCH + nH → C-S-H + C-A-H              Eq. 1 

Studies on pozzolans have shown improvements in cementitious properties regarding rheological behavior 

(CORDEIRO; TOLEDO FILHO; FAIRBAIRN, 2008), durability (MALHOTRA; MEHTA, 1996; 

CORDEIRO; TOLEDO FILHO; FAIRBAIRN, 2008; HOPPE FILHO et al., 2014) and mechanical 

performance (MALHOTRA; MEHTA, 1996; CORDEIRO; TOLEDO FILHO; FAIRBAIRN, 2008; 

CORDEIRO et al., 2018). This is due to the increased formation of hydrates because of pozzolanic reactions 

(MALHOTRA; MEHTA, 1996; SOUZA et al., 2014) and the filler effect on cement pastes provided by the 

fine or ultrafine particles of mineral addition (LAWRENCE; CYR; RINGOT, 2003; CORDEIRO et al., 

2008). 

Pozzolans from waste generally need different processes to optimize their reactivity. In this respect, it is 

worth mentioning using thermal (SUGITA, 1994; SABIR; WILD; BAI, 2001; CORDEIRO; SALES, 2016; 

ROSSIGNOLO et al., 2018), mechanical (CORDEIRO; TAVARES; TOLEDO FILHO, 2016) and chemical 

(REAL; ALCALÁ; CRIADO, 1996; KRISHNARAO; SUBRAHMANUAM; JAGADISH KUMAR, 2001) 

processes used in the pozzolan production. Concerning chemical processes, Vayghan, Khaloo and 

Rajabipour (2013) showed that waste treatments with acid leaching can enhance the performance of ash in 

cementitious systems by increasing the concentration of amorphous silica due to the removal of metallic 

oxides, such as Al2O3, Fe2O3, CaO, MgO, Na2O, and K2O. 

In this context, the present paper aims to study the production and main physical and chemical properties of 

ashes produced from sugarcane bagasse, rice husk, corn straw, and bamboo leaf to use as highly reactive 

pozzolans. Choosing these wastes is justified by the wide supply of bagasse, rice husk, and corn and bamboo 

leaves in Brazil, estimated at around 20 million tons in 2019 (INSTITUTO…, 2020; JUDZIEWICZ et al., 

1999), and by the predominant presence of silica in its chemical compositions (ZHANG; MALHOTRA, 

1996; MARTIRENA HERNÁNDEZ et al., 1998; CORDEIRO et al., 2008; ADESANYA; RAHEEM, 2009; 

VILLAR-COCIÑA et al., 2011). 

Materials and methods 

Rice husk ash (RHA) was used as a control pozzolan since this material has high pozzolanic activity 

(MALHOTRA; MEHTA, 1996; TASHIMA et al., 2012), especially when it is produced from burning acid-

leached husk (REAL; ALCALÁ; CRIADO, 1996; KRISHNARAO; SUBRAHMANYAM; JAGADISH 

KUMAR, 2001). RHA was produced from a rice husk sample collected in the city of Mogi das Cruzes-SP 

(Brazil). Samples of bagasse and bamboo leaf were collected in the city of Campos dos Goytacazes-RJ 

(Brazil) and used for producing sugarcane bagasse (SBA) and bamboo leaf (BLA) ashes, respectively. The 

corn straw sample used to produce ash (denominated CSA) was obtained from the city of Castelo-ES 

(Brazil). 
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Figure 1 shows a flowchart with the sequence of activities used to produce the three ashes. After collection, 

all raw materials were washed in water to eliminate any impurities from the collection environment, 

followed by oven-drying at 100 °C for 24 h. To produce RHA, CSA, and BLA, the raw materials were 

subjected to chemical treatment via leaching with a 10% anhydrous citric acid solution (C6H8O7). The 

leaching of the materials was carried out for 72 h at room temperature at a proportion of 60 g of raw material 

to 1 L of acid solution. Afterwards, each sample was rinsed continuously with deionized water and then 

filtered with qualitative filter paper until pH neutralization. Finally, the leached material was oven-dried at 

100 °C for 24 h. These conditions were adapted from Cordeiro, Vieira and Lopes (2017) after changing the 

type of acid (HCl in the previous study). 

