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Mining activities have significantly affected the Neotropical freshwater 
ichthyofauna, the most diverse in the world. However, no study has systematized 
knowledge on the subject. In this review, we assembled information on the 
main impacts of mining of crude oil, gold, iron, copper, and bauxite on aquatic 
ecosystems, emphasizing Neotropical freshwater fishes. The information 
obtained shows that mining activities generate several different disturbances, 
mainly via input of crude oil, metals and other pollutants, erosion and siltation, 
deforestation, and road construction. Mining has resulted in direct and indirect 
losses of fish diversity in several Neotropical waterbodies. The negative impacts 
on the ichthyofauna may change the structure of communities, compromise 
entire food chains, and erode ecosystem services provided by freshwater fishes. 
Particularly noteworthy is that mining activities (legal and illegal) are widespread 
in the Neotropics, and often located within or near protected areas. Actions to 
prevent and mitigate impacts, such as inspection, monitoring, management, 
and restoration plans, have been cursory or absent. In addition, there is strong 
political pressure to expand mining; if – or when – this happens, it will increase 
the potential of the activity to further diminish the diversity of Neotropical 
freshwater fishes.
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As atividades de mineração têm impactado significativamente a ictiofauna de água 
doce Neotropical, a mais diversa do mundo. Porém, nenhum estudo sistematizou 
o conhecimento sobre o assunto. Nesta revisão, reunimos informações sobre os 
principais impactos da mineração de petróleo, ouro, ferro, cobre, e bauxita sobre 
os ecossistemas aquáticos, com ênfase nos peixes de água doce Neotropicais. As 
informações obtidas mostram que as atividades de mineração geram diferentes 
distúrbios, principalmente por meio de petróleo bruto, metais e outros poluentes, 
erosão e assoreamento, desmatamento e construção de estradas. A mineração 
resultou em perda direta e indireta de diversidade de peixes de vários corpos 
d’água Neotropicais. Os impactos negativos sobre a ictiofauna podem alterar 
a estrutura das comunidades, comprometer cadeias alimentares inteiras, bem 
como degradar os serviços ecossistêmicos fornecidos pelos peixes de água doce. 
Particularmente importante é que as atividades de mineração (legais e ilegais) são 
generalizadas na região Neotropical, e frequentemente estão localizadas dentro 
ou perto de áreas protegidas. Ações de prevenção e mitigação de impactos, como 
planos de fiscalização, monitoramento, manejo e restauração, têm sido precárias 
ou ausentes. Além disso, há forte pressão política para expandir a mineração; se 
– ou quando – isso acontecer, aumentará o potencial da atividade em diminuir 
ainda mais a diversidade de peixes de água doce Neotropicais.

Palavras-chave: Assoreamento, Derramamento de óleo, Desmatamento, Estradas, 
Mercúrio.

INTRODUCTION

The Neotropical realm supports the greatest known diversity of freshwater fish in the 
world, including over 6,000 described species (Albert et al., 2020). These fishes vary 
considerably in length, from mere centimeters to meters (Ferraris Jr., 2003; Castro, 
Polaz, 2020), and they display complex biogeographic patterns at multiple spatial 
extents. Freshwater fishes from the Neotropical region also display disproportionally 
high functional diversity (Toussaint et al., 2016), perform critical ecological functions 
(Reys et al., 2009), and provide many important ecosystem services, particularly artisanal 
and commercial fisheries (e.g., Isaac et al., 2015). Fish are also used in countless products 
such as jewelry and other objects (Olden et al., 2020), contribute to medicinal treatments 
(Alves, Rosa, 2006), and provide many other services. This rich biodiversity, however, 
has been eroded, degraded, or threatened with extinction (Reis et al., 2016; Pelicice et 
al., 2017; Vitule et al., 2017; ICMBio, 2018).

