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Abstract: The prominent myotoxic effects induced by Bothrops jararacussu crude venom are due, in part, 
to its polycationic myotoxins, BthTX-I and BthTX-II. Both myotoxins have a phospholipase A2 structure: 
BthTX-II is an active enzyme Asp-49 PLA2, while BthTX-I is a Lys-49 PLA2 devoid of enzymatic activity. In this 
study, the effect of low-level laser therapy (LLLT), 685 nm laser at a dose of 4.2 J/cm2 on edema formation, 
leukocyte influx and myonecrosis caused by BthTX-I and BthTX-II, isolated from Bothrops jararacussu snake 
venom, was analyzed. BthTX-I and BthTX-II caused a significant edema formation, a prominent leukocyte 
infiltrate composed predominantly by neutrophils and myonecrosis in envenomed gastrocnemius muscle. 
LLLT significantly reduced the edema formation, neutrophil accumulation and myonecrosis induced by 
both myotoxins 24 hours after the injection. LLLT reduced the myonecrosis caused by BthTX-I and BthTX-
II, respectively, by 60 and 43%; the edema formation, by 41 and 60.7%; and the leukocyte influx, by 57.5 
and 51.6%. In conclusion, LLLT significantly reduced the effect of these snake toxins on the inflammatory 
response and myonecrosis. These results suggest that LLLT should be considered a potential therapeutic 
approach for treatment of local effects of Bothrops species venom.
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INTRODUCTION

Venom phospholipases A2 (PLA2, EC 
3.1.1.4) catalyze the hydrolysis of the sn-2-acyl 
bond of glycerophospholipids in a calcium-
dependent fashion to release free fatty acids and 
lysophospholipids. These reaction products may 
display direct biological activities or may be 
transformed into other active compounds with 
hemostatic, cardiotoxic, convulsant, hemolytic, 
hypotensive, hepatotoxic, myotoxic and 
neurotoxic activities (1-4).

Numerous experimental studies have shown 
that Bothrops PLA2s are involved in venom-
induced inflammatory responses such as edema, 
pain, leukocyte migration and necrosis (5-8). 
Bothrops PLA2s exist as monomers of ~14  kDa 

or as homodimers of ~28  kDa, and may be 
classified as Asp49 or Lys49 PLA2, depending 
on the residue at position 49 in the amino 
acid sequence (9, 10). PLA2s with Asp49 are 
enzymatically active whereas Lys49 PLA2s show 
little or no enzyme activity, although both types 
are biologically active (10). Two myotoxins had 
been isolated from Bothrops jararacussu venom, 
bothropstoxin I (BthTX-I) – a basic Lys 49 major 
– and bothropstoxin II (BthTX-II) – a basic 
Asp 49 (11, 12). These proteins play a relevant 
role in the pathogenesis of local tissue damage 
induced by Bothrops jararacussu venom, causing 
myotoxic and edema-forming effects. Moreover, 
a conspicuous inflammatory cell infiltrate has 
been described in muscle that had been affected 
by those PLA2s (13).
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Myotoxic PLA2 homologues can be inhibited 
by polyclonal or monoclonal antibodies, as well 
as by heparin, plant extracts and serum/plasma 
factors (14-18). A thorough understanding of the 
local action of Bothrops snake venoms is required 
for the successful development of alternative 
therapeutic strategies. The low-level laser therapy 
(LLLT) has been clinically utilized to promote 
anti-inflammatory effects, pain relief and to 
accelerate the regeneration of the damaged tissue 
(19, 20). Furthermore, laser therapy has shown 
positive effects on the reduction of edema, pain 
and migration of inflammatory cells (21-23). We 
previously reported that laser therapy significantly 
reduces the edema formation, leukocyte influx 
and myonecrosis induced by B. jararacussu snake 
venom in gastrocnemius muscle when the muscle 
was irradiated with a dose of 4.2 J/cm2 immediately 
after the venom injection (24, 25). However, 
the effect of laser therapy on the reduction of 
edematogenic reaction, leukocyte migration and 
myonecrosis induced by snake myotoxins has 
not been yet determined. The aim of this work 
was to investigate the ability of low-level laser 
therapy to reduce the local inflammation and 
myonecrosis after injection of bothropstoxin-I 
and bothropstoxin-II in the gastrocnemius 
muscle to assess the involvement of these toxins 
in the myonecrosis and inflammatory reaction 
induced by B. jaracussu crude venom and their 
neutralization by laser therapy.

