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Abstract: It has been proposed that the subgenus Archaeotityus comprises the most ancient species group 
within the medically important scorpion genus Tityus. cDNA encoding sodium-channel active toxins from 
the type species of this subgenus, Tityus clathratus (central Venezuela), have been isolated and sequenced. 
Two cDNAs were retrieved that encoded 61 amino acid-long putative neurotoxins named Tcl1 and Tcl2. 
Sequence identity was highest (87%) when both were compared with β-toxin Ts1 from the Brazilian 
scorpion Tityus serrulatus and its homologs from T. bahiensis, T. stigmurus, and T. costatus. A Bayesian 
analysis indicated statistical support for the grouping of T. clathratus Tcl1 and Tcl2 with Brazilian gamma-
like β-toxins, reinforcing previous phylogenetic studies which suggested an evolutionary relationship 
between the subgenus Archaeotityus and scorpion species inhabiting southeast South America belonging 
to the subgenus Tityus.
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Tityus is unquestionably the most complex 
genus of scorpions from a taxonomical standpoint 
(1-4). It is annually responsible for numerous 
casualties in several endemic areas of Latin 
America and the Caribbean (1-7). With over 190 
described species, there is toxinological and clinical 
evidence indicating diversity in venom action 
and/or composition across Tityus distribution 
range. For example, envenoming by T. obscurus 
(formerly T. cambridgei) in northeastern Brazil 
typically presents with central neurotoxicity as 
opposed to the mainly autonomic manifestations 
associated with envenoming by T. serrulatus in 
the southeast (8). In Venezuela, envenoming 
by T. zulianus (Andean range) often produces 
respiratory arrest and death by pulmonary edema, 

whereas T. discrepans (north-central range) sting 
causes mainly pancreatic and gastrointestinal 
disorders (6, 9, 10). Various degrees of toxicity 

have been associated with different Tityus venoms 
depending on the species, with medium lethal 
doses (in mice) ranging from 0.773 (T. stigmurus) 
to 12.136 mg/kg (T. obscurus) (11 ,12). Notably, 
the smallest Tityus species, now belonging to the 
subgenus Archaeotityus, are only mildly toxic to 
humans (e.g. T. uruguayensis, T. pussilus, and T. 
silvestris) (2, 13-15). Toxicity of Tityus venoms 
is mostly due to the action of peptides targeting 
voltage-gated sodium channels (Nav), which have 
been classified as a- and b-toxins depending on 
whether they alter the kinetics of Nav inactivation 
or activation respectively (16). 

Medically important Tityus species belong 
to the subgenera Atreus and Tityus, proposed 
by Lourenço (2), together with Archaeotityus, 
Brazilotityus, and Caribetityus, in order to 
organize the morphological groups already 
described within the genus. Archaeotityus 
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species (n = 24) comprise small (18-40 mm) and 
highly pigmented scorpions that are distributed 
throughout South America and the Caribbean 
and also Panamá and Costa Rica (2, 3, 17, 18). 
According to Mello-Leitão (19) and Lourenço 
(20), Archaeotityus occupies a plesiomorphic 
position among Tityus morphological groups/
subgenera. Thus, its variegated pigmentation and 
the stronger distal tooth of the dorsal median 
carinae are considered primitive characters 
because they are only found in the juvenile stages 
of all remaining Tityus species (19). 

While most toxins in the genus have been 
isolated and characterized from species in 
subgenera Atreus and Tityus, only scarce 
information is available on the venoms and toxins 
produced by Archaeotityus. Envenomation by 
Archaeotityus sp. is of poor medical relevance, 
probably due to the low amount of venom 
injected by scorpions in this subgenus (21). 
Primary structure determination of Archaeotityus 
toxins should throw light on their evolutionary 
relationship with other Tityus toxins that target 
ion channels considering the primitive status of 
this subgenus as suggested previously (19, 20). 