Mining is one of several activities that have affected Neotropical fish diversity 
(Pelicice et al., 2017). Mining extracts various materials (e.g., sand, oil, metals) and is 
conducted near or within waterbodies, generating a variety of wide-ranging negative 
consequences. For instance, successive oil spills from petroleum wells or pipelines in 
the Amazon basin (especially in Peru) have damaged fish assemblages in several rivers 
(Azevedo-Santos et al., 2016; Fraser, 2016). Another emblematic example was the recent 
rupture of tailings dams in southeastern Brazil, when toxic mine waste flowed into the 
Doce River and dramatically affected fish diversity (Fernandes et al., 2016; Weber et al., 
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2020). These are just a few examples of how mine operations and failures negatively 
affect freshwater ecosystems, including large-scale fish kills and biodiversity losses. 
Despite recent catastrophes that expose the dangers of mining operations (e.g., Fernandes 
et al., 2016; Olden et al., 2019), many Neotropical nations have largely downplayed the 
negative and pervasive impacts of mining. This is certainly the case for Brazil, where 
mining is widespread and plans exist for expansion and changes in legislation favoring 
the mining sector (Meira et al., 2016; Congresso Nacional, 2020). 

The science to inform mining policy in the Neotropical region is available in published 
journals, grey literature (often internal mining company reports), and the news media, 
yet it has not been synthesized to facilitate an understanding of mining impacts on the 
Neotropical ichthyofauna. To address this knowledge gap, we systematically reviewed 
current knowledge regarding the main negative impacts of mining on Neotropical 
freshwater fishes. Several types of mining have related consequences. For example, 
gold mining results in input of toxic metals (e.g., Malm, 1998), which also occurs with 
petroleum production (e.g., Baqué, Doyle, 2017). Thus, we list the main impacts of 
mining of crude oil, gold, iron, copper, and bauxite. We chose these ores because 
there is more available information of negative impacts related to them. Although the 
negative effects of mining can be pervasive across taxonomic groups (e.g., Callisto et 
al., 1998a; Brosse et al., 2011), in this review we explore the impacts that can arise from 
inputs of crude oil and heavy metals and other pollutants, sediment erosion and siltation, 
deforestation practices, and road construction on Neotropical freshwater fishes.

MAIN CONSEQUENCES AND NEGATIVE IMPACTS ON FISHES

Mining is a necessary activity for human societies. We depend on petroleum for 
transporting people and commodities, for example, and metals are a key component 
of human civilizations. However, mining has also proven to cause countless negative 
environmental impacts (e.g., Callisto et al., 1998a,b; Brosse et al., 2011; Hughes et al., 
2016; Marrugo-Negrete et al., 2018; Albuquerque et al., 2020) that can be avoided or 
minimized. In this section, we review how different mining activities lead to detrimental 
impacts on Neotropical freshwater fishes.

Input of crude oil. Oil extraction and transportation are major economic activities, 
and oil spills resulting from poor mining practices are not uncommon (e.g., Sebastián, 
Hurtig, 2004; Hughes et al., 2016). Crude oil spills in Neotropical waterbodies have 
occurred repeatedly during or after the extraction (in the blocks) or in the transport via 
pipelines, latter associated with human actions (e.g., vandalism – including terrorism, 
poor maintenance) or environmental sources (i.e., natural catastrophes). In the Peruvian 
Amazon alone, more than 400 leaks were recorded over 19 years (León, Zúñiga, 2020), 
and many hundreds more occurred but were not reported or even discovered. The 
scenario is more complicated if we consider other countries (e.g., Ecuador) that extract 
oil in the region. Most instances of oil spills are poorly documented in the scientific 
literature, and effects on fish assemblages are substantially underreported. In addition to 
accidental spill events, crude oil was also intentionally released into ecosystems, likely 
reaching freshwater ones (Kimerling, 2006).
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The environmental implications of oil spills on Neotropical freshwater fishes remain 
poorly documented (e.g., Fraser, 2016). However, in the Amazon basin, oil spills are 
frequent, resulting in dramatic impacts to fish assemblages (Fig. 1). Several oil spills 
have caused fish mortality (see Tab. 1) and have led to the accumulation of crude oil 
in organisms and in the freshwater environments (e.g., Fig. 1). The Marañón River 
basin, an important region for fishing (Coomes et al., 2010), has been the recipient of 
successive crude oil spills that have killed many fishes (Tab. 1). 

