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Abstract 
he objective of this study is to investigate the capabilities of 
different global sensitivity analysis methods applied to building 
performance simulation, i.e. Morris, Monte Carlo, Design of 
Experiments, and Sobol methods. A single-zone commercial 

building located in Florianópolis, southern Brazil, was used as a case study. 
Fifteen inputs related to design variables were considered, such as thermal 
properties of the construction envelope, solar orientation, and fenestration 
characteristics. The performance measures were the annual heating and 
cooling loads. It was found that each method can provide different visual 
capabilities and measures of interpretation, but, in general, there was little 
difference in showing the most influent and least influent variables. For the 
heating loads, the thermal transmittances were the most influent variables, 
while for the cooling loads, the solar absorptances stood out. The Morris 
method showed to be the most feasible method due to its simplicity and low 
computational cost. However, as the building simulation model is still 
complex and non-linear, the variance-based method such as the Sobol is still 
necessary for general purposes. 
Keywords: Building simulation. Sensitivity analysis. Morris method. Mote Carlo. 
Sobol. Design of experiments. 

Resumo 
O objetivo deste estudo é investigar as capacidades de diferentes métodos de 
análise de sensibilidade global aplicados à simulação do desempenho de 
edificações, i.e. Morris, Monte Carlo, Projeto de Experimentos, e Sobol. Uma 
edificação comercial de zona única localizada em Florianópolis, sul do Brasil, 
foi utilizada como estudo de caso. Quinze entradas relacionadas às variáveis 
de projeto foram consideradas, tais como as propriedades térmicas do 
envelope construtivo, orientação solar, e características das aberturas. As 
medidas de desempenho foram as cargas anuais de aquecimento e 
resfriamento. Foi constatado que cada método apresenta diferentes 
capacidades visuais e medidas de interpretação, mas, em geral, houve pouca 
diferença nas variáveis mais ou menos influentes reportadas. Para as cargas 
térmicas de aquecimento, as transmitâncias térmicas foram as variáveis mais 
influentes, enquanto para as cargas de resfriamento, as absortâncias solares 
se destacaram. O método de Morris se mostrou o método mais viável devido à 
sua simplicidade e baixo custo computacional. Contudo, como os modelos de 
simulação ainda são complexos e não-lineares, os métodos baseados na 
variância, como o Sobol, ainda são necessários para propósitos genéricos. 
Palavras-chave: Simulação computacional. Análise de sensibilidade. Método de 
Morris. Monte Carlo. Projeto de experimentos. 
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Introduction 
In the built environment field of research, the buildings play a key role in understanding and mitigating most 
of the global issues faced by the countries today, mainly the reduction of the growth rate of energy 
consumption and investment in renewable energy use. In Brazil, for instance, the latest National Energy 
Balance EPE (EMPRESA…,   2019) has shown that the electricity consumption in buildings represents 
50.6% of all consumption in the country; and residential buildings are the biggest consumer in the buildings 
sector, i.e. 25.6%. 
In order to study the behaviour of a building and to develop performance evaluation methods, technologies 
and strategies to reach some energy efficiency level, many aspects must be considered such as the 
architectural design; the material and components of the envelope; the geometry and size of the rooms; the 
solar orientation; the building systems (plug loads, heating, ventilation and cooling); the operational 
routines; and others. All these variables are normally dealt with by some performance evaluation method and 
their effects on some performance criteria (i.e. output variable, dependent variable). According to Meacham 
et al. (2005), in the traditional prescriptive-based methods, the performance objectives are somehow implicit 
in the technical recommendations from standards and building codes and in cumulative experience from the 
practice. The so-called performance-based methods consider the performance objectives explicitly, by 
developing a framework of goals, expectations, and desires, depending on the developing of a reference 
model, data acquisition, design alternatives and evaluating the impacts in the performance criteria. 
In this sense, to ensure that the performance-based methods can be assessed properly, the building 
simulation programmes are intensively used for many purposes. One can use building simulation to analyse 
a conditioned building and determine its energy requirements; to analyse natural ventilation applicability or 
even natural lighting; to perform heating, ventilation and air-conditioning equipment sizing; to conduct 
calibration, optimisation and decision-making studies in some design alternatives for a specific case; to 
understand the role of some specific phenomena, such as heat or moisture transfer in some parts of the 
building; to perform studies in renewable energy systems; etc. 
As stated by Ioannou and Itard (2015), contemporary buildings are becoming more complex and with higher 
sustainability requirements, which make the building simulation a real necessity. The simulation is needed to 
consider, simultaneously, the weather information, the surrounding environment, the envelope of the 
building, the material properties, the use and occupation, and the impact of different design choices and 
characteristics (WANG; MATHEW; PANG, 2012). This integrated capability, i.e. the capacity of analysing 
all systems together as a complete numeric model, is one of the most important aspects of the building 
simulation tools (HONG; CHOU; BONG, 2000). 

However, the actual purpose of a building simulation is not to reach an extremely accurate result, but rather 
to perform the right type of computational experiment using a proper tool (AUGENBROE, 2011), which 
constitutes art and a research field itself. In this sense, there are many building simulation applications that 
could be considered incomplete or at least precipitated in terms of achieved results. Østergård, Jensen and 
Maagaard (2016) reviewed research areas and corresponding challenges by using building simulation in the 
design process. The authors divided the literature into some groups such as searching for an ideal design 
concept based on recommendations and experience (proactive simulation); experimenting the design option 
by using a large number of simulations (statistical methods); using many interdependent performance 
objectives (holistic design); searching for an ideal solution using automated process (optimisation); among 
others. 

By considering the Østergård, Jensen and Maagaard (2016) interpretation, this paper is focused on the 
statistical methods, which depends on many considerations regarding the model, the inputs, the simulation 
process, the performance criteria and data analysis. In this sense, the sensitivity analysis methods can 
provide much useful information in the performance-based design of buildings by showing quantitative 
interaction between inputs-outputs of a model and help to prioritise some inputs over others in the optimum 
design process (PETERSEN; KRISTENSEN; KNUDSEN, 2019; TIAN et al., 2017). 

According to Borgonovo and Plischke (2016, p. 870),  the  sensitivity  analysis  “[…]  is the set of methods that 
allow us to understand key  insights  of  scientific  codes  […]”, i.e. mathematical modelling (such as building 
simulation models). From the building performance evaluation literature, Tian (2013) described some 
sensitivity analysis methods such as local methods, based on one-at-a-time samples, and the global methods 
such as regression-based methods, the Morris method, variance-based methods and meta-modelling 
approaches. 
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Nguyen and Reiter (2015) performed a comparison of nine sensitivity analysis methods by applying them in 
three mathematical models and two case studies of building performance simulation. The methods applied 
were: regression-based sensitivity indices such as Pearson product-moment correlation coefficient (PEAR), 
standardised regression coefficient (SRC), standardised rank regression coefficient (SRRC), Spearman 
coefficient (SPEA), partial correlation coefficient (PCC) and partial rank correlation coefficient (PRCC); 
variance-based methods such as Sobol indices and Fourier amplitude sensitivity test (FAST); and the so-
called screening-based method, i.e. the Morris method. Some design variables were chosen as inputs for the 
EnergyPlus simulation model in two cases, i.e. a detached house and an apartment. The SimLab computer 
programme was used to conduct sensitivity analyses. The authors indicated that the FAST and Sobol gave 
similar results, but they are very computationally expensive, and the SRC and PCC gave more reliable 
results than their rank transformations. The authors also recommended the Morris method to be used to 
exclude unimportant variables, but not to rank the most influent ones, as it differed from the other 
approaches. 

Yang et al. (2016) also performed a comparison between four sensitivity analysis methods such as the SRC, 
Morris,   FAST   and   the   treed  Gaussian   process   (TGP)   −   a  meta-modelling-based sensitivity analysis. The 
authors applied the methods in two commercial buildings in China with different aspect ratios. Some 
packages in R language were used to perform the sensitivity analysis, and the EnergyPlus programme was 
used to perform the simulations. The authors recommended the TGP method due to its low computational 
cost and good accuracy,   although   the   “accuracy” is not easily defined in terms of a mathematical model. 
However, at least two methods should be applied, according to the authors, and they could be the TGP and 
the SRC method. 

