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Abstract

Background: Blooms of the saxitoxin-producing cyanobacterium Cylindrospermopsis raciborskii have been contaminating
drinking water reservoirs in Brazil for many years. Although acute effects of saxitoxin intoxication are well known, chronic
deleterious outcomes caused by repeated saxitoxin exposure still require further investigation. The aim of the present
work is to investigate the effects of consumption of drinking water contaminated with C. raciborskii for 30 days
on learning and memory processes in rats.

Methods: The effects of saxitoxin (3 or 9 μg/L STX equivalents) or cyanobacteria on behavior was determined
using the open field habituation task, elevated plus maze anxiety model task, inhibitory avoidance task, and
referential Morris water maze task.

Results: No effects of saxitoxin consumption was observed on anxiety and motor exploratory parameters in the
elevated plus maze and open field habituation tasks, respectively. However, groups treated with 9 μg/L STX
equivalents displayed a decreased memory performance in the inhibitory avoidance and Morris water maze tasks.

Conclusions: These results suggest an amnesic effect of saxitoxin on aversive and spatial memories.
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Background
Paralytic shellfish toxins (PST) constitute a group of neuro-
toxins produced by marine dinoflagellates and freshwater
cyanobacteria, among them, saxitoxin (STX) represent the
more frequent and toxic component. Overgrowth of dino-
flagellates in the sea causes a toxic event commonly known
as “red tide”, which is often associated with massive death
of fish, bird, and other marine animals [1]. More than 30
structurally related naturally occurring PST molecules have
been described, with all containing two guanidinium moi-
eties [2–6]. Although its basic molecular skeleton com-
prises a 3,4,5-triakyl tetrahydropurine grouping, the toxin
can be divided into the following three classes depending
on the side-chain chemical structure: N-sulfocarbamoyl,
decarbamoyl, and carbamate. The main species responsible

for contamination in marine waters are three morphologic-
ally distinct genera of dinoflagellates (Alexandrium sp.,
Pyrodinium sp., and Gymnodinium sp.), while four differ-
ent species of cyanobacteria (Anabaena circinalis, Aphani-
zomenon flos-aquae, Cylindrospermopsis raciborskii, and
Lyngbya wollei) are the main species responsible in fresh-
waters [1–7].
An increase has been observed in the blooms of toxic

STX-producing cyanobacteria in eutrophic water bodies
worldwide [8, 9]. Cyanobacterial STX has attracted
much scientific and public attention due to their toxicity
and extensive geographic distribution [10–15]. High
concentrations of PST (1.57 μg/L STX equivalents) are
detected in freshwater reservoirs in Brazil [16]. There-
fore, the guideline concentration for STX in drinking
water was described as 3.0 μg/L STX equivalents in the
regulation number 2914/2011 of the Brazilian Ministry
of Health. The same STX concentration was calculated
and adopted as a health alert for STX equivalents in
Australia [17]. However, there is no data concerning the
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toxicological effects of repeated consumption of contam-
inated drinking water at this STX concentration.
PST accumulates in marine shellfish and freshwater

mussels at a very high concentration as a result of filter-
feeding of dinoflagellates and cyanobacteria [18]. Subse-
quent human consumption of PST-contaminated shellfish
and mussels commonly leads to the development of
paralytic shellfish poisoning (PSP) with significant ill-
ness and mortality [6]. Symptoms of PSP intoxication
include paresthesia of the mouth and lips, immobilization
of the tongue, asthenia, dystonia, ataxia, dyspnea, nausea,
vomiting, hypotension, tachycardia, and muscular and
upper extremity weakness, followed by death in severe
cases as a result of respiratory arrest [6, 19]. Relatively few
studies have reported the poisoning of STX via water
contamination [9].
Although acute effects of PST intoxication are well

known, chronic deleterious effects on humans and other
animals require further research. In addition to these
diverse systemic effects, major toxic effects of STX are
found in the brain [7]. STX is thought to be capable of
crossing the blood–brain barrier (BBB), as it accumu-
lates in the central nervous system (brain and medulla
oblongata) [7, 20]. However, the transport mechanism
through the BBB is still unknown.
The molecular action mechanism of STX is to block