The negative impacts of oil spills directly or indirectly related to petroleum activities 
extend beyond the Amazon River basin. A highly damaging case occurred in Brazil, 
where a crude oil spill was dumped in a stream, later reached the Barigui River, and 
flowed to the Iguaçu River (South Brazil), resulting in massive mortality (Tab. 1; see 
also Ostrensky et al., 2003). The Iguaçu River is the main waterbody of the Iguaçu 
River basin, where more than 50% of fish species are endemic (Zawadzki et al., 1999). 
Thus, oil spills in these Neotropical ecosystems (e.g., Iguaçu, Amazon basins) have 
probably impacted several endemic fish species, including those not described yet. 
Even in cases where there is no clear evidence of impacts on fish diversity (e.g., in 
Tab. 1), they possibly occurred at some level. For example, Short (2003) argued that oil 
contains the life-damaging chemicals “polycyclic aromatic hydrocarbons (PAH)”, and 
that these compounds negatively affect salmonid embryogenesis. In general, exposure 
to crude oil can have different non-lethal effect, such as impairing swimming capacity, 
and can result in malformations (Carls et al., 1999). Studies also show that fish exposed 
to petroleum have become more susceptible to parasitism (Khan, 1990) and eye and 
cardiac dysfunctions (Cherr et al., 2017; Magnuson et al., 2020). Thus, oil spills will not 
always have immediately visible effects on fishes, but they can affect individuals and 
populations for a long time.

TABLE 1 | Reports on crude oil spills in Neotropical waterbodies – also including those with negative impacts on fish diversity (based on 

Methods and Search results in S1A and S1B, respectively).

Waterbodies Country Year of spill Amount (liters)
Negative impacts 
on fish diversity 

Andean River to Lake Titicaca Bolivia 2000 ~4,734,642 Yes

Stream to the Barigui and after to the Iguaçu River Brazil 2000 ~4,000,000 Yes

Catatumbo River to Lake Maracaibo
Colombia (effects in 

Venezuela)
2001 ~2,861,771 Possibly 

Coatzacoalcos River Mexico 2004 ~794,937 Possibly

Coatzacoalcos River Mexico 2011 ~238,481 Yes

Catatumbo River to Lake Maracaibo
Colombia (effects in 

Venezuela)
2012 Unknown Yes 

Guarapiche River Venezuela 2012 ~10,175,204 to ~19,078,508 Yes 

Coca River 
Ecuador (effects in 

Peru)
2013 ~1,825,174 Possibly

Lake - Unknown name Peru 2014 Unknown Yes

A tributary of the Marañón River basin Peru 2014 ~254,380 Yes

Stream - Unknown name Peru 2014 Unknown Yes

Stream - Unknown name Brazil 2015 ~600 Possibly

Chiriaco and Morona Rivers - 1 Peru 2016 ~476,962 Possibly

Chiriaco and Morona Rivers - 2 Peru 2016 Unknown Possibly

Stream - Unknown name Peru 2016 Unknown Possibly

Tepeyac stream and Coatzacoalcos River Mexico 2018 Unknown Yes

Streams, Sogamoso and Magdalena Rivers Colombia 2018 ~79,494 to ~87,443 Yes

Coca and Napo Rivers 
Ecuador (effects in 

Peru)
2020 ~2,384,809 Yes 

Godineau River Trinidad and Tobago 2020 Unknown Possibly

Shiripuno River Ecuador 2020 Unknown Possibly
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Negative impacts on fishes may substantially perturb food webs (Azevedo-Santos et 
al., 2016) and diminish environmental services (e.g., fish as food). For example, traditional 
human communities have reported that water bodies affected by crude oil experienced a 
notable decline in fish diversity (Sebastián, Hurtig, 2004), with subsequent but unstudied 
impacts on fishery production. As fishes disperse seeds (Correa et al., 2007; Reys et al., 
2009), this is, for instance, another affected service. In fact, all consequences (e.g., input 
of metals, chlorides, cyanides, roads) of different mining activities reported here will 
affect food webs and ecosystem services.