MATERIALS AND METHODS

Myotoxins
Myotoxins bothropstoxin-I (BthTX-I) and 

bothropstoxin-II (BthTX-II) were supplied by Dr. 
Andreimar M. Soares, from the University of São 
Paulo, USP, Ribeirão Preto, SP, Brazil. BthTX-I 
and II were isolated and purified as previously 
described (12, 26).

Animals
All animal tests were in accordance with 

the guidelines of the Brazilian Society of 
Laboratory Animal Science (SBCAL/COBEA) 
and were approved by the Ethics Committee on 
Animal Research of UNIVAP (protocol number 
A020/2006/CEP). Male Swiss mice weighing 
between 22 and 25 g were employed and randomly 
divided into groups of five animals each. Animals 
were kept in plastic cages, offered water and 

food ad libitum, maintained under controlled 
temperature (26°C) and lighting (12-hour light-
dark cycle).

Laser Device
A low-level semiconductor GaAs (gallium 

arsenide) laser (Thera Lase®, DMC Equipamentos, 
Brazil) operating continuously at 685 nm (red) 
was employed to experimentally irradiate the 
animals. The parameters that corresponded to a 
laser dose of 4.2 J/cm2 were: 29 mW of power, 29 
s of irradiation time and an irradiated area of 0.2 
cm2. Mice were irradiated at the same site where 
myotoxins were injected, from a distance of 15 
mm. The optical laser power was determined 
by a Newport 1835-C Multi Function Optical 
Power Meter® (Newport Corp., USA). Laser 
dose was low enough to avoid any thermal effect 
and chosen based on studies that had shown a 
beneficial effect of low-level laser therapy on the 
inflammatory process and myonecrotic effect (24, 
27-29).

Surgical Procedure and Laser Irradiation
BthTX-I and BthTX-II were prepared by 

diluting 2 mg/kg (animal weight) into 50 µL of a 
sterile saline solution (SS). Shaving and antiseptic 
preparation were performed on the skin located 
directly over the gastrocnemius muscle for the 
BthTX-I or BthTX-II injection. 

The animals received intramuscular (IM) 
injections of myotoxins in the central part of 
the right gastrocnemius muscle, whereas the 
contralateral muscle received the same volume 
of an apyrogenic saline solution. Animals were 
manually immobilized while the laser was applied 
to both muscles (right and contralateral), at the 
same site of myotoxin or saline solution injection. 
Mice were irradiated immediately and at 1, 3 and 
12 hours after the injection. 

Morphological Studies
Twenty-four hours after myotoxin injection 

mice were euthanized by intraperitoneal 
injections of 10 mg/kg of xylazine and 100 
mg/kg of ketamine, followed by intracardiac 
administration of 10% potassium chloride. 
Then, the gastrocnemius muscle was collected 
for histological processing. Briefly, after rinsing 
with phosphate buffered saline (PBS) the samples 
were fixed in 10% buffered formalin for 24 hours, 
rinsed again, dehydrated in graded ethanol series, 



Barbosa AM, et al. Low-level laser therapy decreases local effects induced by snake venom myotoxins

J Venom Anim Toxins incl Trop Dis  |  2010  |  volume 16  |  issue 3	 472

and embedded in paraffin. Histological cross-
sections of 5 mm were stained with hematoxylin 
and eosin (HE) and Masson’s trichrome.