depolarization of excitable cells by reversibly binding to
the voltage-gated sodium channels in the brain, periph-
eral nervous system, and muscles [4, 21]. The effects on
other channels including HERG K1 channels and L-type
calcium channels have also been reported [22, 23].
Although the primary molecular targets for STX in

the CNS have been well studied, there is increasing
evidence that the mode of action of PSPs extends
beyond inhibition of neuronal transmission. It was
demonstrated that exposure to STX from Aphanizome-
non flos-aquae causes cell death in zebrafish brain
tissue, with low doses inducing apoptosis and higher
doses inducing necrosis [6]. Intraperitoneal (i.p.) ad-
ministration of STX in some discrete rat brain regions
has been reported to induce significant changes in
quantities of neuroactive amino acids and serotonin
[24]. However, i.p. administration of a sublethal dose
of STX in rats resulted in acute alteration in dopamine
production and its metabolite 3,4-dihydroxyphenylace-
tic acid (DOPAC) [25]. These and many others neuro-
physiological aspects are important to modulate
memory processes like formation and consolidation of
long-term memory (LTM).
Memory formation process is susceptible to interfer-

ence of many external agents and involves many bio-
chemical and molecular events in specific brain regions,
like hippocampus, amygdala and neocortex [26]. More-
over, the hippocampus has been identified as a major

target site for triggering factors of damage, such as
disease processes or neurotoxic exposure [27].
Tetrodotoxin (TTX) and lidocaine are widely used

drugs in behavioral studies to transiently inactivate brain
structures [28]. Both are specific voltage-gated sodium
channels blockers, and thus prevent impulse generation
and conduction, similar to the mechanism of STX [29].
Several reports have proved that hippocampal and amyg-
dalar inactivation by TTX and lidocaine impairs several
types of memories, including aversive contextual and
spatial memories, but little is known about the effects of
STX on cognition [28, 30, 31].
The present study investigated the effect of repeated

exposure to water contaminated with PST-producing
cyanobacteria at concentrations of 3 or 9 μg/L STX
equivalents on learning and memory processes using rat
memory behavioral models.

Methods
Source of toxins
Cells of C. raciborskii from the FCL/FURG culture collec-
tion were cultured in ASM-1 medium at 25 ± 1 °C and
employed as a source of STX [32]. PST produced by C.
raciborskii was detected by HPLC/FLD with a major (STX)
and two minor peaks (neosaxitoxin and dc-saxitoxin)
(Fig. 1), which were analyzed and compared with the com-
mercial standards of STX, neosaxitoxin, and dc-saxitoxin
(NRC, Canada). This strain was also examined for micro-
cystin and cylindrospermopsin production by using of spe-
cific ELISA kits. No positive results were obtained within
the kits detection range (0.05–2.5 μg/L).
A culture of the cyanobacteria Aphanothece sp. was

used as a negative control for an unspecific cyanobac-
teria effect in the behavioral experiments. This strain
of Aphanothece sp. did not produce toxins such as
microcystin, cylindrospermopsin or PST and was cul-
tured in BGN/2 medium (modified from the original
BG11 composition by adding only half of the total ni-
trate composition) [33, 34].

Animals
Female Wistar rats (2 to 3 months old, weighting 210 to
300 g, n = 120) from our breeding facility were used. An-
imals were housed in plastic cages (five per cage) and
maintained under a 12-h light/dark cycle and at a con-
stant temperature of 24 ± 1 °C. The rats had access to
water and food ad libitum.
Experiments with rats were performed in strict accord-

ance with the Brazilian law and the Brazilian College of
Animal Experimentation (COBEA), and were approved
by the Ethics Committee of FURG (process number
P025/2011 CEUA/FURG).
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Experimental design
Experimental animals received water artificially contami-
nated with cyanobacterial cultures or its growth medium
(control groups) for 30 days through drinking water
bottles (800 mL). Five animals from each cage drank an
average of 400 mL/day and no significant differences in
consumption were observed among the experimental
groups. Every week during the 30-day treatment period,
the PST concentration (3 or 9 μg/L STX equivalents) in
the drinking water was verified by HPLC/FLD. Each rat
drank 0.24 or 0.72 μg of PST/day of 3 or 9 μg/L STX
equivalents during treatment. PST concentrations in the
bottles remained constant for at least a week. Only and
when it was necessary, concentration correction to 3
or 9 μg/L was made with dilutions containing growth
medium.
The effects of PST or Aphanothece sp. on behavior

was determined immediately after the 30-day treatment
period using the open field habituation task (OFH), the
elevated plus maze anxiety (EPM) task, the inhibitory
avoidance (IA) task, and the Morris water maze (MWM)
task [35–38].
The experimental design was composed of five groups:

(1) rats that received BGN/2 medium (control group for
Aphanothece sp.), (2) rats that received Aphanothece sp.
(a non-toxic culture), (3) rats that received ASM-1
medium (control group for C. raciborskii), (4) rats that

received 3 μg/L STX equivalents from PST-producing C.
raciborskii culture, and (5) rats that received 9 μg/L STX
equivalents from PST-producing C. raciborskii. Solutions
containing the abovementioned five media were renewed
daily. Toxin concentrations were also verified every week
by HPLC/FLD.

Behavioral procedures
The OFH task was conducted using a 50 cm high,
60 cm × 40 cm plywood box with a frontal glass wall
and a linoleum floor divided in 12 equal rectangles. An-
imals were left for 5 min both in the training and test
sessions, and the number of rearings and crossings be-
tween sectors were registered. The difference between
the two sessions in the number of rearings and of
crossings between rectangles was considered a measure
of habituation to the open field. If the animals habitu-
ated to the field during the first session, they should
recognize it as familiar, and consequently, the number
of rearings and crossings should decrease in the second
session. The number of crossings in the test session
was used as a control for the possible motor and gen-
eral performance effects of the treatments [35].
The EPM task was conducted using wooden arms that

were 50 cm long and 10 cm wide. The apparatus was
elevated at a height of 70 cm above the floor. The closed
arms were surrounded by a 15 cm wall. Environmental

Fig. 1 Chromatogram showing PST from C. raciborskii used in the experiments. The toxin peak levels separated at 21.8, 32.2 and 37.7 min correspond
to neosaxitoxin, dc-saxitoxin, and saxitoxin, respectively
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temperature was maintained at that measured in the
housing room. The testing room was illuminated with a
dim white light that provided 100 lux for the open arms
and 50 lux for the closed ones. Each animal, experimen-
tally naive, was placed in the central platform of EPM,
facing an open arm, and allowed to freely explore for
5 min. The time spent in the open arms and in the
closed arms was registered. After each observation, the
apparatus was cleaned with ethyl alcohol (10 %) to re-
move organic residues left from the preceding animal.
Experiments were recorded using a video camera and
video files were stored in a personal computer for ana-
lyses. The time spent at each open or closed arm was
the anxiety index of the task. Rats prefer to stay at hid-
den places, and thus, they spent more time at the closed
arms [36].
The IA task was conducted in an automatically oper-

ated and brightly illuminated box in which the left
extreme of the grid (42.0 cm × 25.0 cm grid of parallel
0.1 cm caliber stainless steel bars spaced 1.0 cm apart)
was covered by a 7.0 cm wide and 5.0 cm high Formica®
laminate covered platform. Animals were placed on the
platform and their latency to step down with their four
paws on the grid was measured. In the training session,
immediately upon stepping down, the animals received a
0.5 mA, 3.0 s scrambled footshock. In the test session,
no footshock was given and a ceiling of 180 s was
imposed to the step-down latency. The latency to step
down to the platform in the test session was the aversive
memory index for the task [37, 39–42].
The water maze was a black circular pool (190 cm in

diameter) conceptually divided into four equal imaginary
quadrants for the intention of data analysis. The water
temperature was 21–23 °C. Two centimeters below the
surface of the water was a black circular platform
(12 cm in diameter) hidden from the rats view. It had a
rough surface, which allowed the rat to climb onto it
easily once its presence was detected. The swimming
path of the rats was recorded, in the test session, using a
video camera mounted above the center of the pool and
analyzed using a video tracking and analysis system. The
water maze was located in a white room with several
visual stimuli leaned on the walls to provide spatial cues.
Rats were handled 5 min per day for three days prior to
training. Training in the hidden platform (spatial) ver-
sion of MWM was conducted during four consecutive
days. On each day, rats received four consecutive training
trials during which the hidden platform was kept at a con-
stant location. A different starting location was used on
each trial, which consisted of swimming followed by sit-
ting during 30 s on the platform. Any rat that did not find
the platform within 60 s (time of each trial) was guided to
it by the experimenter. The interval between trials was
30 s. During each interval, rats were carefully dried with a