After leaching, the rice husk, corn straw, and bamboo leaf were subjected to conjugate burning, which 

consisted of burning in two stages according to the procedures suggested by Andreão et al. (2019). In the 

conjugate burning, the leached materials were initially burned in a pilot kiln adapted from Sugita (1994) 

using the biomass as fuel to reduce the amount of organic matter (volume reduction) and energy savings. 

This preliminary autogenous burning was not controlled, although the temperature was continuously 

monitored with thermocouples to ensure that it did not exceed 800 °C, a temperature beyond which silica 

crystallization may occur (DELLA; KÜHN; HOTZA, 2002). Figure 2 shows the typical temperature 

evolution over 10 h of burning in the pilot kiln. In this case, it can be observed that the maximum 

temperature observed was 646 °C and the maximum heating rate was approximately 18 °C/min, which 

occurred in the first hour of burning. Subsequently, the three ashes generated in the first stage were re-

burned in a muffle furnace at 600 °C under oxidizing environment, with a heating rate of 10 °C/min and 

residence time of 15 min, as shown in Figure 2. Figure 3 shows the CSA appearance after burning in the 

pilot (Figure 3a) and muffle kilns (Figure 3b). 

The production of SBA was carried out using the same processes previously presented, except for the 

leaching step with citric acid, which was carried out between the two burning stages (Figure 1). This change 

occurred due to the reduced SBA yield compared to the other studied ashes. In addition, it was interesting to 

simulate in the laboratory the production of an ash simulating that from the particulate collector in sugar and 

alcohol plants (CORDEIRO; ANDREÃO; TAVARES, 2019). This behavior was verified by burning the 

bagasse in pilot kiln that presented an average yield of 2.3% by mass. Yields of RHA, CSA, and BLA in the 

first burning were 22, 13, and 23%, respectively. 

Figure 1 - Flowchart of production processes of ashes 
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Figure 2 -Temperature evolution over time for two burning processes 

 

Figure 3 - Interior of the pilot kiln with corn straw ash (a) and appearance of the ash after burning in 
the muffle kiln (b) 

  
(a) (b) 

After burning, the four ashes were ground in a high-energy attrition mill (Union Process) in order to obtain 

products with similar granulometries and D50 around 10 μm (CORDEIRO; ANDREÃO; TAVARES, 2019). 

The grinding conditions were adapted from Andreão et al. (2019), as follows:  

(a) operating speed of 500 rpm;  

(b) feed mass of 100 g;  

(c) 3.5 kg of spherical grinding bodies (2 mm diameter) of zirconia; and  

(d) grinding time of 30 min. 

The oxide composition was obtained by semi-quantitative analysis using an X-ray fluorescence spectrometer 

(Shimadzu EDX-720). Loss on ignition was obtained in accordance with NBR NM 18 (ABNT, 2012). The 

particle size distribution was determined by laser diffraction testing (Malvern Mastersizer 2000), with 15 

min of dispersion in deionized water. The pore structure and BET specific surface area of the ashes were 
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obtained in a nitrogen adsorption analyser (Micromeritics Tristar II 3020), with a sample treatment at 120 °C 

under vacuum for 12 h. The mineralogical composition was investigated by X-ray diffraction using a Rigaku 

Miniflex 600 equipment, operating with Cu-Kα1 radiation (λ = 0.15406 nm), 40 kV voltage, 15 mA current, 

0.02° step, and 5°/min angular speed. Data were collected in a 2θ angular interval between 8 and 50°. The 

quantification of the crystalline phases was performed by Rietveld refinement (LIU; KUO, 1996) using 

PDXL v. 2 software. The crystallographic information was obtained from Jorgensen (1978). Amorphous 

content was determined using anatase as the internal standard. 