Another common problem, especially in the Amazon basin, is oil extraction 
in headwater areas (Finer et al., 2008), implying that local spills can often extend 
downstream to other sites (Azevedo-Santos et al., 2016, 2019), pervasively affecting fish 
diversity and fisheries activities. This effect was recently observed in the Magdalena 
River in Colombia and in other Neotropical regions (Tab. 1). 

After the input of massive amounts of a substance, especially in flowing waters, 
recovering the substance is difficult. In this case, petroleum, in addition to reaching 
downstream areas, remains present in aquatic organisms and sediment (e.g., Fig. 1); this 
persistence was verified after the oil spill resulting from the Deepwater Horizon accident 
(Liu, Liu, 2013). Therefore, freshwater fish from Amazonia and other Neotropical 

FIGURE 1 | Dead fishes (characiforms, cichliforms, and siluriforms) after crude oil spilled in waterbody of the Amazon River basin. Credits 

to Barbara Fraser.
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regions where leaks have occurred can be exposed to the negative effects of crude oil 
for months or years.

Input of metals. Different metals associated with mining operations can leach 
directly into watersheds; the volume and rate of the leaching are often unknown. 
Activities involved in the extraction of crude oil, gold, iron, and copper cause input 
of minerals into waterbodies. Some minerals have contaminated or otherwise affected 
Neotropical freshwater fishes (Tab. 2) – including in Amazonian systems, where small-
scale mining activities, many of them illegal, are widespread. The sources of minerals 
in freshwater ecosystems are well known and include the failure of tailings disposal 
facilities and the chronic release of minerals during mining operations. 

Many mines have tailings disposal facilities (hereafter TDFs; see fig. 1 in Salvador 
et al., 2020) that are used when large volumes of metal ores are mined (Tab. 3). The 
tailings may include finely ground rock (silt, powder), metals (e.g., cadmium), and 
processing chemicals and slimes, some of which are toxic (e.g., cyanides). These 
facilities are vulnerable to various disruptions (Nazareno, Vitule, 2016). When they 
collapse, TDFs release huge masses of toxic tailings, silt, and very turbid water into 
downstream environments (e.g., streams, rivers, floodplains, estuaries), causing extensive 
environmental changes. Numerous collapses of TDFs are reported in Neotropical 
countries (e.g., Wise, 2020), some of which have been highly publicized in popular 
media – especially when people died. However, for many of these cases little is known 
about the true magnitude of the impact of the accident on fishes, especially for events 
occurring before the 1990s.

In Brazil, TDF failures have resulted in catastrophic biodiversity losses in important 
rivers. The best-known examples, because of their social impacts and biodiversity losses, 
were the ruptures of the Fundão and Brumadinho TDFs, both in the State of Minas 
Gerais (Lambertz, Dergam, 2015; Fernandes et al., 2016; Cionek et al., 2019). In the case 
of Fundão, the refuse flowed downstream in the Doce River, in the southeastern part 
of Brazil (Carmo et al., 2017). This single event may have killed endemic, threatened, 
and undescribed fish species (Fernandes et al., 2016). The Brumadinho TDF rupture 
affected another major waterbody, the Paraopeba River, in the São Francisco River 
basin (Cionek et al., 2019), killing a huge number of fish. These events immediately 
changed limnological conditions and imported high levels of toxic mud (i.e., metals 
were present; Fernandes et al., 2016), impacting fishes. For example, the fish Danio rerio 
(Hamilton, 1822), exposed to the water from an affected waterbody (i.e., Paraopeba 
River), manifested high percentages of dead embryos or specimens with abnormalities 
(Thompson et al., 2020). In both cases, metals but also mud and other compounds 
in the TDF may have played a central role in the massive fish kill (Fernandes et al., 
2016; Vergilio et al., 2020). Despite these catastrophes, Brazil currently has > 500 TDFs 
(Nazareno, Vitule, 2016), which may substantially damage ecosystems and fish diversity 
if – or when – they fail.