towel. Memory retention was evaluated in a 60-s test
probe conducted in the absence of the escape platform
24 h after the last training session. In the test probe of
MWM, the time spent at the target platform quadrant
(TPQ) and at the opposite platform quadrant (OPQ) was
registered. The memory retention of the MWM was
observed in the probe test session when rats spend more
time in TPQ than in OPQ [35, 43].
Statistical analysis was conducted using the data of the

behavioral models and included number of rearings and
crossings in OFH, latencies to step down in IA, time
spent in the close and open arms of EPM, time to arrive
at the ridden platform in the trainings of MWM. All
data were evaluated by SPSS 18.0 for Windows.
Since the step-down latencies have not passed a nor-

mality test (Kolmogorov-Smirnov test with Lilliefors’
correction), differences among groups were evaluated by
Kruskal-Wallis ANOVA with Dunn’s all pair-wise mul-
tiple comparison post-hoc test; training versus test laten-
cies were correspondingly compared by the Wilcoxon
signed ranks test. In the OFH, EPM and MWM tasks, as
in their respective deviations, variables were normally
distributed. Groups were compared by Student’s t-test or
ANOVA. In the MWM task, the learning phase was
evaluated using repeated measures ANOVA. Significance
was set at p < 0.05.

Results
There were no clinical signs of dysfunction in the treated
rats throughout the experimental period nor were there
any significant deviations in body weight gain in both
cyanobacteria treated rats, compared with the controls.
In the OFH (Fig. 2) task, rats received water artificially

contaminated with PST-producing C. raciborskii for 30 days.
None of the experimental groups showed significant differ-
ences in the number of rearings or crossings neither in the
training nor in the test sessions (p > 0.05, one-way ANOVA
test). Both variables (rearings and crossings) were signifi-
cantly lower in the test than in the training session for all
groups (p < 0.05, ANOVA test), indicating no mnemonic
effects on this task. The fact that there were no observed
differences in behavior among groups suggests that neither
locomotor activity nor exploratory effects have been caused
by the chronic consumption of STX-contaminated
water (3 or 9 μg/L STX equivalents) or Aphanothece sp.
The EPM task (Fig. 3) is an anxiety model. In this

experiment, two experimental groups received treat-
ment for 30 days: a control group (ASM1 medium
without cyanobacteria) and a PST-producing C. raci-
borskii (9 μg/L STX equivalents) group. Compared to
the control group, the STX-treated rats did not show a
significant difference in the time spent in the open or
closed arms of the EPM apparatus (p > 0.05 for both
variables, Student’s t-test). These results indicated that
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neither anxiogenic nor anxiolitic effects were observed by
the chronic consumption of PST-contaminated water
(9 μg/L STX equivalents).
The IA task was a contextual fear conditioning memory

model and results are shown in Fig. 4. Five experimental
groups were submitted to the test as previously mentioned
in the Materials and Methods session. As data were not
normally distributed (Kolmogorov-Smirnov normality test,

p > 0.200), non-parametric tests were used. Only the high-
est PST concentration (9 μg/L STX equivalents) in drink-
ing water impaired the performance; rats from this group
significantly spent lower time at the platform in the test
session when compared to the other groups (p < 0.05,
Dunn’s all pair-wise multiple comparison post-hoc test,
after a Kruskal-Wallis ANOVA with p = 0.011). Groups
were comparable because there were no significant

Fig. 2 a and b Absence of effect of all treatments in the OFH task. Data expressed as mean ± SEM; n = 10 per group. a Number of crossings and
rearings in the test probe are significantly different from the corresponding training values for all groups (ANOVA test, p < 0.05)

