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Abstract

The blood plasma of numerous snake species naturally comprises endogenous phospholipase A2 inhibitors, which
primarily neutralize toxic phospholipases A2 that may eventually reach their circulation. This inhibitor type is generally
known as snake blood phospholipase A2 inhibitors (sbPLIs). Most, if not all sbPLIs are oligomeric glycosylated proteins,
although the carbohydrate moiety may not be essential for PLA2 inhibition in every case. The presently known sbPLIs
belong to one of three structural classes – namely sbαPLI, sbβPLI or sbγPLI – depending on the presence of
characteristic C-type lectin-like domains, leucine-rich repeats or three-finger motifs, respectively. Currently, the
most numerous inhibitors described in the literature are sbαPLIs and sbγPLIs, whereas sbβPLIs are rare. When
the target PLA2 is a Lys49 homolog or an Asp49 myotoxin, the sbPLI is denominated a myotoxin inhibitor protein
(MIP). In this brief overview, the most relevant data on sbPLIs will be presented. Representative examples of sbαPLIs
and sbγPLIs from two Old World – Gloydius brevicaudus and Malayopython reticulatus – and two New World – Bothrops
alternatus and Crotalus durissus terrificus – snake species will be emphasized.
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Background
A number of venomous and nonvenomous snake species
are naturally resistant to the deleterious actions of snake
venom components, in many cases due to the presence
of specific antitoxins in their circulating blood [1–10].
These antitoxins were identified as liver-secreted pro-
teins, which prevent any possible damage from toxins
that might have reached the snake’s blood stream [11].
Among these inhibitors, phospholipase A2 inhibitors or
snake blood phospholipase A2 inhibitors (sbPLIs) play a
key role in this type of endogenous resistance.
During the 80’s and 90’s, a number of sbPLIs were

purified from different snake species. The first authors
to identify various sbPLIs in a single snake species –
Gloydius brevicaudus, formerly Agkistrodon blomhoffii
siniticus – proposed a classification based on the presence
of characteristic domains of known mammalian proteins in
their structure and on variations in their PLA2 selectivity
[12]. Alpha sbPLIs (sbαPLIs) have a C-type lectin-like do-
main that is highly similar to the carbohydrate recognition

domain of Ca2+-dependent lectins, and preferentially in-
hibit acidic PLA2s. Beta-type inhibitors (sbβPLIs) exhibit
tandem leucine-rich repeats (LRRs), and specifically inhibit
basic PLA2s. Gamma inhibitors (sbγPLIs) display a three-
finger pattern and are less specific than the aforementioned
classes, therefore inhibiting neutral, acidic and basic PLA2s
from snake venoms. The structural classification of sbPLIs
has been adopted by most authors working on the subject,
but the selectivity concept is not absolute [13–16]. In gene-
ral, α and γ sbPLIs simultaneously occur in several snake
species, while sbβPLIs have only been reported in three
snake species.
Native sbPLIs are usually homo- or heterooligomers of

glycosylated and/or non-glycosylated subunits. Carbohy-
drates do not seem essential for the inhibition of PLA2

by sbPLIs, since some of them remain functional in the
absence of this moiety [16–20]. When the target PLA2s
are Lys49 homologues or Asp49 myotoxins, the sbPLIs
are specifically called myotoxin inhibitor proteins (MIPs)
[13, 14, 16, 21, 22].
The following sections present the most relevant char-

acteristics of the three classes of sbPLIs. Subsequently,
examples of sbαPLIs and sbγPLIs from two Old World
snake species — Gloydius brevicaudus and Malayopython
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reticulatus — and two New World ones — Bothrops
alternatus and Crotalus durissus terrificus — will be
introduced.