Myotoxic Activity (Creatine Kinase)
The myotoxic activity was assessed by 

measuring creatine kinase (CK) in the 
gastrocnemius muscle after injection of BthTX-I 
or BthTX-II. In brief, gastrocnemius muscles 
were dissected out and homogenized in 4 mL of 
PBS, pH 7.2, for 10 seconds in a homogenizer 
(Brinkmann, USA). Then, 1 mL of PBS containing 
0.5% Triton X-100 was added. Homogenates 
were centrifuged at 5,000 x g for five minutes, 
and the supernatant was diluted to 1:35 with PBS 
for the quantification of CK activity. Muscle CK 
level was used as a quantitative index of muscle 
activity whereas CK activity was determined by a 
diagnostic kit (CK-NAC®, Labtest Diadgnóstica 
SA, Brazil) (5, 30). CK activity was expressed 
as U/L; one unit was defined as the amount of 
enzyme that produces 1 µmoL of NADH per 
minute under the conditions of the assay.

Quantification of Edema
To measure the muscle edema, mice were 

injected in the right gastrocnemius muscle with 
50 µL of BthTX-I or BthTX-II, at the same time 
that the contralateral muscle received the same 
volume of a sterile saline solution, as previously 
described. After mice were euthanized (24 hours 
after myotoxin injection) their gastrocnemius 
muscles were dissected out for subsequent 
analysis. Both muscles were weighted and 
the edema was expressed as the percentage of 
the increase in the weight of the myotoxin-
injected muscle compared to the corresponding 
contralateral muscle (5).

Quantification of Inflammatory Infiltrate in 
Muscle

To quantify the inflammatory infiltrate, after 
the injection of myotoxins, mice were euthanized 
and their gastrocnemius muscles were dissected 
out and chopped with a blade into very small 
pieces before the addition of 2 mL of PBS. The 
suspension was incubated for 30 minutes at 
4°C. Then, it was filtered through gauze that was 
subsequently washed with an additional 1 mL of 
saline solution. After that, a fraction of the filtered 
solution was diluted in Türk’s solution (1:20) to 
count total leukocytes in a Neubauer chamber. 

Suspensions were centrifuged for six minutes at 
800 rpm and the pellet was ressuspended in 100 
μL of PBS. Differential leukocytes were stained 
with Instant-Prov® (Newprov Produtos para 
Laboratório Ltda., Brazil) (5).

Statistical Analysis
Mean and standard deviation were calculated 

for each group. To establish whether the difference 
between the mean values of two experimental 
groups was significant the Student’s t-test was 
performed, using a statistical significance level 
of p < 0.05. When more than two groups were 
compared a two-way analysis of variance was 
applied, followed by the Tukey-Kramer test.

RESULTS

Edema Formation Induced by BthTX-I or 
BthTX-II and Treatment by LLLT

Intramuscular injection of 2 mg/kg of BthTX-I 
or BthTX-II caused a prominent weight increase 
of treated gastrocnemius muscle, at 24 hours after 
injection, as compared to control muscle (Figure 
1). BthTX-II caused the most pronounced effect 
(p < 0.05 for BthTX-II versus BthTX-I, Figure 1). 
The LLLT significantly reduced edema formation 
by 41 and 60.7% respectively for BthTX-I and 
BthTX-II.

Figure 1. Edema induced by BthTX-I (diagonally 
striped bar), BthTX-II (empty bar), and treatment 
with LLLT (black and gray bars). 
*p < 0.05 versus the corresponding myotoxin group; 
#p < 0.05 BthTX-II versus BthTX-I.
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Figure 2. Leukocyte influx into the gastrocnemius 
muscle induced by intramuscular injection of 2 mg/
kg of BthTX-I (black bar) or BthTX-II (gray bar). (A) 
Total leukocytes, (B) polymorphonuclear cells, and 
(C) mononuclear cells. 
*p < 0.05 versus the corresponding myotoxin group.

