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Abstract

Background: Considering the high toxicity and limited therapies available for treating visceral leishmaniasis (VL),
the drug repositioning approach represents a faster way to deliver new therapies to the market.

Methods: In this study, we described for the first time the activity of a potent antiarrhythmic, amiodarone (AMD),
against L. (L.) infantum and its in vitro and in vivo activity.

Results: The evaluation against promastigotes has shown that amiodarone presents leishmanicidal effect against
the extracellular form, with an IC50 value of 10 μM. The activity was even greater against amastigotes in comparison
with promastigotes with an IC50 value of 0.5 μM. The selectivity index in relation to the intracellular form
demonstrated that the antiparasitic activity was approximately 56 times higher than its toxicity to mammalian cells.
Investigation of the in vivo AMD activity in the L. infantum-infected hamster model showed that 51 days after the
initial infection, amiodarone was unable to reduce the parasite burden in the spleen and liver when treated for 10
consecutive days, intraperitoneally, at 50 mg/kg/day, as determined by qPCR. Although not statistically significant,
AMD was able to reduce the parasite burden by 20% in the liver when treated for 10 consecutive days, orally, at
100 mg/kg/day; no reduction in the spleen was found by qPCR.

Conclusions: Our findings may help further drug design studies seeking new AMD derivatives that may provide
new candidates with an in vitro selectivity close to or even greater than that observed in the prototype delivering
effectiveness in the experimental model of VL.
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Background
Leishmaniasis is a neglected tropical disease (NTD)
caused by the protozoan parasite Leishmania spp., asso-
ciated with underdeveloped and/or developing countries,
presenting infections that manifest especially in tropical
or subtropical climates and, consequently, reaching less
favored population [1]. Leishmaniasis is called neglected,
amongst others factors, because it does not attract the
interest of the pharmaceutical sector, which does not
consider the market potential sufficient for the invest-
ment necessary to develop new drugs [2–4].

Leishmaniases affect a total of 98 countries, 3 territories
and 5 continents, presenting endemic transmission and
totaling more than 58,000 cases of visceral leishmaniasis
and 220,000 cases of cutaneous leishmaniasis per year.
There is also an overall global estimate of 0.2–0.4 million
cases for the visceral form and 0.7–1.2 for the cutaneous
form, making leishmaniases one of the six major endemics
for the World Health Organization (WHO) [5, 6].
The chemotherapy for leishmaniases is limited and

generally ineffective. The arsenal available is based on a
few drugs such as pentavalent antimonial, amphotericin
B and miltefosine, which in most cases result in severe
side effects and potential treatment abandonment,
enabling the appearance of resistant strains [7]. It is also
important to highlight that all the drugs cited above* Correspondence: e.g.pinto@dundee.ac.uk
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were introduced in the leishmaniasis clinic as a result of
drug repositioning strategy.
The search for new drugs may require long-term

study, large financial resources and a high investment
risk. In view of the problematic treatment of visceral
leishmaniasis, the screening of drugs developed for an-
other purpose, that is, drugs already available in the
clinic to treat other diseases, has been presented as one
of the fastest and most effective approaches for introdu-
cing new therapies, known as drug repurposing. The re-
positioning of FDA-approved drugs also stands out as a
strategy of lower cost in the medium term with vast ex-
amples in the therapy of leishmaniasis [7, 8].
The drug chosen in this study was amiodarone

(AMD), which was first synthesized as a coronary vaso-
dilator more than 50 years ago and has been widely used
as a potent antiarrhythmic [9]. Additionally, AMD activ-
ity has been previously reported within in vitro studies
using cutaneous forms of leishmaniasis [10–12].

Methods
Drugs and chemicals
3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium
bromide (Thiazol blue; MTT), M-199 medium, miltefo-
sine, RPMI-PR-1640 medium (without phenol red) and
sodium dodecyl sulfate (SDS) were purchased from
Sigma–Aldrich (St Louis, MO). Amiodarone was kindly
donated by Prof. Dr. Humberto Gomes Ferraz (Univer-
sity of Sao Paulo - Brazil).