Other studies have assessed the performance of a building by using more than one sensitivity analysis 
method. Tian et al. (2017) used the Monte Carlo approach along with SRC indices and Sobol sensitivity 
indices to assess influential design variables of an office building in China. Petersen, Kristensen and 
Knudsen (2019) compared the one-at-a-time approach, the Morris method and the Sobol method to assess 
the performance of an office building in Denmark. Silva and Ghisi (2020) used the local sensitivity methods 
and the Morris method to develop a framework of performance evaluation of buildings in Brazil, by 
considering design variables of a low-income house. 
Some gaps were addressed in this study: the need to use different sensitivity measures for building 
performance simulation; the need to understand an adequate combination of methods for performance 
evaluation purposes; and the quantification of the ranking differences among sensitivity analysis methods. 
Thus, the objective of this study is to analyse the capabilities of different sensitivity analysis methods 
applied to an experiment dealing with design variables in building performance simulation. 

Different methods for different purposes 
A model is a simplification   of   the   “reality”, i.e. it is an attempt to describe some real phenomena into a 
mathematical or computational expression to reach some objective. Usually, as nature has many objects for 
investigation, several models have been built to predict all kinds of phenomena, from the understanding of 
specific chemical reactions to the prediction of future global weather conditions. 

Complex models, such as the case of the building performance simulation programmes, can only be assessed 
through “experimentation”. That is why it is necessary to understand the different methods that exist for 
mathematical experimentation, such as the sensitivity and uncertainty analysis methods that rely on 
“perturbing” the model by modifying its input variables while observing the changes that occur in the output 
variables. 

For understanding the methods explained in the sequence, a simple model will be considered. Let 𝑌 = 𝑓(𝑋) 
be the model, where 𝑌 is the output, and 𝑋 = [𝑥ଵ,…𝑥௜,… 𝑥௞] is a vector of inputs. 

Morris method 
The Morris method or the Elementary Effects method was developed with the motivation to make a numeric 
experiment more efficient (MORRIS, 1991). According to the author, it is common to exist dozens, or even 
hundreds of variables involved in a numerical model, which makes the experiment more complex and 
demanding more time to be evaluated properly. 

This method is used to discover input variables that could be considered negligible, linear or additive, and 
non-linear; or which causes higher-order effects. The experiment begins with the definition of an 
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experimental region 𝜔, which is a regular 𝑘-dimensional space with 𝑝-levels, where each variable 𝑥௜  can 
assume a value in the interval ቄ0, ଵ

௣ିଵ
, ଶ
௣ିଵ

,… ,1ቅ. This interval enables variables with a different order of 
magnitude to be considered simultaneously, in a normalised way. Later on, they can be easily transformed 
from the unitary hypercube to their original units. The independent variables are denoted by 𝑥௜  where 𝑖 
varies from {1, 2, … , 𝑘} in 𝑝-levels in the region 𝜔. For one value of 𝑥, the ith elementary effect is defined by 
Equation 1. 

𝑑௜(𝑋) = ቂଢ଼(௫భ,…,௫೔షభ,௫೔ା୼,௫೔శభ,௫ೖିଢ଼(௫)
୼

ቃ               Eq. 1 

Where:  

Δ is a value between ቄ0, ଵ
௣ିଵ

, ଶ
௣ିଵ

, … ,1ቅ;  

𝑝 is the number of levels in 𝜔;  

𝑥 is each selected value in 𝜔;  

𝑦 is the analysed function/model, which uses 𝑋 as input variables; and 

𝑑௜(𝑋) is the elementary effect from the 𝑖th variable in the function 𝑌. 
The  sensitivity  indices  calculated  by  the  Morris  methods  are  the  mean  (µ)  and  standard  deviation  (σ)  of  the  
elementary effects. Campolongo et al. (2007) developed a new measure (µ*) based on the consideration of 
the absolute numerical values of the original Morris mean calculation to avoid having negative and positive 
values or overlapping issues. The main arguments of the Morris method are the number of trajectories of the 
search process (r), the number of inputs (k) and the number of discrete levels (p), which makes the sample 
size equal to 𝑟 × (𝑘 + 1). 
According to the literature, the Morris method needs the discretisation and normalisation of the input 
variables, i.e. the inputs should have a known amplitude and discrete distribution and, for sampling 
purposes, the input space must be normalised. Another aspect is that the Morris measures should be 
interpreted as qualitative indices rather than quantitative. This implicates in understanding that the ranking 
provided by the Morris method is more important than the specific values for the measures. 

Heiselberg et al. (2009) used the Morris method to develop a sensitivity analysis framework. The authors 
applied it to the performance evaluation of an office building in Denmark to assess the cooling and heating 
energy consumption by using the BE06 programme. The sensitivity analysis showed some influent variables 
for the heating period, such as the control of the lighting systems and airflow rates. Nembrini, Samberger 
and Labelle (2014) used the Morris method to assess influential variables of shape, geometry and systems of 
multi-family building models. 
Corrado and Mechri (2009) determined the influence of 129 design variables of an Italian residential 
building by using the Morris method. McLeod, Hopfe and Kwan (2013) analysed the energy consumption of 
a building in the United Kingdom by using the Morris method, considering future climate predictions. Silva, 
Almeida e Ghisi (2016) assessed design variables in a low-income house at four different climates in Brazil 
by using the Morris method. The sensitivity analysis helps to identify the difference in the ranking of 
influential variables in each climate and each constructive system. 

Monte Carlo methods 
The Monte Carlo approach is a well-known statistical procedure used for assessing uncertainties in complex 
models. The essence of the Monte Carlo approach is to compute an expectation of a probability density of an 
output based on randomly sampling the inputs of a model. This approach for sensitivity analysis depends 
mainly on the sampling method, the sample size, the probability distribution of input variables, the 
sensitivity measures and the convergence of the output results. 
The literature shows that there are many sampling procedures such as simple random, stratified random, 
Latin hypercube, quasi-random, and others (MACDONALD, 2009). The main advantage is that with the 
same sample of inputs, many sensitivity indices can be calculated after having the outputs computed (e.g. 
SRC, SRRC, PCC, PRCC, SPEA, etc.). In the same sense, the sample size is not related to the number of 
input variables, which could make a computational experiment less expensive. The probability distribution 
to consider for the input variables could be discrete or continuous. Among the continuous distributions, the 
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literature usually considers normal, uniform, or other parametric distribution for assessing the parameter 
sample space. 

Hopfe and Hensen (2011) used the Monte Carlo method along with a stepwise regression coefficient to 
analyse the influence of physical properties of an office building in the Netherlands on the thermal comfort 
of users. Yıldız   and   Arsan   (2011) used the SRRC measure to evaluate influent variables in the energy 
consumption of a house in Turkey. Hygh et al. (2012) used the SRC to analyse influent variables in the 
energy consumption of an apartment building in the United States. Silva and Ghisi (2013) used the Monte 
Carlo approach with the SRC and PCC measures to analyse the influence of design variables on the thermal 
and energy performance of a low-income house in Florianópolis, Brazil. Encinas and De Herde (2013) used 
the Monte Carlo method with the Spearman coefficient to analyse the thermal discomfort of users in a 
building in Chile by considering variables related to ventilation, air infiltration and internal loads. Mahar et 
al. (2020) used the Monte Carlo approach to assess design variables in a residential building in Pakistan. The 
authors used twenty-one design variables, sampled using the Latin Hypercube sampling, by considering both 
discrete and continuous distribution, depending on the variable. The SRC measure was used to quantify the 
sensitivity, enabling the identification of the most influent variable for that climate. 

The authors agree with the advantages of the Monte Carlo approach, especially in dealing with design 
variables. However, there is a fundamental issue regarding this approach, which depends on the linearity of 
the model. The rank transformation indices could be used to overcome this issue (i.e. SRCC and PRCC 
instead of SRC and PCC, respectively). 

Variance-based methods 
The variance-based methods   rely   on   the   “variance” statistical measure. This can provide good sensitivity 
estimation for both non-linear and non-additive models. The variance calculation can be performed using 
Equation 2. 