Inflammatory Infiltrate in Gastrocnemius 
Muscle Induced by BthTX-I or BthTX-II and 
Treatment by LLLT 

The total number of leukocytes in gastrocnemius 
muscle was determined 24 hours after intramuscular 
injection of 2 mg/kg of BthTX-I or BthTX-II. Both 
myotoxins had induced an inflammatory infiltrate 
at 24 hours after inoculation (BthTX-I: 330 ± 56 x 
105 cells/mL; BthTX-II: 310 ± 74 x 105 cells/mL) as 
shown in Figure 2 – A, which also shows statistically 
significant respective reductions in the leukocyte 
number produced by LLLT of 57.5 and 51.6% for 
BthTX-I and BthTX-II groups.

Differential counts showed that 
gastrocnemius muscle cells were predominantly 
polymorphonuclear leukocytes, mainly 
neutrophils. Figure 2 – B shows the number of 

polymorphonuclear leukocytes in the two groups, 
BthTX-I (261 ± 75 x 105 cells/mL) and BthTX-II 
(231 ± 79 x 105 cells/mL). It was observed that 
laser treatment induces a statistically significant 
reduction in the number of polymorphonuclear 
leukocytes (BthTX-I: 6.4 ± 5 x 105 cells/mL and 
BthTX-II: 45 ± 14 x 105 cells/mL), a decrease 
that is more remarkable when compared to the 
total leukocyte number. On the other hand, 
mononuclear cells (BthTX-I: 43 ± 17 x 105 cells/mL 
and BthTX-II: 31 ± 13 x 105 cells/mL) significantly 
increased in laser-irradiated animals (BthTX-I: 
123 ± 47 x 105 cells/mL and BthTX-II: 97 ± 27 x 
105 cells/mL), as shown in Figure 2 – C.

Effect of LLLT on Myonecrotic Activity in 
Gastrocnemius Muscle Induced by BthTX-I 
or BthTX-II

The myonecrotic effect on gastrocnemius muscle 
was determined 24 hours after intramuscular 
injection of 2 mg/kg of BthTX-I or BthTX-II, 
as displayed in Figure 3. As shown in this same 
figure, both myotoxins were able to drop muscle 
CK content at 24 hours post-injection, compared 
to controls (control: 2,274 ± 78 U/L; BthTX-I: 
1,060 ± 67 U/L and BthTX-II: 1,419 ± 218 U/L). 
LLLT produced a statistically significant increase 
in muscle CK content by 60 and 43%, respectively 
against BthTX-I or BthTX-II envenomation, at 24 
hours.

Figure 3. Myonecrosis in gastrocnemius muscle 
induced by BthTX-I or BthTX-II and LLLT treatment. 
Saline solution in contralateral muscle (horizontal 
striped bar), BthTX-I (gray bar), BthTX-I + LLLT 
(empty bar), BthTX-II (black bar) and BthTX-II + LLLT 
(diagonally striped bar).
*p < 0.05 versus the corresponding myotoxin group.
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Figure 4. Light micrographs of sections of mouse gastrocnemius muscle 24 hours after intramuscular 
inoculation of BthTX-I or BthTX-II. (A) Control gastrocnemius muscle injected with a saline solution 
presents normal fibers; (B) BthTX-I and (C) BthTX-II inoculations show muscles with typical alterations due 
to myonecrosis (N) and infiltration of leukocytes (arrows). Alterations of the gastrocnemius muscle after 
inoculation of BthTX-I and BthTX-II with LLLT are shown in (D) and (E), respectively. It is observed that LLLT 
is effective in decreasing the number of destroyed fibers. Bar corresponds to 5 µm in all panels.