Bioassay procedures
BALB/c mice and Golden hamsters (Mesocricetus aura-
tus) were obtained from the animal breeding facility at
Adolfo Lutz Institute (São Paulo, Brazil). The animals
were maintained in sterilized cages with water and food
given ad libitum. Animal procedures were performed
with the approval of the Research Ethics Commission
(CEUA IAL 04/2011) and in agreement with the Guide-
lines for the Care and Use of Laboratory Animals from
the National Academy of Sciences.

Parasites and mammalian cells maintenance
Leishmania (L.) infantum (MHOM/BR/1972/LD) pro-
mastigotes were maintained in M-199 medium supple-
mented with 10% fetal bovine serum (FBS) and 0.25%
hemin at 24 °C. The L. (L.) infantum amastigotes were
maintained in golden hamsters for up to 60–70 days
post-infection (d.p.i.) and isolated by differential centri-
fugation. NCTC (clone 929) murine conjunctive cells
were maintained in RPMI-1640 (without phenol red)
and supplemented with 10% FBS at 37 °C in a humidi-
fied incubator containing 5% CO2.

In vitro cytotoxic concentration (CC50) against mammalian
cells
The 50% cytotoxic concentration (CC50) was determined
in NCTC clone 929. NCTC cells were counted in a Neu-
bauer hemocytometer and seeded at 6 × 104 cells per
well in 96-well microplates at 37 °C in a 5% CO2 incuba-
tor. AMD was then added in serial dilutions and tested
for 48 h; miltefosine was assayed as the standard drug.
The cellular viability was determined by MTT assay at
570 nm [13]. For selectivity index (S.I.) the following
equation was employed: S.I. = CC50 NCTC cells / IC50

amastigotes.

In vitro inhibitory concentration (IC50) against
promastigotes and amastigotes
To determine the 50% inhibitory concentration (IC50)
against L. (L.) infantum, promastigotes were counted in
a Neubauer hemocytometer and seeded at 1 × 106 cells
per well in 96-well microplates using miltefosine as the
standard drug. AMD was added in serial dilutions and
kept for 48 h at 24 °C until parasite viability had
been determined by the MTT assay [13]. For IC50 de-
termination against amastigotes, peritoneal macro-
phages were obtained by washing the peritoneal cavity
of BALB/c mice with medium and seeded at 1 × 105

cells/well for 24 h. Amastigotes were isolated from
previously infected hamsters spleens, separated by
differential centrifugation and added to the macro-
phages at a ratio of 1:10 (macrophage/amastigotes).
Non-internalized parasites were removed by washing
once with medium; and the cells were then incubated
with AMD for 120 h at 37 °C in an incubator under
5% CO2, using miltefosine as the standard drug. At
the end of the assay, the cells were fixed in methanol,
stained with Giemsa and observed under a light
microscope to determine the number of intracellular
parasites. The number of amastigotes was determined
in 400 macrophages from the drug-treated and con-
trol wells [14].

In vivo anti-Leishmania activity
The efficacy of AMD treatment (oral and intraperito-
neal) was determined using young male golden hamsters
previously infected (i.p. route) with L. (L.) infantum
amastigotes (1 × 108/animal). Forty days post infection
(d.p.i.), the hamsters (n = 5/group) were treated intraper-
itoneally and orally for ten consecutive days with AMD
at 50 mg/kg/day and at 100 mg/kg/day, respectively. The
control group was treated with vehicle only. The animals
were euthanized using CO2 50 d.p.i. and the parasite
burden was evaluated by real time PCR using RNA sam-
ples obtained from the spleen and liver fragments, ac-
cording to a standardized method published by Reimão
and co-workers [15]. The susceptibility of Leishmania
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infantum to pentavalent antimony (Glucantime®) was
previously determined in a hamster model [16].