Fig. 3 Absence of effect of PST-producing C. raciborskii (9 μg/L STX equivalents) in the EPM task. Data expressed as mean ± SEM; n = 10 per group;
TSCA: time spent at closed arms; TSOA: time spent at open arms; TSCA: time spent at central area
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differences among training session latencies (p = 0.229,
Kruskal-Wallis ANOVA). However, all groups have dis-
played IA task learning, as each test latency was signifi-
cantly larger than the corresponding training one (p < 0.005
for all experimental groups, Wilcoxon signed-ranks test).
These results suggested an amnesic effect of the highest
concentration (9 μg/L STX equivalents) of long lasting con-
sumption of PST in drinking water.
The reference spatial memory model of the MWM task

results are shown in Figs. 5, 6 and 7. Two experimental
groups were applied: control group (ASM1 medium with-
out cyanobacteria) and PST-producing C. raciborskii
(9 μg/L STX equivalents).
At the end of the four consecutive training days (Fig. 5),

the animals treated with PST took a significantly longer
time to find the hidden platform than the control group
(p = 0.024, repeated measures ANOVA). However, both
groups demonstrated a significant latency reduction to

find the platform over the four training days (p < 0.05, re-
peated measures ANOVA), indicating learning in both
groups.
In the probe test session of the MWM task (Fig. 6),

the PST-treated group of rats significantly spent less
time at the TPQ than the control group (p = 0.001, one-
way ANOVA test and Tukey post-hoc test). Moreover,
the PST-treated group did not show any difference in
the time spent at the TPQ compared with the time spent
at the OPQ (p = 0.218, repeated measures ANOVA). In
the test session, there was no significant difference in
the path length (Fig. 7) between groups (p = 0.431, one-
way ANOVA test). Moreover, there was no significant
difference between groups concerning swimming speed
(p = 0.387, one-way ANOVA test), which indicated no
motor effects of STX on MWM.
These results suggest an evident amnesic effect of con-

sumption PST-producing C. raciborskii in drinking water

Fig. 4 Effect of consumption of cyanobacteria-contaminated drinking water in the step-down IA task. Data expressed as median and interquartile
intervals (training session in white; test session in gray); n = 10 rats per group. Kruskal-Wallis test shows no significant difference among training
session latencies (p > 0.05). a Each of the five experimental groups has shown a significant difference between training and test session latencies
(p < 0.05, Wilcoxon test). b Only the PST-producing C. raciborskii (9 μg/L STX equivalents) group showed a significant difference in the test session
latency compared to the control group (p < 0.05, Dunn test)

Fig. 5 Effect of consumption of cyanobacteria-contaminated drinking water in the training trial of MWM task. Data expressed as mean ± SEM;
n = 15 rats per group. Both groups showed significant reduction in latency to find the platform during the four training days (p < 0.05, repeated
measure ANOVA). The PST-producing C. raciborskii (9 μg/L STX equivalents) group showed a significant difference compared to the control group
(p < 0.05, repeated measure ANOVA)
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(9 μg/L STX equivalents) on the spatial reference mem-
ory of the MWM task and on the aversive memory of
the IA task.

Discussion
Behavioral alteration could be a reflection of environmental
perturbation [44]. Since behavior associates physiological
function with ecological processes for a given species, it
might provide a useful indicator or biomarker for detecting
harmful chemical pollutants [45].
Behavioral changes are a result of a complex modulation

in the biochemistry and physiological lower organization
levels. The knowledge concerning these fundamental
processes is important to understand how an organism
would adjust its responses to environmental stimuli.
Moreover, adaptation to the environment is a neuronal

signal transduction-dependent process in response to
biochemistry and genetic expression changes [46].
This study showed results of the effects of long lasting

consumption of PST-contaminated drinking water on
behavioral parameters and correlated an STX decrease
effect to learning and memory processes. In our behav-
ioral study, there was an evident amnesic effect of chronic
PST (9.0 μg/L STX equivalents) administration through
artificially contaminated drinking water. Memory impair-
ment occurred in both tasks that present different cogni-
tive components: the aversive memory of the IA task,
which is dependent on stress modulation (glucocorticoids
and noradrenergic activation) [26, 47], and the reference
spatial memory of the MWM task [37, 43]. Both memory
tasks depend on neurotransmitter system components
(glutamatergic, gabaergic and cholinergic), molecular
pathways (second messengers and kinases proteins), and
brain regions (hippocampal formation, amygdaloid com-
plex and neocortex) related with declarative memory for-
mation in humans [46, 48, 49].
However, no effect was found in the less aversive ex-

ploratory OFH task (Fig. 2). The unaltered number of
crossings in the OFH task and the effective concentra-
tion in the IA and MWM task supports the idea that the
effect of PST in the IA and MWM tasks is basically cog-
nitive and not a motor or an exploratory effect [35].
Moreover, in the EPM task, no effect of 9 μg/L STX
equivalents was observed, indicating either anxiolytic or
anxiogenic status caused by PST [36].
Our non-toxic culture control treatment did not show

any effect in OFH and IA tasks. These results supported
the idea of a mnemonic effect of PST produced by C.
raciborskii. However, nonspecific synergy effects caused