Metal inputs into Neotropical freshwaters also occur via other routes, including the 
deliberate or accidental release of effluents into waterbodies. Many rivers of different 
nations (e.g., Bolivia, Ecuador, French Guiana, Peru) probably received mercury 
during gold mining (Tab. 2), including many watercourses in the Amazon basin. 
Most contamination is likely related to illegal mining, a frequent activity in many 
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TABLE 2 | Neotropical freshwater fishes affected by metals in regions with records of mining activities (Methods in S2).

Mining Pollutant Waterbody Country References

Copper Various metals João Dias Stream Brazil Abril et al. (2018a,b)

Gold Mercury Tributaries of the Amazon basin Brazil Akagi et al. (1995)

Gold Mercury Magdalena River Colombia Alvarez et al. (2012)

Gold Mercury Piracicaba River Brazil Arantes et al. (2009)

Gold Mercury Paraíba do Sul River Brazil Azevedo et al. (2017)

Gold Mercury Madeira River Brazil
Bastos et al. (2006, 2015); Bataglioli et al. 

(2019)

Gold Mercury Tartarugalzinho River basin Brazil Bidone et al. (1997a)

Gold Mercury Tapajós River Brazil Bidone et al. (1997b)

Gold Mercury Sinnamary River basin French Guiana Boudou et al. (2005)

Gold Mercury Tapajós River basin Brazil Brabo et al. (2000)

Gold Mercury Madeira River Brazil Dórea et al. (1998); Braga et al. (2015)

Gold Mercury Tapajós River basin Brazil Castilhos et al. (1998); Faial et al. (2015)

Gold Mercury
Petit-Saut reservoir (Sinnamary River 

basin)
French Guiana Durrieu et al. (2005)

Gold Mercury Madre de Dios River basin Peru Feingold et al. (2020)

Gold Mercury Paraguay River Brazil Ferreira et al. (2017)

Gold Mercury Upper Maroni River French Guiana Fréry et al. (2001)

Gold Mercury Lake Titicaca Peru Gammons et al. (2006)

Gold Mercury Several waterbodies French Guiana Gentès et al. (2019)

Gold Mercury Teles Pires River and Cristalino River Brazil Hacon et al. (2000)

Gold Mercury Paraguay River basin Brazil Hylander et al. (2000)

Gold Mercury Rivers of Amazon basin Brazil Kehrig, Malm (1999)

Gold Mercury Paraguay River basin Brazil Leady, Gottgens (2001)

Gold Mercury Piriá River and Grande Lake Brazil Lima et al. (2005)

Gold Various metals Cassiporé River basin Brazil Lima et al. (2015)

Gold Mercury Tapajós River basin Brazil Malm et al. (1995); Lino et al. (2019)

Gold Mercury Several tributaries of Amazon basin Brazil Malm (1998)

Gold Mercury Cauca and San Jorge River basins Colombia Marrugo-Negrete et al. (2018)

Gold Mercury Malinowski River Peru Martinez et al. (2018)

Gold Mercury French Guiana rivers French Guiana Maury-Brachet et al. (2020)

Gold Mercury Lake Managua Nicaragua McCrary et al. (2006)

Gold Mercury Coastal rivers Suriname Mol et al. (2001)

Gold Mercury Rivers of Cuyuní River basin Venezuela Nico, Taphorn (1994)

Gold Mercury Magdalena River Colombia Olivero, Solano (1998)

Gold Mercury Atrato River Colombia Palacios-Torres et al. (2018)

Gold Various metals Atrato River Colombia Palacios-Torres et al. (2020)

Gold Mercury Coastal rivers Brazil Palheta, Taylor (1995)

Gold Mercury Madeira and Paraíba do Sul River basins Brazil Pfeiffer et al. (1989); Pfeiffer et al. (1991)

Gold Mercury Tucuruí Reservoir and Moju River Brazil Porvari (1995)

Gold Mercury Iténez River Bolivia Pouilly et al. (2012, 2013)

Gold Mercury Mutum-Paraná and Madeira Rivers Brazil Reuther (1994)

Gold Mercury Tapajós River Brazil Santos et al. (2000, 2002)

Gold Mercury Solimões River basin Brazil Silva, Lima (2020)