Histopathological Analysis
The acute local pathological alterations 

induced by intramuscular injection of BthTX-I 
or BthTX-II are illustrated in Figure 4. The 
degenerative phase included the appearance of 
necrotic areas in muscle tissue 24 hours after 
the inoculation. Muscle from the control group 
showed normal cell structure with regular 
fibers, defined muscular fascicles, and unbroken 
membranes (Figure 4 – A). Light micrograph 

sections showed considerable changes in 
mouse gastrocnemius muscle 24 hours after 
BthTX-I or BthTX-II inoculation, which 
included vascular congestion, edema, loss of 
muscular fascicle definition and infiltration of 
inflammatory cells (Figure 4 – B and C). At 24 
hours post-injection, LLLT treatment reduced 
the number of damaged fibers compared with 
muscle injected with BthTX-I or BthTX-II 
(Figure 4 – D and E).
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DISCUSSION

Venom PLA2s are proven to induce 
inflammatory responses, such as edema formation 
and inflammatory cell infiltrates (13, 31-33). Two 
myotoxic PLA2s were isolated from Bothrops 
jararacussu snake venom and characterized as 
bothropstoxin I (BthTX-I) and bothropstoxin 
II (BthTX-II) (11, 12). These proteins can be 
classified into two categories: Asp49 PLA2s, 
catalytically active, and Lys49 PLA2s, devoid 
of significant catalytic activity upon artificial 
substrate (2, 10, 18, 34). In the present work, the 
local inflammatory process and myonecrosis 
induced by BthTX-I (Lys49 PLA2) and BthTX-
II (Asp49 PLA2), and their possible blockade by 
laser treatment, were investigated.

Both BthTX-I and BthTX-II induced a 
prominent edema in gastrocnemius muscle, 
which corroborates previous observations of the 
edema-forming activity of venom PLA2 (33, 35). 
Our results demonstrated that the catalytically 
active BthTX-II (Asp 49 PLA2) is more potent in 
promoting edema formation than BthTX-I (Lys 
49 PLA2) (p < 0.05 BthTX-II versus BthTX-I, 
Figure 1). Various enzymatically inactive Lys-49 
PLA2s have been shown to induce edema, clearly 
indicating the existence of molecular regions, 
different from the catalytic site in these PLA2s 
homologues, which are responsible for mast cell 
degranulation and edema formation (13, 36, 37).

A prominent leukocyte infiltrate, composed 
predominantly of neutrophils, was observed after 
injection of BthTX-I or BthTX-II in the present 
study. This finding corroborates previous studies 
on mouse skeletal muscle after injection of 
BthTX-II myotoxins from B. jararacussu venom 
(38). Other authors have also documented 
polymorphonuclear and mononuclear cellular 
infiltrates in mouse skeletal muscle after injection 
of myotoxic PLA2s from the venoms of B. asper 
and B. nummifer (13, 39). Furthermore, Castro 
et al. (32) showed that BthTX-I and BthTX-II 
are able to recruit leucocytes into the rat pleural 
cavity as a consequence of the generation of 
chemoattractant mediators (leukotriene B4 and 
platelet-activating factor) by the action of these 
proteins that stimulate cytosolic PLA2. In our 
model, both myotoxins revealed the same ability 
to promote leukocyte influx into gastrocnemius 
muscle. In contrast to our results, Castro et al. 
(32) reported that BthTX-II was a more potent 

leukocyte attractant (particularly of neutrophils) 
than BthTX-I in the rat pleural cavity. The 
mechanisms underlying these differences are still 
unclear. However, we may speculate that such 
discrepancies might be due to the animal model 
studied and/or the site of myotoxin injection.

BthTX-I and BthTX-II induced myonecrosis 
in gastrocnemius muscle 24 hours after injection, 
as measured by the residual muscle CK levels. 
The decrease in CK activity in muscle indicates 
the presence of myonecrosis (5, 30). Histological 
results confirm CK results, which are in agreement 
with those reported by Silva et al. (40). Likewise, 
our findings on the myonecrotic and edema-
inducing effects are also similar to those of Soares 
et al. (41).