The pozzolanic activity of the ashes was evaluated by electrical conductivity of samples in alkaline solution 

according to the method proposed by Luxán, Madruga and Saavedra (1989). For this, a suspension was 

prepared with 98.7 mg of calcium hydroxide, 70 g of deionized water, and 1.75 g of sample. The 

conductivity variation was monitored for 20 min at 40 ± 1 °C using the Alfakit AT 230 conductivity meter. 

It should be noted that previous results of electrical conductivity variation obtained for sugarcane straw 

ashes showed an excellent correlation from the results of the modified Chapelle (CORDEIRO; VIEIRA; 

LOPES, 2017). 

Pozzolanic activity was also investigated by the mechanical performance index based on NBR 5752 (ABNT, 

2014). The performance index is obtained from the relationship between the compressive strength at 28 days 

of a mortar with a 25% cement replacement by the mineral addition and the strength of a reference mortar. 

The mortar mix-design was established for water-binder (cement and ash) and sand-binder ratios of 0.48 and 

3.0, respectively. A class G cement (ABNT, 2006) was used in this test. The chemical composition, density, 

and Blaine fineness of cement are presented in Table 1. Table 2 displays the contents of superplasticizer 

(ether carboxylic-based with 28.9% oven-dried residue and 1.12 g/cm3 density) used in each mix to keep the 

same consistency for all mortars. For each mix, 4 cubic specimens of 50-mm edge were moulded and were 

kept in the molds for 24 h in a humid environment. After this period, the specimens were demoulded and 

kept immersed in a lime-saturated solution for 28 days. The axial compression tests were performed using a 

Shimadzu UHI-500kN testing machine, with a loading rate of 0.5 mm/min. 

The hydration kinetics in cementitious pastes was evaluated using isothermal conduction calorimetry tests. 

In this case, pastes were made with 10 and 20% (in mass) cement replacement by each type of ash, besides a 

reference paste (without ash). Class G cement (Table 1), deionized water, and ether carboxylic-based 

superplasticizer were used. The paste mix-design was defined based on a water-binder ratio of 0.4. Table 3 

shows the content of superplasticizer used in making the same consistency pastes. The pastes were named P-

REF (reference) and P-X-Y, where X was the type of ash and Y the cement replacement used (% by mass). 

Table 1 - Oxide composition, loss on ignition, density, and Blaine fineness of cement 

Oxide % in mass 

SiO2 16.15 

K2O 0.85 

Al2O3 3.23 

CaO 69.10 

SO3 3.60 

P2O5 – 

Fe2O3 5.66 

Na2O 0.22 

MnO 0.10 

TiO2 – 

Na2Oeq* 0.78 

Loss on ignition 1.09 

Density 3.17 g/cm3 

Blaine fineness 290 m²/kg 

Note: *Na2Oeq = Na2O + 0.658 x K2O. 
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Table 2 - Superplasticizer (SP) content of mortars 

Mortar M-REF** M-RHA M-SBA M-CSA M-BLA 

SP (%)* 0.065 0.844 0.504 0.546 0.546 

Note: *% solids in relation to binder mass; and 
**M-REF – reference mortar; M-X mortar containing the ash X (RHA, SBA, CSA, and BLA). 

Table 3 - Superplasticizer content of pastes 

Paste 
P-

REF 

P-RHA-

10 

P-RHA-

20 

P-SBA-

10 

P-SBA-

20 

P-CSA-

10 

P-CSA-

20 

P-BLA-

10 

P-BLA-

20 

SP (%)* 0.03 0.10 0.21 0.05 0.10 0.07 0.13 0.07 0.13 

Note: *% solids in relation to binder mass. 