Alpha class of sbPLIs (sbαPLIs)
Members of this class of inhibitors are found in solution
as homo- or heterooligomers, with molecular masses
between 75 kDa and 120 kDa (Table 1).
In addition to the typical C-type lectin-like domain,

sbαPLI monomers present two other highly conserved
regions in their structure: a hydrophobic core at their
carboxy-terminus and an α-helical coiled-coil neck com-
prising the 13th to 36th amino acid segment in the mature
protein [23, 24]. The last amino acid stretch corresponds to
the exon 3 reported for the gene of the sbPLI from Protobo-
throps flavovoridis (formerly Trimeresurus flavoviridis) [25].
Besides the functional sbαPLIs, non-functional homologs

were purified from the blood serum of two nonvenomous
species, Elaphe quadrivirgata and E. climacophora. Despite
displaying not only molecular masses, but also primary
and quaternary structures comparable to classical sbαPLIs,

these homologs failed to inhibit all tested snake venom
PLA2s [26, 27].

The sbαPLI from Asian Gloydius brevicaudus (GbαPLI)
The sbαPLI from G. brevicaudus (formerly Agkistrodon
blomhoffii siniticus) is a homotrimer, in which the α-
helical coiled-coil neck subunit forms a central pore that
constitutes the binding site for the target PLA2s [28–30].
The C-type lectin-like domain was discarded as respon-
sible for PLA2 binding [30].
The correct configuration of the central pore in GbαPLI

is controlled by the primary structures of the α-helical
coiled-coil neck in the formation of subunits. Chimeric
constructions of GbαPLI and the non-functional sbαPLI
homolog from E. quadrivirgata allowed the mapping of
important amino acids for PLA2 inhibition in the 13–36
segment, which are expected to be located in the heli-
cal neck of the GbαPLI trimer based on the three-
dimensional structural model constructed by homology
modeling [29, 30]. The trimerization occurs only among
subunits having the same α-helical motif in the regions
13–36 and the oligomer is structurally stabilized by inter-
molecular electrostatic interactions. Two charged resi-
dues, E23 and K28, have been found specifically responsible
for these essential interactions between the forming sub-
units in the trimer. The contribution of each subunit to
the total inhibitory activity of trimeric GbαPLI has also
been investigated. In the trimer, the inhibitory action is
driven by one subunit with the highest affinity and is not
affected by the number of subunits of this type [29].
GbαPLI displays lower affinities (about 2000-fold less)

for neutral or basic PLA2s from the homologous venom
compared to acidic PLA2s. In the absence of carbohy-
drates, the inhibition of acidic and neutral PLA2s has
been reported to remain unchanged, while the inhibition
of basic PLA2s is affected [19]. The possibility of different
inhibition mechanisms, depending on the ionic character
of the target PLA2, has been attributed to GbαPLI and
other sbαPLIs, but further studies are required to clarify
this issue.

The sbαPLI from Latin American Bothrops alternatus
(BaltMIP)
This inhibitor was purified from the blood serum of
Bothrops alternatus snakes by affinity chromatography
using bothropstoxin I – a basic Lys49 PLA2 from the
homologous venom – as the immobilized ligand. The
monomer of BaltMIP is composed of a single polypep-
tide chain with apparent molecular mass of 24 kDa. The
native molecule is able to inhibit myotoxicity and cyto-
toxicity caused by both Lys49 and Asp49 PLA2s, possibly
by different mechanisms depending on the type of en-
zyme to be inhibited [15]. Amino acid residues possibly
involved in the inhibition by BaltMIP of acidic PLA2s

Table 1 Snake blood PLA2 inhibitors in the alpha structural
class (sbαPLIs)
Family, species
or subspecies

Common name Reference

Colubridae

Elaphe climacophora Japanese ratsnake [26]

Elaphe quadrivirgata Japanese four-lined
ratsnake

[27]

Viperidae

Bothrops alternatus Urutu (Portuguese) [15, 31]a, [23]

Bothrops asper Fer-de-lance, Terciopelo
(Spanish)

[62]

Bothrops erythromelas Caatinga lancehead [23]

Bothrops jararaca Jararaca (Port.) [23]

Bothrops jararacussu Jararacussu (Port.) [14, 23]

Bothrops moojeni Brazilian lancehead [16]

Bothrops neuwiedi Jararaca pintada (Port.) [23]

Cerrophidion godmani Honduras montane
pit viper

[21]