Envenomation by snakes is often treated by 
intravenous administration of antiophidian 
serum. During serum therapy, the toxic systemic 
effect is usually counteracted by the antivenom, 
but reversal of local tissue damage usually does 
not occur (42, 43). Neutralization of snake venoms 
and isolated toxins by plant extracts has been 
extensively explored as an alternative treatment to 
serum therapy (17, 18, 44). Natural and synthetic 
compounds such as heparin, suramin, fucoidan 
and animal serum factors  have also been studied 
(45-51).

Various studies have tested the efficacy of low-
level laser irradiation in promoting inflammatory 
and tissue repair processes (22, 52, 53). In the 
present study, we investigated the effect of LLLT 
on the myotoxic and local inflammatory process 
induced by BthTX-I or BthTX-II. Treatment with 
LLLT was capable of diminishing by 41 and 60% 
the edemathogenic activity, and by 57 and 51% the 
leukocyte influx induced respectively by BthTX-I 
and BthTX-II. In the literature is reported that 
LLLT acts by reducing the inflammation process 
and accelerating wound healing in rats (29, 54). 
Several authors showed that laser irradiation 
caused inhibition of PGE2 through reduction of 
COX-2 mRNA levels (22, 55-57). 

In addition, low-level laser irradiation 
significantly inhibited the gene expression of IL-
1β and IFN-γ (55, 58). IL-1β, PGE2, and IFN-γ 
are involved in different immune responses and 
in the acute phase of inflammatory processes (56, 
59). Also, IFN-γ is an important macrophage 
activator and plays an important role in the 
inflammatory process (59). IL-1β, TNF-α, 
and IFN-γ are key mediators of inflammatory 
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processes and, therefore, laser irradiation may 
control inflammation via decreased production 
of these mediators. In view of this fact, one may 
speculate that reduction in the inflammatory 
process induced by myotoxins isolated from 
Bothrops jararacussu snake venom can be due 
to the inhibited expression of IL- β and PGE2 in 
LLLT-treated mice. This hypothesis is supported 
by other authors who observed that venom PLA2 
increases cytokines, such as IL-1, IL-6 and TNF-α 
(33). In our model, the number of mononuclear 
cells increased after LLLT, which agrees with 
the literature and shows that laser irradiation 
stimulates macrophages and lymphocytes (27, 
60).

LLLT significantly reduced the cell damage 
caused by BthTX-I or BthTX-II 24 hours after 
injection, as evidenced by the increase in muscle 
CK content. Moreover, histological observation 
showed that LLLT diminished the number of 
destroyed fibers when compared to muscle 
injected only with myotoxins without laser 
treatment. Recently, we  demonstrated that 
myonecrosis induced by B. jararacussu crude 
venom was diminished by laser treatment (25). 
Similar results were found by Dourado et al. (27, 
28) when studying myonecrosis provoked by 
Bothrops moojeni and Bothrops neuwiedi venoms 
and treated with LLLT. They suggested that laser 
treatment is able to block the ability of venom to 
disrupt the plasma membrane integrity. There 
are no data from the literature concerning LLLT 
treatment after injection of isolated myotoxins. 
Evidence in the literature suggests that at the 
cellular level, photo-irradiation at low power 
causes significant biological effects including 
cellular proliferation, collagen synthesis and 
release of growth factors from cells (61).

In conclusion, this work indicates that LLLT is 
capable of inhibiting inflammatory and myonecrotic 
processes caused by myotoxins isolated from Bothrops 
jararacussu snake venom. The observation that LLLT 
acts at the same intensity to reduce the inflammatory 
and myonecrosis processes for both BthTX-I and 
BthTX-II suggests that enzymatic activity is not 
relevant for laser treatment. Furthermore, our 
findings indicate that LLLT should be considered a 
potential therapeutic approach for treatment of local 
effects of Bothrops snakebite, as well as an interesting 
tool for the study of the mechanisms underlying 
the inflammatory process and myonecrotic activity 
induced by those venoms.
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