We undertook a molecular approach to recover 
amino acid sequences encoding Nav-active 
toxins from Tityus clathratus, the type species 
of Archaeotityus. This approach has identified 
protein sequences with molecular masses that 
correspond to bona fide toxins from other 
Tityus species confirmed by mass spectrometry 
(10). Adult scorpions (n = 12) were collected in 
Sanare, Lara State, western Venezuela (09°45´N, 
69°20´W), and classified according to the 
taxonomic keys provided by González-Sponga 
(22). Total RNA was obtained from venom glands 
as described by Borges et al. (10). Animals were 
subjected to manual venom milking 48 hours 
before the dissection to increase production of 
toxin-encoding mRNAs (23). Scorpions subjected 
to dissection were deposited at the Scorpion 
Collection (CELT), Research Group on Applied 
Toxinology and Venomous Animals, Scholl of 
Health Sciences, University of Oriente, where 
they were given the catalog numbers CELT-1130 
to CELT-1141. 

Complementary DNA (cDNA) was 
synthesized from 1 µg of total venom 
gland RNA using the modified oligo(dT) 
primer 5´-GGCCACGCGTCGACTAGTAC 
TTTTTTTTTTTTTTT-3´ and 

subsequently amplified via the polymerase 
chain reaction using the primer 
5 ´ - G G C C A C G C G T C G A C TA G TA C - 3 ´ 
and the degenerate oligonucleotide 
5´-GTTTATYWGCTGCTTITTKC-3´. The latter 
primer was designed to anchor at the 3´-end of 
the DNA region coding for the leader peptide of 
Tityus long-chain toxins under the amplification 
conditions described by Borges et al. (10). 

PCR fragments were ligated to the vector 
pCR2.1-TOPO® (Invitrogen, USA) and 
transformed into competent Escherichia coli 
DH5a cells which were then plated onto Luria-
Bertani/agar plates containing 5-bromo-4-
chloro-3-indolyl-beta-D-galactopyranoside 
(X‒Gal, 40 µg/mL). Plasmids were isolated from 
recombinant colonies by the alkaline lysis method 
and sequenced using universal M13 primers 
in an automated ABI 3130XL DNA Sequencer 
(Applied Biosystems, USA) at the Nucleic Acid 
Sequencing Laboratory, Venezuelan Institute for 
Scientific Research (24).

Thirty seven clones were recovered from X-Gal-
containing agar plates and subjected to DNA 
sequencing. Seven colonies encoded transcript 
Tcl1 and 30 encoded transcript Tcl2. Nucleotide 
sequences (312 and 314 bp respectively) are 
presented in Figure 1. GenBank accession 
numbers are HQ632799 (Tcl1) and HQ632800 
(Tcl2). Both transcripts encode 71 amino acid-
long proteins with the C-terminal-most 64 
residues bearing high similarity to the mature 
peptide region of scorpion toxins targeting Nav 
channels based on comparisons using the BLAST 
server (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 
and including the eight cysteines involved in 
formation of disulphide bridges. 

The amino acid sequences of mature Tcl1 
and Tcl2 are 79% identical to each other. Main 
differences occur at the C-terminus where 
Asp55, Arg56 and Arg60 (in Tcl1) are replaced 
by Ser55, Tyr56 and Thr60 in Tcl2. The deduced 
molecular masses of the processed 61-residue-
long T. clathratus putative neurotoxins are (in 
Da) 6966 (for Tcl1) and 6913 (for Tcl2) assuming 
that the two C-terminal-most lysine residues 
of both proteins (Figure 1) are removed post-
translationally upon amidation via the amino 
group of Gly62, as is the case for other Tityus 
toxins (25). 