Crotalus durissus
terrificus

South American rattlesnake,
tropical rattlesnake

[23]

Gloydius brevicaudus Short-tailed mamushi,
Japanese or Chinese
mamushi,

[19]a, [63]

Lachesis muta South American
bushmaster

[23]

Protobothrops
flavoviridis

Habu [25, 64, 65], [66]a

Protobothrops elegans Sakishima habu [41]
aRecombinant homolog
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from homologous venom have been recently discussed
in comparison to published data for PLA2-sbαPLIs com-
plexes from Asian snake species [23].
The characteristic α-helical coiled-coil neck, the

carbohydrate recognition domain and the hydrophobic
core of sbαPLIs are well conserved in the BaltMIP
monomer, according to the theoretical structural model
(available in the Model Archive database under DOI:
105452/ma-a2iil). In the trimeric BaltMIP (available in the
Model Archive database under DOI: 105452/ma-a4btt),
three monomers fit well in a spherical arrangement [15].
Recombinant BaltMIP, displaying the same apparent

molecular mass (24 kDa) as the native inhibitor monomer,
has been produced in Pichia pastoris. The expressed pro-
tein was heavily glycosylated and formed oligomers of
about 77 kDa, a profile fully compatible with a trimeric
arrangement. Nevertheless, the functionality of the recom-
binant protein was reduced in comparison with the native
molecule [31].

Beta class of sbPLIs (sbβPLIs)
Beta-type inhibitors are acidic, leucine-rich glycoproteins
of 150–160 kDa. The leucines are assembled as leucine-
rich repeats (LRRs) in tandem. This particular arrange-
ment creates horseshoe-shaped molecules, similarly to
those observed in Toll-like receptors in general [12, 32].
The first sbβPLI described in the literature was purified
from G. brevicaudus as a homotrimer (Table 2). The in-
hibitor is specific for basic PLA2s from homologous
venom and forms a stable PLA2-sbβPLI complex at a 1:1
molar ratio [12, 33].
Subsequently, similar sbβPLIs were purified from two

non-venomous Colubridae snakes: E. quadrivirgata and
E. climacophora [26, 34] (Table 2). Besides nine LRRs of
24 amino acids each, all three known sbβPLIs display a
proline-rich amino-terminal region and ten cysteines,
eight of which are probably involved in disulfide
bonds. The fully conserved LRR1 segment might be
responsible for the specific binding of sbβPLIs to basic
PLA2s [26].

Gamma class of sbPLIs (sbγPLIs)
Currently, the gamma class of phospholipase A2 inhibi-
tors comprises the greatest number of endogenous
sbPLIs (Table 3).
SbγPLIs are acidic glycoproteins characterized by two

structural units of highly conserved repeats of half cyste-
ines, known as three-finger motifs, such as those found
in proteins belonging to the Ly-6 family, the urokinase-
type plasminogen activator, and α-neurotoxins [35, 36].
A subclassification into classes 1 and 2 was subsequently

Table 2 Snake blood PLA2 inhibitors in the structural beta class
(sbβPLIs)
Family, species or subspecies Common name Reference

Colubridae

Elaphe climacophora Japanese ratsnake [26]

Elaphe quadrivirgata Japanese four-lined ratsnake [34]

Viperidae

Gloydius brevicaudus Short-tailed mamushi,
Japanese or Chinese mamushi

[33]

Lachesis muta South American bushmaster [67]

Table 3 Snake blood PLA2 inhibitors in the structural gamma
class (sbγPLIs)
Family, species or subspecies Common name Reference

Colubridae

Elaphe climacophora Japanese ratsnake [26]

Elaphe quadrivirgata Japanese four-lined
ratsnake

[68]

Sinonatrix annularis Ringed water snake [69]a

Elapidae

Naja naja kaouthia Monocled cobra,
Thailand cobra

[35]

Notechis ater Tasmanian tiger [70]

Notechis scutatus Mainland tiger snake,
common tiger snake

[37]

Oxyuranus microlepidotus Fierce snake, Inland taipan [42]