All pastes were mixed following the same procedure, which consisted of homogenization of deionized water 

and superplasticizer, followed by manual mixing of the liquid part and binder material with a spatula for 30 

s. Next, the mixing was concluded in a portable electric mixer for 30 s at 260 rpm, followed by 60 s at 600 

rpm. Immediately after the mixing end, samples of each mix were inserted into the Calmetrix I-CAL 2000 

isothermal calorimeter. The pastes were monitored for the heat release profile for 72 h at 25 ± 0.1 °C. 

Results and discussion 

Table 4 shows the oxide composition and loss on ignition of different ashes, which showed a predominant 

presence of silica (SiO2) in their compositions (around 90%). On the other hand, there were low levels of 

contaminating oxides in the four ashes, such as K2O, CaO and SO3. These compounds are highly undesirable 

in cement mixes, mainly because they cause durability problems, such as alkali-aggregate reactions 

(MEHTA; MONTEIRO, 2014). The SO3 content was lower in the four ashes than those observed for cement 

(Table 1) and the limit of 4% established for pozzolans in NBR 12653 (ABNT, 2015). The same can be 

observed in relation to NBR 16697 (ABNT, 2018), which limits the SO3 content for commercial cements in 

Brazil to 4.5%. The high concentration of silica in the ashes and the low levels of contaminating oxides 

highlighted the influence of acid leaching in the purification process of the studied materials. Similar results 

were previously observed (KRISHNARAO; SUBRAHMANYAM; JAGADISH KUMAR, 2001; 

VAYGHAN; KHALOO; RAJABIPOUR, 2013; CORDEIRO; SALES, 2016; CORDEIRO; VIEIRA; 

LOPES, 2017). The values of loss on ignition values, also presented in Table 4, showed low levels of 

carbonaceous material in the ashes after two-stage burning. All values were significantly lower than the 

maximum content of 5% established by NBR 12653 (ABNT, 2015). The presence of residual carbonaceous 

material in the ashes reduced the concentration of silica and also promoted a delay in cement hydration 

reactions (CORDEIRO; BARROSO; TOLEDO FILHO, 2018). 

Particle size distribution curves shown in Figure 4 revealed similar granulometries for RHA, SBA, CSA, and 

BLA. These results showed the efficiency of the grinding process in giving similar sizes to the four ashes, 

which was the necessary condition for an accurate evaluation of the pozzolanic effect of the ashes since the 

pozzolanic activity is strongly influenced by the particle size (CORDEIRO et al., 2011; CORDEIRO; 

KURTIS, 2017). The small differences among the ash granulometry for the same grinding condition 

indicated different grindability, which is characteristic for agroindustrial silica-based ashes (RIBAS et al., 

2014; CORDEIRO; TAVARES; TOLEDO FILHO, 2016). All ashes presented D50 values close to 10 µm 

and lower than the characteristic value of the cement used (14.9 μm). It should be noted that the D50 of the 

four ashes were similar to those studied by Andreão et al. (2019) for sugarcane bagasse samples with strong 

contamination by quartz produced in an attritor mill. 

Gas adsorption isotherms of the ashes are shown in Figure 5. It can be observed that the adsorption and 

desorption isotherms presented a similar trend for the four ashes, which is characteristic of meso and 

macroporous materials according to the IUPAC classification (THOMMES et al., 2015). This behavior is 

typical of a highly porous sample, as are the agroindustrial ashes for example, whose pore network has been 

significantly affected by high-energy grinding (VIEIRA et al., 2020). The results of the BET specific surface 

area, shown in Table 5, confirmed the presence of porous particles in the ashes, mainly RHA, CSA, and 

BLA. SBA was slightly penalized by the difference in its production process, which was necessary to adapt 

the characteristics of this ash to those observed for ashes originated from particulate collectors in sugar and 

alcohol plants. It is worth noting that the high values BET specific surface area observed for RHA, CSA, and 
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BLA were due to acid leaching of raw materials before burning and grinding procedures. The specific 

surface area values are in accordance with those observed for agroindustrial ashes reported by Della, Kühn 

and Hotza (2002), Cordeiro, Vieira and Lopes (2017) and Vieira et al. (2020). 