𝑉(𝑌) = ∑ 𝑉௜௞
௜ + ∑ ∑ 𝑉௜௝௞

௝வ௜
௞
௜ +⋯+ 𝑉ଵ,ଶ,…,௞                 Eq. 2 

Where: 

𝑉௜ is the variance due to each variable; 

𝑉௜௝  is the variance of the interaction effects of second-order, and so on until reaching the 𝑉ଵ,ଶ,…,௞ which is the 
variance regarding the kth order. 
As the variance calculation of a  model  could  be  considered  a  “model-free” approach, i.e. with no application 
limitations, there are some methods to assess it. The most traditional method is the Design of Experiments, 
in which the experiment relies on the factorial design multivariate sampling – where all levels are combined, 
and the sample size increases exponentially (𝑁 = 𝑝௞). This is the main disadvantage of this method for 
building simulation purposes, as the sample size could become impracticable for many inputs or many levels 
of variation. 

For the Design of Experiments, the sum of squares, the mean squares or the F-value could be used as a 
measure of sensitivity, for each variable or interaction effect. 

The Sobol (1990) method deals with estimating the first order and total order effects of the input variables 
by making approximate integrals according to the Monte Carlo approach. The Sobol method sample does 
not require a full factorial sample, but rather a necessary sample to enable a good estimation. The original 
method has many equations and could be assessed in the original work. The method requires two matrices of 
samples and the procedure includes resampling. 

Some authors have proposed different extensions and improvements in the Sobol method. Mara and Joseph 
(2008) proposed an extension based on the random balance design with a permutation of matrices. This 
approach allows the estimation of the first-order indices. Saltelli et al. (2010) developed another way to 
compute the first and total order indices by using the Jansen (1999) estimator. This new approach is based 
on the expected variance rather than the reduction of the expected variance and uses Monte Carlo quasi-
random samples. 
Langner et al. (2012) used the fractional factorial design (a tentative to reduce the full factorial sample) to 
analyse some design variables in three commercial buildings in the United States through simulation using 
EnergyPlus. Jaffal, Inard and Ghiaus (2009) used the design of experiment approach to assess envelope 
variables of a building using TRNSYS simulation and polynomial estimation of the heating demand. Santos, 
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Porto e Silva (2020) analysed different design variables for a low-income house in different climatic zones 
in Brazil. The experiment relied on the full factorial design and variance-based measures, which enabled the 
identification of influent variables in the thermal comfort and thermal performance of the houses. 

Nguyen and Reiter (2015) used the Sobol method in comparison to other sensitivity analysis techniques to 
assess the energy performance of two buildings in Vietnan, using the EnergyPlus simulation programme and 
the Simlab (JOINT…, 2013) tool to calculate the sensitivity indices. Kristensen and Petersen (2016) used the 
Sobol method to assess the impacts of design variables in the annual energy needs of a residential reference 
building. Some features of the method were compared with Morris and Local approach, especially regarding 
the probability distribution of the inputs. Menberg, Heo and Choudhary (2016) also compared the Morris 
method with the Sobol and Monte Carlo approach for analysing design variables of an educational building 
in Cambridge. The heating energy needs were calculated, and design and operational inputs were assessed 
using the TRNSYS simulation programme. 

The variance-based methods have many advantages, i.e. they do not depend on the linearity of the model, 
they are capable of capturing the influence over the whole amplitude of the inputs, they can quantity 
interaction effects, and they are capable of determining grouped sensitivity measures. 

Method 
An experiment considering the building design characteristics as independent variables was performed in 
order to compare the capabilities of different sensitivity analysis methods in building simulation. The 
method is structured as follows:  

(a) the selection of the sensitivity analysis methods for application;  

(b) description of the building simulation model;  

(c) description of the climate considered for the experiment;  
(d) specific settings of the input variables for the experiment; and 

(e) data treatment, comparison and visualisation methods. 

Sensitivity analysis methods 
Table 1 shows the sensitivity analysis methods considered in this work, along with the corresponding 
sensitivity measure, the sampling procedure and a bibliographic reference. 
The methods shown in Table 1 were implemented through scripts in the R language for performing each 
sensitivity analysis. Some predefined functions published by other authors were used to write the scripts: 
(a) the Morris method was implemented using the  “morris” function from  the  R  package  “sensitivity” 
developed by Pujol, Iooss and Janon (2015). The theoretical model was adopted from Morris (1991) and 
Campolongo, Cariboni and Saltelli (2007); 

(b) the Monte Carlo method was implemented using the Latin  Hypercube  Sampling  with  the  “LHS” 
function  from  the  R  package  “pse” developed by Chalom, Mandai and Prado (2017) with Bratley and Fox 
(1988) model; 
(c) the sensitivity indices used for evaluating the Monte Carlo samples were also taken from the 
“sensitivity” package. For the standardised regression  coefficients,  the  function  “src” was used and for the 
partial correlation  coefficients,  the  function  “pcc” was used; both functions used the theoretical model from 
Saltelli et al. (2008); 

(d) for the design of experiments  (DoE),  the  function  “fac.design”  was  used  from  the  “DoE.base” package 
developed by Groemping, Amarov and Xu (2020) using theory from Collings (2016). The analysis of 
variance was performed using the  “aov” function  from  the  existing  R  package  “stats”;; 
(e) the Sobol {a} method was implemented using the  function  “sobolmara”  from  the  “sensitivity” package; 
the theoretical model from Mara and Joseph (2008) was considered; and 

(f) the Sobol {b} method was implemented using the  function  “soboljansen” from  the  “sensitivity” 
package; the theoretical model from Jansen (1999) and Saltelli et al. (2010) was considered. 

These preexisting R functions and packages were incorporated into scripts developed especially for this 
work to facilitate their use for building simulation purposes in EnergyPlusTM. It is important to mention that 
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all the scripts/functions were split to separate the two major processes: the sample generation from the 
sensitivity analysis itself. This is necessary because the simulation procedures usually demand much time to 
run. In this sense, one could generate all the samples for all sensitivity  analysis  methods   in   the  “.idf” file 
format for EnergyPlusTM without running the simulation immediately; this could be done later. 

Figura 1 shows a flowchart of the method, which exemplifies the step-by-step procedures used in each 
sensitivity analysis method. It should be noticed that other R scripts were created to perform some 
complementary actions such   as   one   script   to   create   many   “.idf” files, according to an input sample of 
independent variables; and other to calculate the  dependent  variable   from  each  “.csv” file, an output from 
each EnergyPlusTM simulation. 

Building model and simulation settings 
As the main objective of this study is to compare the capabilities of the different sensitivity analysis 
methods, the building model itself was simplified: a single-zone building was chosen for the case study, 
according to Figure 2. The advantage of a single-zone approach is that the simulation time is reduced and 
there is no need for additional aggregation procedures for calculation of equivalent performance criteria 
between zones. 

Table 1 – Sensitivity analysis methods and details 

Method Sensitivity measure Sampling Reference 

Morris {a} and {b} Elementary Effects (EE) One-at-a-time 
(screening) 

Morris (1991) and Campolongo, 
Cariboni and Saltelli (2007) 

Monte Carlo {a} Standardised Regression 
Coefficients (SRC) 

Latin Hypercube 
Sampling (LHS) - 
stratified 
sampling 

Saltelli et al. (2008) 
Monte Carlo {b} Partial Correlation 

Coefficients (PCC) 
Design of 
experiments 

F-value 1st and 2nd order 
effects 

Full factorial 
design 

Fischer (1935)1 apud Yates 
(1964) 

Sobol {a} First-order index (Si) Sobol sequences Mara and Tarantola (2008)  

Sobol {b} Total order indices (St) Sobol sequences Jansen (1999) and Saltelli et al. 
(2010) 

Figure 1 – Flowchart of the method – processes followed for each sensitivity analysis method 

 

                                                
1FISCHER, S. R. A. The design of experiments. Hafner Pub, 1935. 
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Figure 2 – Floor plan of the simulation model of a commercial building 

 

Table 2 – Thermal properties for the base model 

Element Property Unit Value 

Roof Thermal transmittance W/m K 1.39 
Thermal capacity kJ/m K 223 

Wall Thermal transmittance W/m K 2.37 
Thermal capacity kJ/m K 384 

Floor Thermal transmittance W/m K 4.68 
Thermal capacity kJ/m K 259 

The building base model has walls with a double layer of concrete and air gap; roof with ceramic tiles, air 
gap, concrete, air gap and plaster ceiling; floor with concrete and ceramic. The windows are composed of 
simple 6mm clear glass. The thermal transmittance and thermal capacity of each element, calculated 
according to Brazilian technical standards methods (ABNT, 2005), are shown in Table 2. The building was 
modelled in the EnergyPlusTM simulation programme to perform dynamic simulation of the building 
throughout the whole year. 
The contact with the ground  was  considered  by  using  the  “Ground:Domain” object of EnergyPlusTM, which 
uses an implicit finite difference model to determine the ground temperatures. It was used the ground 
temperature profile from Kusuda and Achenbach (1965), correlated with the local monthly average ground 
temperatures in the shallower layer (approximately 0.5m above the surface); this shallow layer information 
was taken from the TRY weather file of Florianópolis, detailed in the next section. 