Fig. 6 Effect of consumption of cyanobacteria-contaminated drinking water in the test session of MWM task. Data expressed as mean ± SEM;
n = 15 rats per group. a Only the ASM-1 control group showed significant difference between time spent at TPQ and time spent at OPQ, p < 0.05
(one-way ANOVA test). b Rats treated with PST-producing C. raciborskii (9 μg/L STX equivalents) showed significant difference in the time spent at TPQ
(p = 0.001, one-way ANOVA test and Tukey post-hoc test)

Fig. 7 Absence of effect of PST-producing C. raciborskii (9 μg/L STX
equivalents) on the swimming path length during the test session
of the MWM task (p = 0.431, one-way ANOVA test). Data expressed
as mean ± SEM; n = 15 per group
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by secondary metabolites may also contribute with STX
in the memory impairment observed.
Furthermore, no effects were observed in the groups

treated with 3 μg/L STX equivalents. This result sup-
ports the STX concentration guideline in drinking water
present in the regulation number 2914/2011 of the Bra-
zilian Ministry of Health. However, recent work reported
cytotoxicity, genotoxicity and oxidative stress caused by
3 μg/L of STX in teleost neurons in vitro [50].
Voltage-gated sodium channels, blocked by STX, are

expressed for all regions of the vertebrate brain [4, 51].
These channels positively modulate the mechanisms of syn-
aptic plasticity processes and induce long-term potentiation
(LTP, memory electrophysiological model) at hippocampus
[52, 53]. Our results suggest that STX-sensitive voltage-
gated sodium channels positively modulate the learning
and memory processes of the IA and MWM tasks.
Co-expression of STX-sensitive voltage-gated sodium

channel and receptor tyrosine kinase TrkB at the same
places on neurons was reported [51, 53]. Binding of the
brain-derived neurotrophic factor (BDNF) to the TrkB
receptors co-activates the voltage-gated sodium channel
producing rapid neuronal depolarization that induces
LTP [51, 53]. Moreover, STX administration over neu-
rons blocks voltage-gated sodium channel and inhibits
LTP induced by BDNF [51]. Neurotrophins like BDNF
are regulatory factors that mediate differentiation and
survival of neurons in the peripheral and central nervous
systems and positively modulate learning and memory
processes [54].
It was reported that fish exposed to transport stress in

the presence of STX displayed significant reduction in
neural c-Fos expression [55]. The immediately early gene
c-fos, and its protein c-Fos, is known to be induced in
neurons of mammals and fish as a result of neuronal
stimulation. Moreover, in rats it has been demonstrated
that c-Fos expression mediates neuronal excitation and
enhances survival, processes associated with memory
consolidation [56].
The studies demonstrated that STX impaired memory.

The toxic mechanisms of STX on memory processes
must be due to damage of the molecular mechanisms in-
volved with control of synaptic plasticity like signaling
pathways of BDNF and c-Fos.
However, STX must be involved with oxidative stress

and cellular death in some brain regions like hippocam-
pus or neocotex [50, 57]. Recently, it were reported that
the consumption of water contaminated with cyanobac-
teria PSP-producing Cylindrospermopsis raciborskii for
30 days caused significant alterations in the antioxidant
machinery, both in the brain structures such as the hip-
pocampal formation and the prefrontal cortex as well as
in the liver of exposed rats [58]. Thus, memory impair-
ment observed in this work can to be consequence of

oxidative stress at hippocampus and prefrontal cortex of
rats repeated exposed to saxitoxin-contaminated drink-
ing water.

Conclusions
In summary, the repeated exposure of rats to contami-
nated drinking water with C. raciborskii producer of PST
for 30 days caused deleterious behavioral alterations in-
cluding memory impairment in inhibitory avoidance task
and referential water maze task. The neurotoxic effect of
saxitoxin or variants and possible nonspecific damages
caused by C. raciborskii bloom are problems that require
further investigation in order to mitigate a possible impact
on the environment.
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