Table 4 - Oxide composition and loss on ignition of ashes (% in mass) 

Oxide RHA SBA CSA BLA 

SiO2 92.25 90.80 89.11 91.00 

K2O – 2.32 2.10 – 

Al2O3 2.92 – – – 

CaO 0.10 0.90 1.60 3.95 

SO3 1.33 2.28 2.69 2.55 

P2O5 – – 0.90 – 

Fe2O3 0.29 1.60 0.30 0.31 

Na2O 0.10 – – 0.10 

MnO – 0.10 – – 

TiO2 – – 0.10 0.10 

Loss on ignition 3.01 2.00 3.20 2.00 

Figure 4 - Particle size distribution of cement and agroindustrial ashes 

 

Figure 5 - Nitrogen adsorbed gas isotherms for all ashes 
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Table 5 - Main physical properties of ashes 

Ash D50 (µm) 
BET specific 

surface area (m2/kg) 

ΔC* 

(mS/cm) 

PI** 

(%) 

RHA 10.5 63,232 5.78 136 

SBA 9.2 13,332 0.74 107 

CSA 6.8 91,630 3.73 148 

BLA 7.6 199,000 5.91 140 

Note: *ΔC- variation of electrical conductivity (LUXÁN; MADRUGA; SAAVEDRA, 1989); and 
**PI - pozzolanic performance index (ABNT, 2014). 

X-ray diffractograms of the ashes are shown in Figure 6. A typical silica amorphous halo can be seen 

between 2θ angles of 15 and 30°, indicating that the burning and grinding procedures were adequate to 

maintain the silica originally present in the plants in an amorphous state. This characteristic is fundamental 

for pozzolanic production and was previously observed for rice husk (REAL; ALCALÁ; CRIADO, 1996; 

KRISHNARAO; SUBRAHMANYAM; JAGADISH KUMAR, 2001; DELLA; HÜHN; HOTZA, 2002), 

sugar cane straw (CORDEIRO; VIEIRA; LOPES, 2017), and elephant grass (CORDEIRO; SALES, 2016) 

ashes. In fact, the four ashes were predominantly amorphous and did not contain crystalline phases with 

significant content. Based on Rietveld’s refinement, SBA was the only ash to present quantifiable phases 

with quartz and hematite contents of 1.8% (± 0.5%) and 0.2% (± 0.1%), respectively. 

Results of electrical conductivity tests for all ashes in calcium hydroxide solution are shown in Figure 7. 

Initially, there was a considerable drop in conductivity for the RHA, CSA, and BLA samples. The 

conductivity variation increased during the tests, which was an indication of the continuity of reactions 

between ashes and calcium hydroxide, especially the CSA. At 2 min of testing, the electrical conductivity 

variation values for RHA, CSA, and BLA were 5.78, 3.73, and 5.91 mS/cm, respectively, as shown in Table 

5. According to the classification proposed by Luxán, Madruga and Saavedra (1989), the 2-min variations 

indicated that the three ashes showed good pozzolanicity since ΔC values after 2 min of test were 

significantly greater than 1.2 mS/cm. Similar electrical conductivity results have been reported by and in 

studies with rice husk (FENG et al., 2004) and cane straw (CORDEIRO; VIEIRA; LOPES, 2017) ashes, 

which were both generated after treating of raw materials with hydrochloric acid leaching. SBA had ΔC of 

0.74 mS/cm and, therefore, was classified as a medium pozzolanic material (0.4 mS/cm < ΔC < 1.2 mS/cm). 

The mean pozzolanicity of SBA was also observed for other bagasse ash assessed using the same 

methodology (ANDREÃO et al., 2019). 