It was considered a night ventilation strategy, along with some quantity of air-infiltration rates in the 
windows through the day. The base model considered 0.2 person/m  of occupancy density, 16 W/m  of 
lighting and 10.7 W/m  of equipment loads, which are average values for office buildings according to NBR 
16401-1 (ABNT, 2008). These loads varied on an hourly basis according to the occupancy, the equipment 
and the lighting usage; these schedules are shown in Figure 3. 

The simulation experiment was performed to estimate the thermal loads in the entire year for the simulation. 
The  object  “Ideal  Loads  Air  System”  from  EnergyPlusTM was used to perform this calculation. Thermostat 
temperatures of 25 °C for cooling and 19 °C for heating were set in this ideal system. The cooling system 
was available in the whole year for weekdays from 7 a.m. to 6 p.m.; the heating system was only available 
for weekdays for June to September (the cold season), from 7 a.m. to 6 p.m.  

Climate 
The simulation experiments were performed for the climate of Florianópolis, Santa Catarina, southern 
Brazil, according to the Test Reference Year (TRY) weather file determined by Goulart, Lamberts and 
Firmino (1998). Figure 4 shows the global and direct solar radiation, dry bulb and dew point temperatures 
and relative humidity for this weather file; an average day for each month is shown. 
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Figure 3 – Schedules for occupancy, equipment and lighting usage for the base model 

 

Figure 4 – Weather variables for Florianópolis, southern Brazil (data from TRY weather file (GOULART; 
LAMBERTS; FIRMINO, 1998)) 

 

According to the Köppen-Geiger classification (ALVARES et al., 2013), Florianópolis has a humid 
subtropical climate, a typical coast region in southern Brazil, with well-defined summer and winter and no 
dry season. The lowest dry bulb temperatures are found from June to August and the highest temperatures in 
January  and  February.  For  some  months  (August−December  and  March),  the  average  diffuse  solar  radiation  
is higher than the direct radiation, indicating high cloud coverage. The monthly average relative humidity 
varies from 82 to 89%. 

Simulation experiment 
The simulation experiment is a sensitivity analysis of the building's design variables. The aim was to find 
some important variables in the cooling and heating loads of the building and to discard some unimportant 
variables. 

The design variables were selected based on the envelope of the building and are shown in Table 3. Fifteen 
independent variables (k) were considered, such as the thermal transmittance and thermal capacity of the 
building components, some thermal and optical properties of opaque and transparent surfaces, among other 
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variables. These variables are responsible for controlling the thermal gains and losses of the building, which 
affects energy consumption. 

Table 3 also shows a lower and upper numeric limit for each independent variable. For this study, these 
intervals were discrete, as required by the Morris method and the Design of Experiments. In this sense, to 
enable an adequate comparison among methods, all variables were discretised according to levels of 
variation (see Table 4). Up to eight levels were considered for each independent variable, depending on the 
sensitivity analysis method applied. 
Finally, Table 4 shows the settings for each sensitivity analysis method. The design of experiments method 
was, somehow, different, i.e. as it requires a full factorial combination between variables' levels, it was 
considered only two levels of variation (the actual lower and upper limits for each variable); and the two less 
important variables for each dependent variable (cooling and heating loads) were excluded, a priori, from 
this factorial sampling to avoid an impractical sample size and simulation time. 

Thus, seven methods were tested in this analysis, achieving from 320 to 8500 sample sizes for each method. 

Table 3 – Independent variables for the simulation experiment 

Independent variable Code Unit Lower limit Upper limit 
Thermal transmittance of the walls Uwall W/m K 1.1 4.4 
Thermal transmittance of the roof Uroof W/m K 0.8 3.2 
Thermal transmittance of the floor Ufloor W/m K 2.0 5.0 
Thermal capacity of the walls Cwall kJ/m K 80 470 
Thermal capacity of the roof Croof kJ/m K 40 370 
Thermal capacity of the floor Cfloor kJ/m K 80 170 
Solar absorptance of the external walls awall - 0.20 0.80 
Solar absorptance of the roof aroof - 0.20 0.90 
Longwave emissivity of the inner face of the roof ecob - 0.05 0.90 
Solar heat gain coefficient of the windows SHGC - 0.42 0.87 
Thermal transmittance of the glass Uglass W/m K 4.2 6.3 
Window-to-wall ratio WWR - 0.11 0.50 
Horizontal shading as a fraction of window high Lshading - 0.20 0.50 
Solar transmission of the Venetian blinds tvenetian - 0.20 0.80 
Building azimuth from North Azimuth Degree 0 270 

Table 4 – Sensitivity analysis methods and settings used for the first analysis, along with the sample 
size required 

Method Details Inputs 
(k) 

Levels 
(p) 

Sample 
size (N) 

Morris {a} 
The Morris method considering four levels (p) in each 
independent variable (k), by dividing the 95% confidence 
interval equally, with the number of trajectories equal to 20 (r). 

15 4 320 

Morris {b} It is the same as Morris {a} but considering eight levels (p) in 
each independent variable (k). 15 8 640 

Monte Carlo 
{a} 

The Monte Carlo approach, considering the Latin Hypercube 
Sampling; a discrete probability distribution was used for each 
variable (k), with eight levels (p). Standardises Regression 
Coefficients (SRCs) were calculated. 

15 8 1200 

Monte Carlo 
{b} 

It is the same as Monte Carlo {a}, but Partial Correlation 
Coefficients (PCCs) were calculated. 15 8 1200 

Design of 
experiments 

The full factorial design of experiments approach, in which the 
two least influent variables were excluded from the experiment 
(*); two levels (p) in each independent variable (k) were used. 

13* 2 8192 

Sobol {a} 
The Sobol method from Mara and Joseph (2008), with the first 
matrix with a size of 4250 for calculating the permutations. First-
order indices were calculated. 

15 8 8500 

Sobol {b} The Sobol method from Saltelli et al. (2010), with a base sample 
size of 250. The total indices were calculated. 15 8 8500 
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Results 
The results are discussed along with the specific tables and graphs for each method. 

Overview of the output data 
This section intends to show the results of the comparison of the sensitivity analysis methods for the 
simulation experiment. Figure 5 shows the histograms of the heating loads for each sensitivity analysis 
method, while Table 5 shows the descriptive statistics. On the other hand, Figure 6 and Table 6 show the 
same information for the cooling loads. The seven methods presented in Table 4 were grouped into six 
histograms as both Monte Carlo approaches (with SRC and PCC indices) were simulated and calculated for 
the same sample. 
The Design of Experiments (DoE) sample reached a higher amplitude in both heating and cooling loads due 
to the factorial combination among the extreme levels (p) of the independent variables. On the contrary, the 
smaller samples, such as the Morris {a} case, obtained the lowest amplitude among the results. This is an 
interesting point regarding the stratification capabilities of the sample strategies; the random samples lead to 
narrower results while the DoE leads to higher possibilities and amplitudes. In other words, more specific 
cases were simulated and evaluated. 

Another aspect is that the heating loads are much lower than the cooling loads, which is a characteristic of 
the climate evaluated. In this case, a decision-maker could prioritise the cooling requirements above heating 
requirements in this commercial building. 