Statistical analysis
All data obtained have been reported as the mean of two/
three independent assays. The IC50 values were calculated
using sigmoid dose-response curves by the software
Graph Pad Prism 5.0 (GraphPad Software Inc., La Jolla,
CA), and the 95% confidence intervals were included in
parentheses. ANOVA was used for statistical analysis.

Results
In vitro anti-Leishmania activity (IC50) and cytotoxicity
concentration (CC50)
The AMD assay performed against L. (L.) infantum pro-
mastigotes showed, after 48 h of incubation, an IC50

value of 10.5 μM. The drug was able to reduce by 100%
the promastigotes viability at the highest concentrations.
In order to determine the respective selectivity index for
further intracellular investigation (amastigotes), the cyto-
toxicity assay was performed using NCTC cells, which
presented a CC50 value of 30.9 μM versus an IC50 value
of 0.55 μM for the amastigote form. AMD also exhibited
a selectivity index of 56, relative to the intracellular form
of the parasites. Miltefosine was used as the standard
drug and the values are shown in Table 1.

In vivo anti-Leishmania activity
Considering the in vitro activity of AMD against intra-
cellular amastigotes, the next step was to perform an in
vivo experiment using the L. infantum-infected hamster
model, in which after 40 d.p.i. the animals were treated
for 10 consecutive days by two different routes of ad-
ministration: intraperitoneal at 50 mg/kg/day and oral at
100 mg/kg/day. After 51 days of the initial infection, the
animals were euthanized, spleen and liver fragments re-
moved and the parasite burden was determined by
qPCR.
The results demonstrated that AMD was not able to

reduce the parasite burden in either the spleen or liver
after intraperitoneal treatment. Although not significant
(p > 0.05) a 114% increase in spleen infection and 38% in
liver infection was observed in relation to the control
group. In view of the oral treatment, AMD was also un-
able to reduce the infection in the spleen (5% reduction);
however, AMD was able to reduce the parasite burden
by 20% in the liver, although without statistical signifi-
cance (p > 0.05) (Fig. 1). The data below refer to a repre-
sentative assay of two distinct experiments.

Discussion
Given the drug repositioning strategy and its great impact
on leishmaniasis therapies – as demonstrated by the intro-
duction of antimony, pentamidine, amphotericin B, azoles
(ketoconazole, itraconazole, etc.), used initially to treat

Table 1 In vitro IC50 against promastigotes and amastigotes of Leishmania, CC50 against NCTC cells and SI

Drugs Promastigotes
IC50 (μM) (95%CI)

Amastigotes
IC50 (μM) (95%CI)

Cytotoxicity
CC50 (μM) (95%CI)

SI

Amiodarone 10.5
(9.5–11.7)

0.5
(0.1–2.0)

30.9
(12.5–76.1)

56.2

Miltefosine 16.8 (15.4–17.5) 17.8 (11.6–24.6) 122.0 (94.8–157.0) 6.8

IC50 50% inhibitory concentration, CC50 50% cytotoxicity concentration, 95% C.I. 95% confidence interval, S.I selectivity index
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Fig. 1 In vivo evaluation of AMD in Leishmania-infected hamsters. The drug was administered for ten consecutive days at 50 mg/kg (i.p.) and
100 mg/kg (p.o.). Real-time PCR quantification (RNA amastigotes) of parasite burden in spleen (a) and liver (b). Data was normalized based in the
vehicle group
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fungal infections [17], as well as miltefosine, developed for
cancer treatment [18] – the drug amiodarone was chosen
for the experimental trials due to its promising and unpre-
cedented in vitro activity against L. (L.) infantum.
Considering the in vitro models, AMD showed a high