The mechanical performance index (PI) values are shown in Table 5 and confirmed the pozzolanic character 

of four ashes produced. In this case, all ashes presented PI values higher than 100%, especially in RHA, 

CSA, and BLA, which corroborated the electrical conductivity test results. The compressive strength gain in 

mortars containing ashes could be attributed to characteristics such as high content of amorphous silica, 

reduced loss on ignition and high BET specific surface area. Moreover, the reduced ash particle size 

certainly contributed to the increase in mechanical strength by increasing packing density of mixes 

(CORDEIRO et al., 2008; CORDEIRO; KURTIS, 2017). SBA also achieved a satisfactory PI, however not 

as expressive as that observed for other ashes. SBA PI was in line with electrical conductivity results and 

with previous studies that indicated an intermediate pozzolanic activity for sugarcane bagasse ashes in 

mechanical tests (CORDEIRO et al., 2018). The better performance of SBA produced in this work in 

relation to different samples in the literature could be attributed to the reduced contamination of SBA by 

quartz and the citric acid leaching process, which provided the elimination of contaminating oxides, 

especially K2O (ANDREÃO et al., 2019). 

Figure 8 shows the heat flow curves of reference mix and pastes containing RHA, SBA, CSA, and BLA. 

The curves were defined based on the binder mass and provided a clear view of the effect of each ash on 

hydration kinetics. The enlarged graphs of heat flow curves up to 8 h of hydration are also shown in Figure 

8. Overall, all pastes exhibited the typical hydration behavior of a cementitious paste, with a first peak due to 

the initial contact between water and cement (which occurred outside the calorimeter and was not discussed 

in this work), induction, an acceleration period with maximum flow at the characteristic peak associated 

with C3S hydration and a secondary peak corresponding to the C3A reaction (BULLARD et al., 2011), 

followed by a progressive deceleration of reactions over time. 
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Figure 6 - X-ray diffraction patterns of RHA, SBA, CSA, and BLA (peaks intensities in arbitrary unit) 

 

Figure 7 - Electrical conductivity curves of ashes during 20-min testing 
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Figure 8 - Heat flow curves of reference and pastes containing 10% (a) and 20% (b) of RHA, SBA, CSA, 

and BLA 

 
(a) 

 
(b) 

The results indicated that the addition of RHA promoted a slight reduction in the induction period for the 

two cement replacement contents evaluated, despite the opposite effect generated by the higher 

superplasticizer consumption (SAKAI et al., 2006), as indicated in Table 6. It should be noted that the 

amounts of superplasticizer used in pastes with RHA were significantly higher than that used in the 

reference (around 7 times higher). The reduction of induction period in pastes with RHA was due to dilution 

effects and, mainly, heterogeneous nucleation associated with this mineral addition (LAWRENCE; CYR; 
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RINGOT, 2003; CORDEIRO; KURTIS, 2017). This behavior was also observed in BLA pastes, which 

proved the high reactivity of this ash. On the other hand, in spite of promoting an increase in heat flow in 

relation to the reference, pastes with SBA and CSA presented induction periods similar to that observed for 

the reference. This greater heat flow in the first hours of hydration may be associated with the presence of 

K2O in SBA and CSA mixes, which promoted a significant increase in the availability of alkalis in pastes 

with these ashes, as shown by the alkali equivalent (Na2Oeq) values of cementitious materials used in 

different pastes (Table 7). Similar results were previously observed by Andreão et al. (2019) and Cordeiro, 

Andreão and Tavares (2019) for pastes containing bagasse ashes. In addition, the extremely high BET 

specific surface area of CSA may have caused a reduction in the initial hydration rate due to the high-water 

demand by pozzolan (KORPA et al., 2008), even after correcting the consistency of pastes with the 

superplasticizer. It is interesting to note that there was an increase in the secondary peak (relative to the 

formation of monosulfate - AFm) in the ash pastes compared to the P-REF curve. This effect may be related 

to the heterogeneous nucleation of hydrates formed on the ultrafine pozzolanic particles (LAWRENCE; 

CYR; RINGOT, 2003) and also to a significant reduction in SO3 content (TAYLOR, 1997) in the binder of 

different blended pastes in relation to the reference, as shown in Table 7. 