Figure 5 – Histograms of the heating loads of the simulation experiment for all methods 

 

Table 5 – Descriptive statistics for heating loads for all methods 

Statistics Morris{a} Morris{b} Monte Carlo DoE Sobol{a} Sobol{b} 
N (sample size) [-] 320 640 1200 8192 8500 8500 

Minimum [kWh/year] 25.7 30.6 23.5 12.9 19.6 21.8 
Maximum [kWh/year] 179.1 256.4 280.7 375.2 325.7 282.1 

Range [kWh/year] 153.3 225.8 257.2 362.3 306.1 260.3 
Median [kWh/year] 94.9 95.2 91.8 87.7 92.0 93.0 
Mean [kWh/year] 93.9 100.3 97.1 99.8 96.5 96.6 

Standard deviation [kWh/year] 36.9 39.9 40.2 57.9 39.1 39.4 
Coefficient of variation [%] 39.3% 39.8% 41.4% 58.0% 40.5% 40.8% 
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Figure 6 – Histograms of the cooling loads of the simulation experiment for all methods 

 

Table 6 – Descriptive statistics for cooling loads for all methods 

Statistics Morris{a} Morris{b} Monte Carlo DoE Sobol{a} Sobol{b} 
N (sample size) [-] 320 640 1200 8192 8500 8500 
Minimum [kWh/year] 1549.4 1184.3 1180.8 823.9 1084.6 1180.6 
Maximum [kWh/year] 7554.7 5423.6 7336.1 10370.8 7673.1 7229.2 
Range [kWh/year] 6005.3 4239.3 6155.2 9546.9 6588.5 6048.6 
Median [kWh/year] 2794.4 2910.5 2833.6 3038.3 2840.3 2853.4 
Mean [kWh/year] 3075.3 3033.0 2962.8 3390.4 2955.6 2955.1 
Standard deviation [kWh/year] 1093.9 806.0 894.8 1603.0 860.2 839.0 
Coefficient of variation [%] 35.6% 26.6% 30.2% 47.3% 29.1% 28.4% 

According to Tables 5 and 6, the coefficient of variation of the data (Coef.var) is very similar between 
methods, except for the Design of Experiments, which obtained higher values: 58.0% for heating loads and 
47.3% for cooling loads. 

Capabilities of each method 
In this section, the results and capabilities of each sensitivity analysis method are presented and discussed. 

Morris method 

By looking at each sensitivity analysis method at once, Figure 7 shows the mean and standard deviation of 
the Morris {a} method for the heating and cooling loads. For the heating loads, the solar orientation 
(“Azimuth”) showed the higher non-linearity, and the thermal  transmittance  of  the  roof  (“Uroof”) showed a 
greater influence. Both means (µ and µ*) can be analysed together to conclude which variable is the most 
important and what its signal is; e.g. the Uroof variable is directly proportional to the heating loads value, 
while the aroof variable is inversely proportional (negative sign).  

For the cooling loads, the solar absorptance of the roof seemed to be the most influent variable, and the 
thermal capacity of the roof reached the higher non-linear effect. Most of the input variables showed lower 
influence compared to the few most influent in this case. 
The Morris {b} approach, which differs from the Morris {a} concerning the sample size, showed similar 
results and will not be reported separately due to space limitations. However, due to the different sample 
sizes, some variables have changed the ranking position among the most influent variables, as will be 
reported in Figure 14. 
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Figure 7 – Mean (µ and µ*) and standard deviation (σ) of the elementary effects for the Morris {a} 
method for heating (a) and cooling loads (b) 

 
(a) Heating load 

 
(b) Cooling load 

The Morris graphs are interesting as one can see some features: 

(a) non-linearity effects: variables that stand out from the others. For instance, in the Heating Loads and µ 
mean, the influence of the Uroof and Uwall are similar, but the non-linearity is very different. This indicates 
that, from the lower level to the upper level of the Uroof variable (i.e. from 0.8 to 3.2 W/m K, according to 
Table 3), the influence in the heating loads is not linear.  We  cannot  visualise  this  “non-linearity” directly, 
but we have a qualitative  measure  of  it  (the  σ  measure);; 
(b) another aspect that is interesting to observe is that many variables are very close to each other, forming 
a  cloud  of  points  in  the  µ×σ  graphs.  Those  variables  have  similar  influence  and non-linearity. By applying 
some statistical criteria (usually subjective), these variables can be considered negligible and be discarded in 
further decisions; and 

(c) positive and negative values: the µ measure can indicate important information, which is related to the 
proportionality of the input to the output regarding the signal. For the cooling loads, one can see that the 
aroof and Croof variables are influent, but the higher the aroof, the higher the cooling loads; and the higher 
the Croof, the lower the cooling loads. This aspect is not clear in the variance-based measures themselves. 
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Monte Carlo methods 

The Monte Carlo approaches demand different visualisation strategies to understand the data; in this case, a 
scatterplot is useful as the sensitivity measures are based on linear relations. Figure 8 shows the scatterplot 
for the heating loads and Figure 9 shows the same for the cooling loads. 
The trend lines connect the mean value of each level of the inputs; in this sense, the more horizontal is the 
line, the lower effect the input has in the output. The thermal transmittance of the Venetian blinds 
(“tvenetian”)   and   the  window   shading   (“Lshading”) had horizontal trend lines, which indicates that they 
have little effect on the heating loads. For the cooling loads, it is harder to conclude something based only on 
the visual inspection; however, it seems that the solar absorptances have a greater influence on the cooling 
loads than the other variables. 

It should be emphasised that the sample is the same for both Monte Carlo {a} and Monte Carlo {b} 
methods, differing only in the calculation of the sensitivity measures. Some findings are as follows: 
(a) sample size: usually, the sample size required for a Monte Carlo sensitivity analysis is greater than for 
the Morris method. This enables more data available in each stratum of the sample, i.e. there is more 
information when the data is grouped according to the levels of variation – in the case of a discrete 
distribution; 

(b) trend lines: it is possible to create scatterplot graphs to visualise the data according to each input 
variable and output variable, along with trend lines. From Figures 8 and 9, the trend line is a non-linear 
curve which attempts to follow the best behaviour of the data. Some variables showed a linear behaviour for 
the heating loads (e.g. the Uwall) and other a very non-linear relationship (e.g. Azimuth and Croof). 
However, this approach did not give a measure of linearity or non-linearity for each variable, but only for the 
whole model. In the case, the adjusted R  was 0.885 for the heating loads and 0.815 for the cooling loads; 
and 

(c) influential variables: Uwall and Uroof were the most influent variables on heating loads according to 
visual inspection. However, it is not clear which one is the most influent. The awall and aroof variables 
seemed the most influent in cooling loads. 

Figure 8 – Scatterplots for the Monte Carlo samples of heating loads and the design variables 

 
Note: the tendency lines connect the mean values. 
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Figure 9 – Scatterplots for the Monte Carlo samples of cooling loads and the design variables 

 
Note: the tendency lines connect the mean values. 

Figure 10 shows the SRC and PCC indices for each performance criteria. Due to the high R2, the rank is the 
same for both SRC and PCC. The advantage is that the coefficients are standardised between -1 and +1, 
which facilitates a direct comparison. 

Design of experiment method 

In the case of the design of experiments, one can group the dependent variables according to the most 
influent variables before visualising them. In this case, the Uoof, Uwall, aroof and awall were the most 
influent variables in the heating loads. For the cooling loads, the most influent variables were aroof, awall, 
Uroof and Ctroof. 

Figure 11 shows the boxplot combined with a violin plot for the heating and cooling loads grouped 
according to the four most important variables in the design of experiments method. In the case of heating 
loads, one can see larger amplitude in the case of Uroof equal to 3.2 W/m K, Uwall equal to 4.4 W/m K, 
aroof equal to 0.20 and awall equal to 0.2, i.e. this combination of variables can lead to higher uncertainties 
in the performance of the building, indicating that some fifth or sixth variable is also influent in this 
particular group. For the other groups, a smaller amplitude was found. The combination of low thermal 
transmittances can lead to similar results, as seen in the first two groups. 
For the cooling loads, the best combination of variables was the lower solar absorptances for both walls and 
roof. The amplitudes also varied in this case, and the last group, with thermal capacity of the roof equal to 40 
kJ/m K, reached the highest amplitude and the highest mean. 

Theoretically, the boxplot grouping of variables can only be properly performed in the case of a full factorial 
design, as one can guarantee that all levels have values in each group. This is not true for the other methods, 
as they rely on random or quasi-random samples. 
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Figure 12 shows the F-value sensitivity measure for the design of experiments approach. One can see the 
magnitude of the influence of the absorptance and transmittance variables compared to the others. 