Oxyuranus scutellatus Coastal taipan, New Guinea
taipan

[42]

Pseudonaja textilis Eastern brown snake,
common brown snake

[42]

Pythonidae

Python reticulatus Reticulated python [20]a

Python sebae African python [50]

Viperidae

Bothrops alternatus Urutu (Portuguese) [61]

Bothrops erythromelas Caatinga lancehead [61]

Bothrops jararaca Jararaca (Port.) [61]

Bothrops jararacussu Jararacussu (Port.) [22], [61]

Bothrops neuwiedi Jararaca pintada (Port.) [61]

Cerrophidion godmani Honduras montane pit viper [21]

Crotalus durissus collilineatus Brazilian rattlesnake [71]

Crotalus durissus terrificus South American rattlesnake,
tropical rattlesnake

[51–53]

Lachesis muta South American bushmaster [72]

Gloydius brevicaudus Short-tailed mamushi,
Japanese mamushi or
Chinese mamushi

[73]

Protobothrops flavoviridis Habu [25]

Protobothrops elegans Sakishima habu [41]
aRecombinant homolog
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proposed for sbγPLIs, based on predicted structural
homologies to urokinase-type plasminogen activator re-
ceptor (u-PAR) or to Ly-6. The inhibitors with the high-
est homology to the u-PAR were located in class 1,
whereas those more similar to Ly-6 were assigned to
class 2 [37].
Another important characteristic of most sbγPLIs is a

highly conserved proline-rich region [38]. Proline residues
are commonly found in the flanking segments of protein–
protein interaction sites. Known as proline brackets, they
may play a structural role by protecting the integrity
and conformation of the interaction sites in functional
proteins [39].
SbγPLIs may be assembled as hetero- or homomeric

molecules and a subclassification was proposed based on
the monomer composition [40]. The sbγPLIs from elapids
(Naja naja kaouthia, Notechis ater, Notechis scutatus and
Oxyuranus scutellatus), colubrid (Elaphe quadrivirgata),
Old World viperid (Gloydius brevicaudus) and hydrophiid
(Laticauda semifasciata) were placed in subclass I
(heteromeric). All these inhibitors are composed of
two different subunits with distinct primary structures
(called α and β, or A and B) typically under a 2:1 ratio
for A and B, respectively.
Subclass II is comprised of homomeric sbγPLIs from

New World viperid Bothrops asper, Cerrophidion godmani,
and C. d. terrificus, as well as Malayopyton reticulatus
(Pythonidae) and P. flavovirids (Viperidae) from the Old
World. However, the identification of a secondary subunit,
similar to the subunit B of heteromeric inhibitors, in the
sbγPLI-IIs from C. d. terrificus, P. elegans P. flavoviridis
and several Australian elapid species challenged the
homomeric composition of those inhibitors [17, 41–43].
However, a single subunit remained in sbγPLI-IIs from M.
reticulatus, C. godmani, and B. jararacussu. The last two
were originally purified by affinity chromatography
using the target PLA2s as an immobilized ligand,
whereas the purified inhibitors were confirmed as being
composed of single subunits A, as expected for sbγPLI-
IIs. All three sbγPLI-IIs were fully functional as homo-
mers [21, 22]. The actual contribution of the secondary
subunits B to the full functionality of the sbγPLI-IIs,
whenever applicable, remains to be clarified. It has been
speculated that the subunit B might play a structural
rather than a functional role in the sbγPLIs from
Australian elapid species [42]. On the other hand, an
ancestral role has been suggested for the subunit B
compared to subunit A, in the sbγPLI from the Asian
P. flavoviridis [43]. In any case, both subunits, A and B,
may be present as a heterogeneous mixture of more
and less conserved isoforms, therefore generating sub-
tle structural changes depending on the combination of
isoforms, and increasing the PLA2-binding repertoire of
sbγPLIs [38, 41].