selectivity index, demonstrating that the antiparasitic ac-
tivity was approximately 56 times higher than the tox-
icity against mammalian cells. Additionally, AMD was
about eight times more selective when compared to mil-
tefosine, the standard oral treatment for VL in India.
Based on the IC50 values against intracellular amasti-
gotes, AMD was found to be approximately 32 times
more potent than miltefosine. These findings corrobor-
ate the data described by Serrano-Martín et al. [10], in
which they not only demonstrated promising selectivity
of the drug AMD against L. mexicana, but also observed
higher IC50 values in amastigotes (8 nM) when com-
pared to promastigotes (900 nM).
The anti-Leishmania amazonensis [11], anti-Leishma-

nia mexicana [10] and anti-Leishmania braziliensis [12]
activities presented by AMD were previously described,
both under in vitro (promastigotes and amastigotes) and
in vivo models. Considering that different species may
result in different sensitivities against the same drug
[19], it was observed that AMD resulted in very similar
IC50 values when compared to the species that cause
tegumental or visceral diseases. This is exemplified by
the finding by Nishikawa et al. [20] that AMD’s
anti-L. amazonensis activity resulted in an IC50 value
of 0.46 μM, a fact that is extremely important when
developing a drug not just for one disease but for a
complex of diseases such as the complex of leishman-
iases. However, the data presented in this paper to
the best of our knowledge are unprecedented, since
no study has been found in the literature demonstrat-
ing the potential of AMD against the fatal visceral
form of leishmaniasis.
The anti-Trypanosoma cruzi activity of AMD has also

been demonstrated through both in vitro and in vivo
models, showing a mode of action related to mitochon-
drial damage and inhibition of ergosterol synthesis [21].
Amiodarone has also demonstrated an action that in-
hibits the calcium channels [22]; data from the literature
have shown the activity of calcium channel blockers
against amastigote forms of L. (L.) infantum [23]. Data
reported by Paniz-Mondolfi et al. [12] demonstrated that
AMD induced a “parasitological cure” in a single clinical
case of L. (V.) braziliensis when administered at the dose
of 1,600 mg/day for the first 4 days, followed by a dose
of 800 mg/day for 3 consecutive weeks. Additionally, an
important fact to highlight associated with diseases
caused by trypanosomatids and amiodarone use includes
the drug prescription for chagasic patients that present
cardiac compromise.

Taking into consideration the potential of this drug in
the literature as well as its in vitro effectiveness, the
study was carried out in an experimental hamster model
of infection with L. (L.) infantum. Given the WHO cri-
teria for new oral drug candidates for LV [5], the present
study approached both oral and intraperitoneal adminis-
tration. The results clearly demonstrated that after
10 days of treatment AMD was unable to induce any
treatment in the target organs (spleen and liver), even
when administered by two different routes (oral and in-
traperitoneal). Among the factors that could have con-
tributed to the lack of effectiveness by the oral route, it
is suggested that the absorption of the drug by the
gastrointestinal tract is low and variable. Data from the
literature report that only 20 to 55% of the drug is found
in the circulation after oral administration [24]. In this
case, future pharmaceutical formulations could be devel-
oped in an attempt to promote a better absorption of
the drug, such as the production of AMD as nanocrystal,
which favors an increase in the effectiveness of drugs,
due to a better bioavailability [25]. Furthermore, the
maximum oral dose used, namely 100 mg/kg/day, may
not have been sufficient to achieve adequate plasma
levels for parasite elimination. The literature describes
the Lethal Dose 50% (LD50) after intravenous adminis-
tration as 227 mg/kg in mice [26]; the use of higher
doses might have caused toxicity in the animals, making
the study inviable.
Another important factor that may have contributed

to the lack of effectiveness in the animal model may be
related to drug metabolism. AMD has been described as
being extensively metabolized by the liver via CYP450,
specifically by CYP2C8, resulting in a major metabolite,
desethylamiodarone [27]. Although this metabolite con-
tinues to exhibit antiarrhythmic activity [28], nothing
has been described in the literature as to its anti-Leish-
mania potential, a fact that should be investigated in an
attempt to explain the absence of activity against the
parasite in the experimental model.
AMD is an FDA-approved drug, is in conformity with