Sobol variance-based methods 

Figure 13 shows the sensitivity measure of the Sobol approaches. These methods are not well established in 
terms of visual features. Scatterplots or boxplots cannot be properly applied as the sample is not generated 
specifically for these purposes. 

One can see that the order of influence is very similar to the Design of Experiments. However, there is some 
difference between the first and total order indices. To exemplify, for the cooling loads, first-order index (Si) 
showed a ranking of aroof, awall, Cwall and Croof, while the total-order index (St) showed aroof, awall, 
Croof and Uroof. This indicates that there are some important interaction effects in the Uroof variable that 
makes it more important considering all effects.  

Ranking of the influential variables 
Figure 14 shows the rank of the ten most influent variables according to each sensitivity analysis method for 
both heating and cooling loads. This represents the final comparison between the methods, where one can 
verify if methods agreed or disagreed in indicating the rank order. For both the heating and cooling loads, all 
sensitivity analysis methods agreed in the first and second most influent variables. The thermal transmittance 
of the roof and walls were the most influent for the heating loads, while the solar absorptance of the roof and 
walls were the most influent ones for the cooling loads. 

However, for the other rank positions, the methods lead to different results. In the case of heating loads, for 
the 4th most influent variable, most of the methods indicated the solar absorptance of the walls (awall), while 
Morris {b} method indicated the thermal capacity of the roof (Croof). It seems that for the 4th and 7th order 
of influence, the methods changed the order of importance among themselves. 

Figure 10 – Sensitivity measures of the input variables for Monte Carlo {a} with Standardised Regression 
Coefficients (SRC) and {b} Partial Correlation Coefficient (PCC) for Heating Loads and Cooling Loads 
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Figure 11 – Boxplot and violin plot for the design of experiments sample grouped by the four most 
influent variables, for heating (a) and cooling loads (b) 

 
(a) Heating Loads 

 
(b) Cooling Loads 

Figure 12 – F-value of the input data of the Design of Experiments for heating and cooling loads 
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Figure 13 – Bar plot for the Sobol {a} Si and Sobol {b} St sensitivity indices for heating loads and cooling 
loads 

 

Figure 14 – Ranking of the ten most influent design variables (or terms) in the heating loads and cooling 
loads for each sensitivity analysis method 

 

As for the cooling loads, for the 3rd and 6th order, the importance differed a little among the methods. For the 
3rd most influent variable, most of the methods indicated the thermal capacity of the roof (Croof), while the 
design of experiments indicated the term "Uroof:aroof", which is a second-order effect between thermal 
transmittance of the roof (Uroof) and its solar absorptance (aroof). 

One way of concluding something is to consider one of the methods more suitable; in this case, the design of 
experiments and the Sobol {b} with total indices were considered as a reference. The design of experiments 
has the capability of separating the first and second-order effects, while the Sobol {b} considers the total 
sensitivity indices at once. For the cooling loads, the  DoE  method  showed  the  term  “Uroof:aroof” for the 3rd 
most influent variable, i.e. this second-order effect was more important than the Croof variable (in the 4th 
order). The Sobol {b} St showed that the 3rd most influent was the Croof variable because all of the 1st order 
effects from aroof variable would be included in the total index St. In this case, the 4th most influent variable 
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was the Uroof. Without the DoE approach, one could not tell why this happened, but it can be seen that for 
this Uroof total index St has a major effect of second-order between it and aroof variable (more important 
than the variable alone). 

Some general comments: 

(a) it was expected some difference among the order of importance between methods, as each of them was 
calculated from a different sample and none of them considered all the sample domain at once; 
(b) despite the difference in some rank order, the first and second most influent variables were the same for 
all methods, which indicates that all of them could be used for the same purpose of factor prioritisation 
setting from Saltelli et al. (2008), i.e. if the value of these  variables  were  fixed  in  its  “true” value, most of the 
variance in the model would be reduced; 

(c) both the Monte Carlo approaches with SRCs or PCCs presented the same order of influence, i.e. the 
regression or correlation indicated the same variables ranking order; 
(d) the DoE and the Sobol {b} analysed together can indicate properly the total and the separated first and 
second-order effects among variables, which could not be seen with the methods in a separated manner; and 

(e) despite the expected non-linearity of some variables (as can be seen in the plots from each method) the 
Monte Carlo approaches agreed mostly with the variance-based approaches like DoE and Sobol {b}. 

If some capabilities such as efficiency, low computational cost and ability to show some differences between 
the importance and non-linearity, the Morris method is a good choice for this type of experiment involving 
envelope design variables in building simulation. It enables understanding the influence of the variable very 
accurately compared to other more advanced approaches such as Sobol {b} without losing the capability of 
factor prioritisation. However, one needs to highlight that this order of influence is qualitative in the case of 
the Morris method. However, its low computational cost (640 runs for Morris {b} compared with the 8500 
of the Sobol {b}) makes its use worth. 

Figures 15 and 16 show a different way of visualising the quantitative results of the sensitivity measures of 
each method. In this case, the measures were normalised from their units in a vector manner to enable 
comparison. Figure 15 shows the normalised indices for the heating loads; the variables were filtered in 
order of importance according to the Sobol {b} method (the last column). By looking to the quantitative 
values compared to the first and second most influent variables, one can understand why the methods 
sometimes changed the order of some variable; the values are too close. Any difference in the sampling 
strategy or the strata coverage in the variable domain would change the results, especially after the 5th most 
important variable. 

One can see that the difference in the values of the Monte Carlo methods among the variables is lower than 
the difference between values in the variance-based methods, especially in the case of the DoE. In DoE, the 
Uroof had a normalised index equal to 0.753, while the Uwall had 0.497 (difference of 0.256). This 
difference is almost the value found from the 1st to the 4th variable in the Monte Carlo {a} method. 

Figure 15 - Normalised sensitivity indices of all methods for heating loads 

 

Variable
Morris{a} Morris {b}

Monte Carlo 
{a} SRC

Monte Carlo 
{b} PCC

DoE F-value Sobol' {a} Sobol' {b} St

Uroof 0.573 0.557 0.601 0.477 0.753 0.766 0.712
Uwall 0.502 0.484 0.499 0.450 0.479 0.493 0.535
aroof 0.369 0.368 0.388 0.405 0.348 0.297 0.352
awall 0.287 0.270 0.292 0.347 0.266 0.164 0.205
Azimuth 0.207 0.284 0.227 0.294 0.040 0.133 0.139
Cwall 0.235 0.228 0.210 0.277 0.087 0.102 0.108
Croof 0.247 0.292 0.157 0.219 0.018 0.108 0.091
WWR 0.131 0.104 0.114 0.165 0.045 0.078 0.029
tvenetian 0.090 0.066 0.091 0.134 0.009 0.004 0.020
SHGC 0.086 0.075 0.074 0.110 0.009 0.067 0.015
ecob 0.055 0.054 0.052 0.078 0.001 0.000 0.011
Ufloor 0.060 0.062 0.053 0.079 0.014 0.039 0.009
Lshading 0.050 0.045 0.043 0.065 0.001 0.035 0.007
Uglass 0.026 0.026 0.017 0.027 0.000 0.000 0.002
Cfloor 0.010 0.011 0.012 0.019 0.000 0.034 0.000
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Figure 16 - Normalised sensitivity indices of all methods for cooling loads 

 

In Figure 16, the difference between the variance-based approaches and the other approaches is also noticed. 
In DoE and Sobol {b} the difference between the first and second most influent variable is higher than the 
Monte Carlo approaches. The issue of the Uwall variable can be seen again, i.e. the Sobol {b} indicated that 
Uwall is the 5th most influent variable by computing the total index, while the other methods underestimated 
it based on the first order alone. 

Conclusions 
This study focused on the comparison of global sensitivity analysis methods applied to building performance 
simulation experiments on design variables. The study was performed on a single-zone commercial building, 
with 15 design variables as inputs and seven different approaches of sensitivity analysis, i.e. Morris method 
(two settings {a} and {b}), Monte Carlo SRC, Monte Carlo PCC, Design of Experiments, Sobol (two 
settings {a} and {b}). The ranking of influence of the inputs on the heating and cooling loads were 
compared and discussed. 