Figure 2 shows the alignment of putative 
neurotoxins Tcl1 and Tcl2 with Tityus toxin 
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Figure 1. Nucleotide sequences of Tityus clathratus clones Tcl1 and Tcl2 and translated amino acid sequences. 
The predicted protein sequence is shown below the nucleotide sequence and is numbered starting from 
the putative N-terminal residue, Lys. The signal peptide is underlined in the amino acid sequences; potential 
polyadenylation sites (AAUAAA and AAUUAA) are underlined in the nucleotide sequences (26).  
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Figure 2. Alignment of amino acid sequences encoded by T. clathratus transcripts Tcl1 and Tcl2 (in blue) 
with Nav-active scorpion toxins from other Tityus species and birtoxin from Parabuthus transvaalicus. 
Sequences were aligned according to the positions of the cysteine residues (in gray). Residues potentially 
removed posttranslationally were excluded. Accession numbers (per scorpion species) for the listed 
sequences are: P. transvaalicus: birtoxin (P58752) (27); T. bahiensis (Tb): Tb1 (AAB36318), Tb2 (P56609), Tb3 
(P56608), Tb2II (P60276), TbIT-1 (P60275) (28); TbTx5 (P0C5K8) (29); T. cambridgei (Tc): Tc48b/49a (P60213) 
(30), Tc48a (P60212) (31), Tc49b (P60214) (30); T. costatus (Tco): Tcogamma (clone 1) (AY740683), TcoNTxP1 
(Q5G8A8) (32); T. discrepans (Td): Td1 (DQ075226), Td2 (FN392273), Td3 (DQ075229), Td4 (DQ075232), Td5 
(DQ075237), Td6 (DQ075239), Td7 (DQ075242), Td8 (FN392275), Td9 (DQ075228), Td10 (DQ075230), Td11 
(DQ075233), Td12 (DQ075234) (10), Na1 (FN392277), Na2 (FN392278), Na3 (FN392279), Na4 (FN392280), 
Na5 (FN392281), Na6 (FN392282), Na7 (FN392283), Na8 (FN392284), Na9 (FN392285), Na10 (FN392286) 
(33); T. fasciolatus (Tf ): Tf4 (P83435) (12); T. pachyurus (Tpa): Tpa2 (P84631) (34); T. serrulatus (Ts): Ts1 (P15226), 
Ts2 (P68410), Ts3 (P01496), Ts5 (P46115), Ts6 (P45669) (35), TsNTxP (AAC25688) (36); T. stigmurus (Tst): Tst1 
(AAB36321), Tst2 (AAB36322), Tst3 (P0C8X5) (35); T. zulianus (Tz): Tz1 (AY874060) (37), Tz2 (DQ075241) (37).
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sequences available from GenBank, which are 
from various origins in South America including 
Venezuela (T. discrepans and T. zulianus), the 
Brazilian Amazon/French Guiana region (T. 
obscurus), the Brazilian southeast (T. serrulatus, 
T. bahiensis, T. costatus, and T. stigmurus), the 
Brazilian central region (T. fasciolatus), and 
Colombia (T. pachyurus). Sequences were 
aligned using the program Seaview v.4.2.11 
(38). Of all aligned toxins, Tcl1 and Tcl2 show 
remarkable sequence resemblance (87% identity) 
to T. serrulatus Ts1 (also known as gamma 
toxin) and also to gamma-like toxins Tb1 (from 
T. bahiensis), Tst1 (from T. stigmurus) (35) 
and the peptide encoded by T. costatus clone 1 
(Tcogamma) (32). Identity to β-toxin Ts2 from T. 
serrulatus is lower (68 and 70% identity for Tcl1 
and Tcl2 respectively). Toxins from the scorpions 
T. discrepans and T. zulianus (which distribution 
ranges overlap with T. clathratus in Venezuela) 
and also those from T. obscurus and T. pachyurus 
display lower (50-67%) identities to Tcl1 and Tcl2 
compared with the Brazilian Ts1 and gamma-like 
toxins.

It is clear that Tcl1 and Tcl2 belong to the 
b-toxin family, bearing the same secondary 
structure elements found by Polikarpov et al. (39) 
in Ts1, the most abundant T. serrulatus b-toxin 
(40). Since Tityus venoms also contain a-toxins 
(16), the fact that we did not retrieve cDNAs 
coding for putative T. clathratus a-toxins could be 
either due to their absence in T. clathratus venom 
or that their cDNAs were not amplified under our 
conditions due to variations in the leader-peptide 
nucleotide sequence of T. clathratus a-toxin 
genes, which may prevent the degenerate primer 
from anchoring at the selected site, identified 
as conserved amongst genes encoding other 
Tityus toxins (10). A thorough venom proteomic 
approach should help clarify whether this toxin 
group is produced by Archaeotityus species.