The sbγPLI from Asian Malayopython reticulatus
This inhibitor was denominated phospholipase inhibitor
from python (PIP). The native protein is a glycosylated
oligomer formed by six identical subunits of 23 kDa
each. After full deglycosylation, the molecular mass of
the subunits decreases to 20 kDa.
Native PIPs occur as hexamers of apparent molecular

mass of 140 kDa. The monomer precursor in snake liver
tissue has a 19-residue signal sequence and an open
reading frame of 603 bp encoding for a 182-residue pro-
tein. PIPs neutralize both lethal and PLA2 activities of
daboiatoxin – the major toxin of Daboia russelli siamensis
snake venom – by forming a toxin-inhibitor complex at
1:1 molar ratio. A recombinant PIP homologue produced
in Escherichia coli was shown to neutralize not only
daboiatoxin PLA2 activity in vitro, but other toxic PLA2s
belonging to groups I (from Elapidae snake venoms), II
(from Viperidae snake venoms) and III (from bee venom)
at inhibitor-enzyme molar ratios between 0.1 and 5.0. In
addition, this PIP homolog inhibited the edematogenicity
of bee venom PLA2 and daboiatoxin up to 92.1 and
78.2%, respectively [20].
The functional site of PIP was predicted based on the

hypothesis of proline brackets, and the data were
employed to design PIP-derived bioactive peptides [39].
In general, the inhibition of PLA2s by these peptides has
been explained by the blockage of the hydrophobic
channel of secreted PLA2, as presented by other known
inhibitors of this enzyme type [44].
Among a number of linear and cyclic PIP-derived

peptides tested, PGLPPLSLQNG decapeptide (called P-
PB.III) was able to inhibit groups I, II and III of PLA2s,
including PLA2 from human synovial fluid of arthritis
patients belonging to subgroup IIA [45]. The heptadeca-
peptide LGRVDIHVWDGVYIRGR (named PNT.II) was
found to selectively inhibit human secreted IIA-PLA2. It
also reduces neurotoxin-induced high levels of secreted
PLA2 in rat hippocampal homogenates and modulates
joint destruction in a mouse model of human rheuma-
toid arthritis [44, 46, 47]. An analog of PNT.II, known as
PIP18, has been more recently devised [48]. Besides po-
tent neutralization effects against Crotalus adamanteus
snake venom, PIP18 has shown high bactericidal action
against a number of pathogens, in a dose-dependent
manner, with a remarkable activity against Staphylococcus
aureus. Topical application of PIP18 has also modulated
in vivo wound repair in a mouse model of S. aureus
infection [49].
A structurally-related PIP homolog was later isolated

from another pythonid species, Python sebae. Despite
displaying poor PLA2 inhibition activity, the primary
structure is highly similar to that of PIP. Two subunits
(A and B) were characterized in this novel molecule. Never-
theless, both of them display the same amino-terminal
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sequence and show no similarity with the previously de-
scribed B subunits from typical heteromeric sbγPLI-Is [50].
As to the complete primary structure, subunits A and B in
the PIP homolog differ in eight of 182 amino acids, which
suggests that they are actually isoforms of subunit A.
Henceforth, the homomeric character of PIP appears
preserved in PIP homolog.

The sbγPLI from Latin American Crotalus durissus terrificus
The cDNA of C. d. terrificus sbγPLI – called Crotalus
neutralizing factor (CNF) – encodes a 19-residue signal
peptide characteristic of secreted proteins, followed by
181 amino acids in the mature protein, including sixteen
cysteines. CNF is a glycosylated alpha1-globulin with a
single N-linked carbohydrate site at Asn157 [51–54]. The
carbohydrate moiety, however, is not essential for PLA2

inhibition, since CNF remains functional after enzymatic
deglycosylation [17].
Native CNF is a globular-shaped, predominantly tetra-

meric molecule with an average molecular mass of
100 kDa in solution. It innately occurs as a mixture of
non-glycosylated and glycosylated monomers of 22 kDa
and 25 kDa, respectively [55]. The oligomerization of
CNF is independent of the presence of carbohydrates,
since it occurs equally with native or enzymatically de-
glycosylated monomers. Tyrosine residues at the inter-
face of the monomers composing CNF may contribute
to the oligomerization process, according to a theoreti-
cal structural model constructed for the inhibitor
(available with DOI:10.5452/ma-avb44 at ModelArchive
database). The U monomer of the crystallographic
structure of urokinase plasminogen activator from
Homo sapiens (PDB ID: 2FD6) was used as the template
ab initio [17].
Besides inhibiting lethal and PLA2 actions of C. d.