Figure 9 shows the accumulated released heat curves over 72 h of hydration. The accelerating effect of 

hydration reactions promoted by RHA and BLA was even more evident in the analysis of the accumulated 

heat of pastes, especially during the first day of hydration. On the other hand, the paste with 20% of SBA 

presented the lowest value of accumulated heat (Table 6). This showed the greater influence of the dilution 

effect compared to the other physical and chemical effects promoted by ash. The reduced values of the SBA 

specific surface area and pozzolanic activity compared to the other ashes also contributed to the reduction of 

accumulated heat for P-SBA-10 and P-SBA-20 in relation to the reference. 

Table 6 - Parameters of isothermal calorimetry of different pastes 

Pasta 
Induction offset 

time (h:min) 

Maximum heat 

flow (mW/g) 

Released heat 

at 72 h (J/g) 

P-REF 03:24 3.07 267.3 

P-RHA-10 02:24 2.93 265.9 

P- RHA-20 02:30 3.00 260.5 

P-SBA-10 03:00 3.06 264.2 

P- SBA-20 03:30 2.87 245.7 

P-CSA-10 03:40 3.03 268.8 

P-CSA-20 03:50 2.69 252.9 

P-BLA-10 01:58 2.91 267.9 

P-BLA-20 03:12 2.53 260.5 

Table 7 – SO3 content and alkali equivalent in terms of Na2O (Na2Oeq) of paste binders 

Paste 
P-

REF 

P-RHA- 

10 

P-RHA-

20 

P-SBA-

10 

P- SBA-

20 

P-CSA-

10 

P- CSA-

20 

P-BLA-

10 

P-BLA-

20 

SO3 3.60 3.37 3.15 3.47 3.34 3.51 3.42 3.50 3.39 

Na2Oeq (%)* 0.78 0.71 0.64 0.85 0.93 0.84 0.90 0.71 0.64 

Note: *% of Na2Oeq in relation to mass binder. 

 

 



Ambiente Construído, Porto Alegre, v. 20, n. 4, p. 189-203, out./dez. 2020. 

 

Cordeiro, G. C.; Lemos, M. N.; Xavier, K. V.; Lima, C. P. F. de 200 

Figure 9 - Accumulated released heat curves of all pastes 

 

Conclusions 

Based on this experimental research, the following conclusions could be drawn:  

(a) the ashes produced by the confluence of different production methods presented typical properties of 

pozzolanic materials. From an efficient calcination process, the oxide composition of ashes showed high 

levels of amorphous silica (SiO2) and reduced values of loss on ignition; 

(b) the predominant presence of amorphous silica and high BET specific surface area allowed the 

classification of RHA, CSA, and BLA as ashes of good pozzolanicity and SBA as a material of medium 

pozzolanic activity, according to the electrical conductivity testing. The reactivity of the four ultrafine ashes 

was confirmed in the performance index evaluation, where the minimum value obtained of 107% was 

significantly higher than the minimum established by standard (90%); and 

(c) the partial cement replacement by ashes (10 and 20% by mass) promoted small changes in hydration 

kinetics of pastes during the first 3 days. The samples with greater reactivity (RHA and BLA) promoted a 

significant acceleration of reactions, while SBA generated an increase in induction period for the 20% 

cement replacement level. 

Thus, it can be concluded that acid leaching combined with two-stage burning, and high-energy grinding 

procedures were efficient for producing pozzolans from biomass wastes. Finally, it should be noted that the 

leaching procedure can be carried out with acid effluents within biomass-based plants (e.g. vinasse, 

produced in ethanol distilleries). This practice would prevent the generation of new waste and contribute to 

the production of biomass ash with a more controlled chemical composition. Future research should be 

carried out with leaching using other types and different concentrations of acids, in addition to biomass 

samples of biomass from different sources. 
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