Both Tcl1 and Tcl2 share with Ts1 critical 
residues involved in the β-toxin pharmacophore 
(Glu26, Tyr22, Ile29) (41). Also, residue Gly24, 
which participates in antigenic recognition in 
Ts1, is conserved in both T. clathratus putative 
homologs (42). Gly28, also a residue of antigenic 
importance in Ts1, is not conserved in Tcl1 and 
Tcl2, but this position is also variable in other 
gamma-like toxins (42). Significantly, Gly24 
and the pharmacophore residues lie within the 
a-helical region, which is highly conserved in 

Ts1, gamma-like toxins (Tb1, Tst1, Tcogmamma) 
and T. clathratus homologs (see alignment in 
Figure 2) (39, 42). The discontinuous antigenic 
epitope encompassing the amino- (1KEGY5) and 
carboxy- (46GLPXXVKV53) terminal regions of 
T. serrulatus toxins is conserved in Tcl2, but the 
critical Gly46 is replaced in Tcl1 by Asp (43). At 
the gene level, both T. clathratus precursors exhibit 
82% identity with respect to Ts1, with changes in 
Tcl1 and Tcl2 cDNAs mostly comprising third-
position replacements in the region encoding the 
central domain (residues 27-33). 

A Bayesian analysis was performed to 
investigate the phylogenetic relationships of T. 
clathratus Tcl1 and Tcl2 with Tityus toxins retrieved 
from GenBank. Figure 3 shows a consensus tree 
obtained after Bayesian reconstruction using 
the WAG model of protein evolution selected in 
ProtTest (44). Birtoxin, a three disulfide-bridge 
b-like toxin from the South African scorpion 
Parabuthus transvaalicus was chosen as outgroup 
since the probable ancestor of North and South 
American a- and b-toxins was a three-disulfide 
bridge toxin related to birtoxin (27, 45, 46). 