After the specific results, some general conclusions can be made: 

(a) regarding design variables experiments, all methods agreed in showing the most influent variables in 
both performance criteria, with some disagreements over some methods. From the 1st to the 5th influent 
variable, the methods agreed in general. The first two most influent variables were the same in all methods 
and performance criteria; 
(b) there was no difference in the ranking between the Monte Carlo approaches with SRC or PCC, which 
was expected when the model had a high coefficient of determination – which was the case. The Morris 
method differed by the number of trajectories and levels, and also had a little difference in the ranking; 

(c) the variance-based methods were considered the most accurate because of their model-free capability. In 
this sense, they were chosen as a reference to the comparison. When the Sobol {b} and DoE are compared, 
one can notice that the Sobol total index could capture the essence of the total order effects, as the DoE 
experiment showed the second-order effects. To exemplify, in DoE experiment, the second-order effect 
“aroof:Uroof” was the 3rd in the ranking, while the Uroof alone was the 8th; in the Sobol {b} St experiment, 
the Uroof became the 4th in the ranking due to the computation of the total effects; 

(d) the methods agreed in showing the most influent variables and the least influent ones. For practical 
purposes, one could choose the easiest method to be applied, with low computational cost and easy to 
understand. The Morris method, in this sense, proved to be a feasible method that could, alone, indicate with 
precision the most important variables in this type of experiment. However, variance-based methods could 
be necessary to address high non-linear and complex models, and should be used properly when the 
computational cost allows; and 
(e) each method brings up different capabilities and opportunities for interpreting the output data. The 
Morris method showed great visualisation capabilities of the qualitative ranking; the Monte Carlo approach 

Variable
Morris{a} Morris {b}

Monte Carlo 
{a} SRC

Monte Carlo 
{b} PCC

DoE F-value Sobol' {a} Sobol' {b} St

aroof 0.574 0.631 0.636 0.521 0.815 0.761 0.793
awall 0.434 0.422 0.470 0.456 0.467 0.481 0.408
Croof 0.410 0.339 0.355 0.388 0.216 0.232 0.302
Uroof 0.284 0.270 0.247 0.299 0.106 0.202 0.229
Cwall 0.347 0.326 0.306 0.350 0.183 0.254 0.213
Uwall 0.140 0.173 0.023 0.031 0.012 0.020 0.081
WWR 0.172 0.168 0.177 0.226 0.154 0.124 0.062
SHGC 0.148 0.139 0.149 0.192 0.036 0.080 0.043
Azimuth 0.148 0.185 0.122 0.160 0.015 0.024 0.041
tvenetian 0.103 0.092 0.126 0.165 0.026 0.042 0.024
Ufloor 0.069 0.077 0.085 0.114 0.019 0.017 0.012
Lshading 0.042 0.037 0.028 0.037 0.008 0.072 0.004
ecob 0.045 0.033 0.001 0.001 0.000 0.012 0.004
Cfloor 0.020 0.018 0.031 0.042 0.000 0.020 0.001
Uglass 0.014 0.023 0.007 0.009 0.000 0.010 0.001
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can show the overall behaviour of the data through scatterplots and trend lines; DoE can be used to create 
groups of important variables, which can help a designer to make decisions more rationally; and Sobol 
methods can show the difference between the first and total order effects, which represented the most 
accurate of all – but with poor visual features. 

This study is limited regarding the fact that only one building was studied, with a single-zone and simple 
geometry, for only one climate and two performance criteria. However, many scenarios of sensitivity 
analysis were considered, what justify, somehow, the simplicity of the computer model itself. 
Further work must be performed to study different typologies of buildings and their behaviour against the 
different sensitivity analysis methods applied to design variables. It is also important to evaluate the effects 
of different sample sizes, different probability distribution or different experiments, such as focusing on 
uncertainties (i.e. small variations in the input variables). 

References 
ALVARES, C. A. et al. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, 
n. 6, p. 711–728, 2013. 
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15220-2: desempenho térmico de 
edificações: parte 2: método de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e 
do fator solar de elementos e componentes de edificações. Rio de Janeiro, 2005. 

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 16401-1: instalações de ar-condicionado: 
sistemas centais e unitários: parte 1: projeto das instalações. Rio de Janeiro, 2008. 

AUGENBROE, G. The role of simulation in performance based building. In: LAMBERTS, R.; J. L. . 
HENSEN, J. L. (org.). Building performance simulation for design and operation. New York: Spon 
Press, 2011. 
BORGONOVO, E.; PLISCHKE, E. Sensitivity analysis: a review of recent advances. European Journal of 
Operational Research, v. 248, n. 3, p. 869–887, 2016. 

BRATLEY, P.; FOX, B. L. ALGORITHM 659: implementing Sobol's quasi-random sequence generator. 
ACM Transactions on Mathematical Software, v. 14, n. 1, p. 88–100, 1988. 

CAMPOLONGO, F.; CARIBONI, J.; SALTELLI, A. An effective screening design for sensitivity analysis 
of large models. Environmental Modelling & Software, v. 22, n. 10, p. 1509–1518, 2007. 
CHALOM, A.; MANDAI, C. Y.; PRADO, P. I. K. L. R Package "pse": parameter space exploration with 
Latin Hypercubes. Comprehensive R Archive Network - CRAN, 2017. Available: https://cran.r-
project.org/web/packages/. Accessed in: 10 dec. 2020. 

COLLINGS, B. J. Generating the intrablock and interblock subgroups for confounding in general factorial 
experiments. The Annals of Statistics, v. 12, n. 4, p. 1500–1509, 2016. 
CORRADO, V.; MECHRI, H. E. Uncertainty and sensitivity analysis for building energy rating. Journal of 
Building Physics, v. 33, n. 2, p. 125–156, 2009. 

EMPRESA DE PESQUISA ENERGÉTICA. Brazilian Energy Balance 2019. Rio de Janeiro: EPE, 2019. 

ENCINAS, F.; DE HERDE, A. Sensitivity analysis in building performance simulation for summer comfort 
assessment of apartments from the real estate market. Energy and Buildings, v. 65, p. 55–65, 2013. 
GOULART, S.; LAMBERTS, R.; FIRMINO, S. Dados climáticos para projeto e avaliação energética de 
edificações para 14 cidades brasileiras. Florianópolis: Núcleo de Pesquisa em Construção/UFSC, 1998. 

GROEMPING, U.; AMAROV, B.; XU, H. R Package 'DoE.base' - Full Factorials, Orthogonal Arrays and 
Base Utilities for DoE Packages. Comprehensive R Archive Network - CRAN, 2020. Available: 
https://cran.r-project.org/web/packages/. Accessed in: 10 dec. 2020. 

HEISELBERG, P. et al. Application of sensitivity analysis in design of sustainable buildings. Renewable 
Energy, v. 34, n. 9, p. 2030–2036, 2009. 
HONG, T.; CHOU, S.; BONG, T. Building simulation: an overview of developments and information 
sources. Building and Environment, v. 35, n. 4, p. 347–361, 2000. 

 



Ambiente Construído, Porto Alegre, v. 21, n. 2, p. 89-111, abr./jun. 2021. 

 

Silva, A. S.; Ghisi, E. 110 

HOPFE, C. J.; HENSEN, J. L. M. Uncertainty analysis in building performance simulation for design 
support. Energy and Buildings, v. 43, n. 10, p. 2798–2805, 2011. 

HYGH, J. S. et al. Multivariate regression as an energy assessment tool in early building design. Building 
and Environment, v. 57, p. 165–175, 2012. 

IOANNOU, A.; ITARD, L. C. M. Energy Performance and comfort in residential buildings: sensitivity for 
building parameters and occupancy. Energy and Buildings, v. 92, p. 216–233, 2015. 
JAFFAL, I.; INARD, C.; GHIAUS, C. Fast method to predict building heating demand based on the design 
of experiments. Energy and Buildings, v. 41, n. 6, p. 669–677, 2009. 

JANSEN, M. J. W. Analysis of variance designs for model output. Computer Physics Communications, v. 
117, n. 1–2, p. 35–43, 1999. 