Lipinsky’s “Rule of Five” [29] and despite being in clin-
ical use, presents problems related to its long half-life (~
58 days) [24] and consequent slow excretion may cause
toxicity to the organism [30, 31]. Although its pharma-
cokinetics profile is not ideal, the literature reports the
daily use of AMD in patients, justifying in this work the
dose regime choice in the experimental model. Consid-
ering the regimen adopted for both oral and intraperito-
neal routes, it is possible to suggest that the drug may
have contributed to animal toxicity, since a two-fold in-
crease of parasite burden in spleen by intraperitoneal
route was observed in relation to the control group. To
corroborate this result, numerous studies in the litera-
ture describe AMD hepatotoxicity [32–34]. It is also
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important to highlight a case study that reported hepatic
failure following AMD intraperitoneal administration at
a dose of 750 mg [32]. Additionally, the drug possesses
extremely lipophilic properties with consequent accumu-
lation in the liver, which results in tissue levels 500-fold
higher in the liver than those found in the circulation
[35]. Plomp and co-workers [36] demonstrated the high
accumulation of the drug and metabolite in adipose
tissues. Moreover, the toxicity expressed at higher doses
following intraperitoneal administration of AMD may be
associated with the action mode of the drug, which in-
duces mitochondrial stress further aggravated by its
metabolite desethylamiodarone [37].
In contrast, the literature provides reports of in vivo

efficacy of AMD in a tegumental leishmaniasis model.
Serrano-Martín et al. [38] demonstrated that after oral
treatment with amiodarone at 50 mg/kg/day in an
experimental model of L. mexicana, the drug produced
superior efficacy compared to Glucantime®. However, the
authors reported that after drug decrease, reactivation of
the disease was observed, indicating therapeutic failure
[38]. Given the long half-life of AMD, combination ther-
apy studies have been performed in VL therapy.
Serrano-Martín et al. [38] showed in vivo synergism of

AMD when given in combination with miltefosine. The
administration of amiodarone at 50 mg/kg/day + milte-
fosine at 20 mg/kg/day resulted in a “parasitological
cure” in 90% of the animals, as evaluated by optical mi-
croscopy, PCR and cell culture [38]. Furthermore
Anversa et al. [39] showed that amiodarone used either
on its own or in combination was unable to stop the de-
velopment of cutaneous lesions caused by L. amazonen-
sis; however, an improvement of pentavalent antimonial
activity in the lesions has been observed with no side ef-
fects [39].
Additionally, data in the literature indicate that drone-

darone may be a potential analog for future in vivo stud-
ies against L. (L.) infantum because the compound is: i)
a structural analogue of amiodarone; ii) has a lower
half-life (~ 18 h); iii) demonstrated in vitro values against
L. mexicana more promising than amiodarone (promas-
tigotes: 115 nM versus 900 nM/amastigotes: 0.65 nM
versus 8 nM) [40].
Finally, studies of drug delivery systems, such as

phosphatidylserine-containing liposomes [41], may con-
stitute a very promising alternative to target AMD at
lower doses toward organs affected by the parasite, such
as the liver, spleen and bone marrow.

Conclusions
Our study indicates that AMD is an in vitro potent
FDA-approved drug against intracellular amastigotes of
Leishmania (L.) infantum and may represent a lead com-
pound for future synthesis of new analogues. Although

the in vitro potency was clearly present in this com-
pound, future analogues should also consider the reduc-
tion of the plasma half-life (T1/2), since long T1/2 values
can induce resistant parasites. However, these findings
may serve as a basis for drug design studies directed at
new AMD derivatives that could provide new candidates
with an in vitro selectivity close to or even greater than
that observed in the prototype seeking to deliver effect-
iveness in the experimental model of VL.
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