There is reasonable (Bayesian posterior 
probability, BPP = 0.61) support for a monophyletic 
clade comprising toxins structurally and/or 
functionally related to the b-group which consists 
of two subclades. The first subclade (BPP = 0.98) 
contains T. serrulatus Ts2 and Ts2-like toxins. 
The second subclade (BPP = 0.87) comprises Ts1 
and gamma-like toxins from T. bahiensis (Tb1), 
T. costatus (Tcogamma) and T. stigmurus (Tst1) 
with T. clathratus Tcl2 as a sister sequence. A 
subclade (BPP = 0.85) internal to the gamma-
like group includes toxins from Venezuela (Tz1, 
Td1-Td12, Na7), Colombia (Tpa2) and the 
Brazilian Amazon/French Guiana region (Tc49b, 
Tc48b, Tc49a) with Tcl1 as a distantly related 
(p-uncorrected distance: 40%) sister sequence. 
Both Tcl1 and Tcl2 are equally distant to the 
subclade comprising Ts1 and related proteins 
(p-uncorrected distance: 20%), in agreement with 
their sequence homology to gamma-like toxins. 
The topology of the tree in the remaining branches 
cannot be assessed with certainty given the lower 
node support (BPP < 0.50) for the groupings, with 
the exception of a-toxins from T. serrulatus (Ts3, 
Ts5), T. bahiensis (Tb3), T. stigmurus (Tst3), and 
T. discrepans (Na8) which form a monophyletic 
group (BPP = 1.0) lying outside the b-toxin clade 
as reported before (45, 46). 
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Figure 3. Bayesian maximum likelihood consensus phylogram depicting phylogenetic relationships of 
Tityus Nav-active neurotoxins available from GenBank and T. clathratus Tcl1 and Tcl2 precursors isolated 
in this work. The sequence data set corresponds to the alignment presented in Figure 1. P. transvaalicus 
birtoxin was assigned as outgroup. Phylogenetic analysis was performed using the WAG model of protein 
evolution. Two Monte Carlo Markov chain were run 2,000,000 generations (burnin = 200,000). Clade 
support was inferred by bootstrapping. Bayesian posterior probability (BPP) was calculated for branching 
points. Only nodes supported by BPP > 0.5 are shown. 
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The fact that the T. clathratus genome encodes 
Nav toxins with a very close structural fingerprint 
to Ts1 and its homologs indicates a toxinological 
affinity not anticipated in previous studies, 
especially considering that T. clathratus inhabits 
an area about 4000 km north of its south eastern 
Brazilian congeners and that it is morphologically 
unrelated to them. Homologs of T. serrulatus Ts1 
had only been found so far in other Brazilian Tityus 
such as T. bahiensis, T. stigmurus and T. costatus, 
species belonging to the subgenus Tityus (32, 35). 
Significantly, T. discrepans and T. zulianus, two 
species sympatric with T. clathratus in Venezuela, 
do not produce such homologs but Nav toxins with 
divergent N- and C-termini with respect to Ts1 
(10, 33). In fact, in a recent phylogenetic analysis 
of Tityus scorpion Nav toxins, Guerrero-Vargas et 
al. (47) revealed a strong toxinological divergence 
among T. pachyurus, T. obscurus, T. discrepans 
and T. zulianus (in the subgenus Atreus) from 
the northern part of the Amazon Basin, and T. 
serrulatus, T. bahiensis, T. stigmurus, T. costatus 
and T. fasciolatus (in the subgenus Tityus), which 
live south of the Amazon. 

Thus far T. clathratus is the only species 
from the north of the Amazon Basin producing 
putative toxin homologs of southern Brazilian 
Tityus, which provides further support for the 
evolutionary relationship between subgenera 
Archaeotityus (which has a trans-Amazonian 
distribution) and Tityus and its separation from 
the subgenus Atreus as suggested previously 
by Borges et al. (4). The latter authors, in their 
molecular phylogenetic analysis of 21 Tityus 
species using two mitochondrial DNA markers 
(cytochrome oxidase subunit 1 and ribosomal 
16S rRNA), found that the Archaeotityus type 
species, T. clathratus, groups with the Brazilian 
T. serrulatus into a single clade which strongly 
diverges (53-57% nucleotide divergence) with 
respect to its other congeners in Venezuela, 
Trinidad and Panama in the subgenus Atreus. 

No hypothesis for relationships amongst Tityus 
subgenera had been put forward prior to the 
present findings or those of Borges et al. (4). Only 
Lourenço (20) has suggested that the primitive 
Archaeotityus is closely related to Caribetityus, 
a subgenus endemic to the Caribbean island of 
Hispaniola (currently Dominican Republic and 
Haiti) and that the Cuban genera Alayotityus 
and Tityopsis, together with Caribetityus and 
Archaeotityus, are the possible proto-elements of 

continental Tityus, all sharing a common ancestor 
in South America. 

Probably our results implicate that 
such common ancestor, evolutionary and 
toxinologically shared by subgenera Archaeotityus 
and Tityus, was distributed in South America 
before formation of the Amazon Basin and 
therefore prior to cladogenesis of the Atreus 
group, mainly restricted to the northern part 
of the subcontinent and whose species evolved 
different toxin repertoires (47). It is clear that the 
molecular analysis of more Archaeotityus species 
is needed to evaluate whether they produce Ts1 
homologs as T. clathratus, and also to determine 
their phylogenetic affinity with species in the 
subgenus Tityus. 

All in all, this research constitutes an initial 
point to study the evolution of Tityus venoms, the 
most speciose of all scorpion genera, comparing 
the putative toxins from an ancient species group 
with toxins from other species within the genus 
that have been well characterized. 
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