JOINT RESEARCH CENTRE. European Commission. Simlab 2.2. 2013. Disponível em 
ipsc.jrc.ec.europa.eu. Access: 21 jun. 2013. 
KRISTENSEN, M. H.; PETERSEN, S. Choosing the appropriate sensitivity analysis method for building 
energy model-based investigations. Energy and Buildings, v. 130, p. 166–176, 2016. 

KUSUDA, T.; ACHENBACH, P. R. Earth temperatures and thermal diffusivity at selected stations in the 
United States. ASHRAE Transactions, v. 71, n. 1, 1965. 

LANGNER, M. R. et al. An investigation of design parameters that affect commercial high-rise office 
building energy consumption and demand. Journal of Building Performance Simulation, v. 5, n. 5, p. 
313–328, 2012. 

MACDONALD, I. A. Comparison of sampling techniques on the performance of Monte Carlo based 
sensitivity analysis. In: BUILDING SIMULATION, Glasgow, 2009. Proceedings  […] Glasgow, 2009. 

MAHAR, W. A. et al. Sensitivity analysis of passive design strategies for residential buildings in cold semi-
arid climates. Sustainability, v. 12, n. 3, p. 1-22, 2020. 
MARA, T. A.; JOSEPH, O. R. Comparison of some efficient methods to evaluate the main effect of 
computer model factors. Journal of Statistical Computation and Simulation, v. 78, n. 2, p. 167–178, 
2008. 

MARA, T. A.; TARANTOLA, S. Application of global sensitivity analysis of model output to building 
thermal simulations. Building Simulation, v. 1, n. 4, p. 290–302, 2008. 

MCLEOD, R. S.; HOPFE, C. J.; KWAN, A. An investigation into future performance and overheating risks 
in Passivhaus dwellings. Building and Environment, v. 70, p. 189–209, 2013. 
MEACHAM, B. et al. Performance-based building regulation: current situation and future needs. Building 
Research and Information, v. 33, n. 2, p. 91–106, 2005. 

MENBERG, K.; HEO, Y.; CHOUDHARY, R. Sensitivity analysis methods for building energy models: 
Comparing computational costs and extractable information. Energy and Buildings, v. 133, p. 433–445, 
2016. 

MORRIS, M. D. Factorial sampling plans for preliminary computational experiments. Technometrics, v. 
33, n. 2, p. 161, 1991. 
NEMBRINI, J.; SAMBERGER, S.; LABELLE, G. Parametric scripting for early design performance 
simulation. Energy and Buildings, v. 68, p. 786–798, 2014. 

NGUYEN, A.-T.; REITER, S. A performance comparison of sensitivity analysis methods for building 
energy models. Building Simulation, v. 8, n. 6, p. 651–664, 2015. 

ØSTERGÅRD, T.; JENSEN, R. L.; MAAGAARD, S. E. Building simulations supporting decision making 
in early design: a review. Renewable and Sustainable Energy Reviews, v. 61, p. 187–201, 2016. 
PETERSEN, S.; KRISTENSEN, M. H.; KNUDSEN, M. D. Prerequisites for reliable sensitivity analysis of a 
high fidelity building energy model. Energy and Buildings, v. 183, p. 1–16, 2019. 

PUJOL, G.; IOOSS, B.; JANON, A. R Package "sensitivity": Global Sensitivity Analysis of Model Outputs. 
Comprehensive R Archive Network - CRAN, 2020. Available: <https://cran.r-project.org/web/packages/. 
Accessed in: 10 dec. 2020. 



Ambiente Construído, Porto Alegre, v. 21, n. 2, p. 89-111, abr./jun. 2021. 

 

Evaluation of capabilities of different global sensitivity analysis techniques for building energy simulation: 
experiment on design variables 

111 

SALTELLI, A. et al. Global sensitivity analysis: the primer. John Wiley and Sons, 2008. 

SALTELLI, A. et al. Variance based sensitivity analysis of model output: design and estimator for the total 
sensitivity index. Computer Physics Communications, v. 181, n. 2, p. 259–270, 2010. 

SANTOS, T. L. dos; PORTO, F. H. F. dos S.; SILVA, A. S. Análise da correlação entre conforto e 
desempenho térmico em habitações de interesse social por simulação computacional. Ambiente 
Construído, Porto Alegre, v. 20, n. 2, p. 211–229, abr,/jun. 2020. 
SILVA, A. S.; ALMEIDA, L. S. S.; GHISI, E. Decision-making process for improving thermal and energy 
performance of residential buildings: A case study of constructive systems in Brazil. Energy and Buildings, 
v. 128, p. 270–286, 2016. 

SILVA, A. S.; GHISI, E. Análise de sensibilidade global dos parâmetros termofísicos de uma edificação 
residencial de acordo com o método de simulação do RTQ-R. Ambiente Construído, Porto Alegre, v. 13, n. 
4, p. 135–148, out./dez. 2013. 
SILVA, A. S.; GHISI, E. Estimating the sensitivity of design variables in the thermal and energy 
performance of buildings through a systematic procedure. Journal of Cleaner Production, v. 244, p. 
118753, 2020. 

SOBOL, I. M. Sensitivity estimates for non-linear mathematical models. Matem. Modelirovanie, v. 2, n. 1, 
p. 112–118, 1990. 

TIAN, W. A review of sensitivity analysis methods in building energy analysis. Renewable and 
Sustainable Energy Reviews, v. 20, p. 411–419, 2013. 
TIAN, W. et al. Building energy assessment based on a sequential sensitivity analysis approach. Procedia 
Engineering, v. 205, p. 1042–1048, 2017. 

WANG, L.; MATHEW, P.; PANG, X. Uncertainties in energy consumption introduced by building 
operations and weather for a medium-size office building. Energy and Buildings, v. 53, p. 152–158, 2012. 

YANG, S. et al. Comparison of sensitivity analysis methods in building energy assessment. Procedia 
Engineering, v. 146, p. 174–181, 2016. 
YATES, F. Sir Ronald Fisher and the design of experiments. Biometrics, v. 20, n. 2, p. 307, 1964.  

YILDIZ, Y.; ARSAN, Z. D. Identification of the building parameters that influence heating and cooling 
energy loads for apartment buildings in hot-humid climates. Energy, v. 36, n. 7, p. 4287–4296, 2011. 

Acknowledgements 
The authors acknowledge the CNPq, FINEP, UFSC and UFMS. This study was supported in part by the 
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. 

 
Arthur Santos Silva 
Faculdade de Engenharias, Arquitetura e Urbanismo e Geografia | Universidade Federal de Mato Grosso do Sul | Av. Costa e Silva, s/n, 
Bairro Universitário | Campo Grande – MS – Brasil | CEP 79070-900 | Tel.: (67) 3345-7477 | E-mail: arthur.silva@ufms.br 
 
Enedir Ghisi 
Departamento de Engenharia Civil, Centro Tecnológico | Universidade Federal de Santa Catarina | Campus Universitário Reitor João David 
Ferreira Lima, Trindade | Florianópolis – SC - Brasil | Caixa Postal 476 | CEP 88040-900 | Tel.: (48) 3721-2115 | E-mail: 
enedir.ghisi@ufsc.br 

 

 

 

Ambiente Construído 

Revista da Associação Nacional de Tecnologia do Ambiente Construído 
Av. Osvaldo Aranha, 99 - 3º andar, Centro 

Porto Alegre – RS - Brasil 
CEP 90035-190 

Telefone: +55 (51) 3308-4084 
Fax: +55 (51) 3308-4054 

www.seer.ufrgs.br/ambienteconstruido 
E-mail: ambienteconstruido@ufrgs.br 

 This is an open-access article distributed under the terms of the Creative Commons Attribution License. 


	Evaluation of capabilities of different global sensitivity analysis techniques for building energy simulation: experiment on design variables
	Avaliação das capacidades de diferentes técnicas de análise de sensibilidade global para simulação de desempenho de edificações: experimento em variáveis de projeto
	Introduction
	Different methods for different purposes
	Monte Carlo methods
	Variance-based methods

	Method
	Sensitivity analysis methods
	Building model and simulation settings
	Climate
	Simulation experiment

	Results
	Overview of the output data
	Capabilities of each method
	Morris method
	Monte Carlo methods
	Design of experiment method
	Sobol variance-based methods

	Ranking of the influential variables

	Conclusions
	References
	Acknowledgements