terrificus venom, CNF is also able to inhibit the lethal
activity of heterologous viperid venoms, such as those
from Bothrops alternatus, B. atrox, B. jararaca. B. jarar-
acussu, B. moojeni, B. neuwiedi and Lachesis muta, but
not that of the elapid Micrurus frontalis [51]. In relation
to PLA2 inhibition of heterologous venoms, CNF is cap-
able of fully inhibiting the PLA2 activity of crude venom
and of a semi-purified fraction of L. muta, which com-
prise PLA2s of different ionic character. It is important
to note that the crude venom of L. muta is about eight
times more active than C. d. terrificus venom, whereas the
aforementioned fraction displays even higher activity –
almost 24 times higher than that of C. d. terrificus venom
[56]. Soon after, investigations of a protein highly similar
to CNF purified from C. d. terrificus serum, named cro-
toxin inhibitor from Crotalus serum (CICS) by Perales
and co-workers, showed complex formation with mono-
meric and multimeric Viperidae β-neurotoxins [53]. The

enzymatic activity of pancreatic and non-pancreatic
PLA2 from mammals, bee venom and Elapidae venoms
remained unaffected [57].
The natural target of CNF in homologous venom is

crotoxin, a heterodimeric β-neurotoxin formed by an
enzymatically inactive subunit (crotoxin A or CA) and a
PLA2 counterpart (crotoxin B or CB). CA and CB are
non-covalently bonded in the crotoxin complex (CA/CB)
[58]. CNF is able to displace CA in the native crotoxin in
vitro to form a non-toxic CNF/CB complex, most likely at
a 1:1 molar ratio [52]. In the presence of CNF, the newly
formed CNF/CB complex no longer interacts with the
target acceptor of crotoxin on rat brain synaptosomes to
deliver CB to cause its toxic effect [55]. The formation of
a new nontoxic complex by displacement of CA from the
native crotoxin was confirmed by studies on the inter-
action of CICS and heterodimeric β-neurotoxins (Mojave
toxin, CbICbII from Pseudocerastes fieldi venom, and
crotoxin itself ) [57].
The interaction in CNF/CB complex may be reminis-

cent of the crotoxin-receptor interaction at the pre-
synaptic site. Competitive binding experiments were
performed in vitro on rat brain synaptosomes, in an
attempt to clarify the role of CNF as a CB receptor.
Although the model encompasses a unique mechanism
with three molecules – the receptor on synaptosomal
membrane, CNF, and CA – competing for one ligand
(CB), comparable IC50 values of around 100 nM were
found for both CNF and CA [55].
It has been suggested that amino-terminus, beta-

wing and carboxyl-terminus regions of CB participate
in the formation of CA/CB and CNF/CB complexes
[59]. The counter segments in CA and CNF remain to
be clarified. A screening of highly conserved regions in
CNF and putative sbγPLIs from Latin American pit
vipers, using the multiple EM for motif elicitation
(MEME) software for multiple alignment [60] indi-
cated the decapentapeptide QPFPGLPLSRPNGYY as
the best consensus motif possibly involved in the PLA2

interaction. Compared to the aforementioned decapep-
tide P-PBIII from PIP, the motif displays an amino-acid
deletion and two amino-acid substitutions in its in-
ternal decapeptide [61].

Conclusion
A brief review on past and recent achievements on
sbPLIs is presented herein. Although they have been
studied by different groups over the years, many gaps
remain to be filled, especially concerning their action
mechanism and scope. In the near future, a better un-
derstanding of sbPLIs may guide practical applications
of these fascinating molecules in biotechnology and
therapeutics on PLA2-related disorders.
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