Gold Mercury Solimões River Brazil Silva et al. (2019)

Gold Mercury Madeira River Brazil Soares et al. (2018)

Gold Mercury Bacajá River Brazil Souza-Araujo et al. (2016)

Gold Mercury Puyango River basin Ecuador Tarras-Wahlberg et al. (2001)

Gold Mercury Tapajós River basin Brazil Uryu et al. (2001)

Iron Various metals Doce River Brazil
Fernandes et al. (2016); Ferreira et al. (2020); 

Macêdo et al. (2020); Weber et al. (2020) 

Iron Various metals Paraopeba River Brazil Thompson et al. (2020); Vergilio et al. (2020)
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Neotropical nations. These actions have led to extensive contamination, with likely 
lethal and sub-lethal effects on organisms. For instance, considerable research points to 
mercury in fish and in the environment of many Amazon rivers (Tab. 2). Mercury can 
cause genetic modification (Porto et al., 2005), brain disorders (Peterson et al., 2007), 
and other toxic effects (Monteiro et al., 2017). Furthermore, because it is a toxic metal 
with bioaccumulation potential (Morel et al., 1998), mercury usually accumulates and, 
through the trophic transfer, may harm entire food webs, from smaller fish to top 
predators (e.g., Salminus spp., Hoplias spp., Cichla spp., Caiman crocodilus), including 
large mammals (e.g., Trichechus inunguis) and humans (Malm, 1998).

Another source of metal pollution, especially in the Amazon basin, is through oil 
extraction. In general, petroleum extraction involves the presence of water contaminated 
by heavy metals (Baqué, Doyle, 2017). Known as “produced water”, this refuse has been 
released directly into waterbodies (Ibáñez, 1997; see also next subsection), as has been 
recorded in rivers from Colombia (Avellaneda, 1990), Ecuador (Ibáñez, 1997), and Peru 
(Baqué, Doyle, 2017). It is likely that the same input occurs in other Neotropical countries 
with high oil extraction activity (e.g., Venezuela). According to León, Zúñiga (2020:39), 
in only two areas of oil production in the Amazon, “approximately 408 million barrels” 
were generated in a single year and likely reached nearby waterbodies. The impacts of 
this waste on fish are unclear, as they have not been adequately examined. It is known 
that in regions where this waste was released, fish assemblages were contaminated by 
“copper, lead, zinc and mercury” (Baqué, Doyle, 2017:61). Other reports indicate that 
aquatic life was devastated in the presence of this waste (Ibáñez, 1997). It is likely that 
part of these effects is related to the presence of metals in the water, but other substances 
(e.g , chloride) may also be involved.

As with spills of crude oil and other substances, the release of metals, especially in high 
quantities, permeates entire river systems and affects fishes in adjacent environments and 
downstream habitats. This process was well documented in the failure of the Mariana 
TDF, which first contaminated a small watercourse, then spread through the mainstem 
of the Doce River (Fernandes et al., 2016; Carmo et al., 2017) and reached estuarine 
and marine ecosystems (Andrades et al., 2020). In fact, the problem of propagation 
of disturbances from headwater to downstream pervades all consequences of mining 
activities, including input of chemicals, deforestation, erosion and siltation, and roads, 
because these disturbances may occur in the upper sections of the watershed.

TABLE 3 | Major tailings disposal facilities (TDFs) that collapsed – with reports of effects on Neotropical freshwater fishes (Methods in S3).

Mining Decade of collapse River affected (country) References

Lead and zinc 1990 Pilcomayo River (Bolivia) Garcia-Guinea, Harffy (1998)

Gold 1990 Omai River (Guyana) Vick (1996)

Bauxite 2000 Murucupi River (Brazil) Silva et al. (2012)

Iron 2010 Doce River (Brazil) Fernandes et al. (2016) 

Iron 2010 Paraopeba River (Brazil)
Cionek et al. (2019); Thompson et al. (2020);  

Vergilio et al. (2020)
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Input of cyanides. Gold mining activities in different Neotropical countries, 
for example, Argentina, Costa Rica, French Guiana, Guatemala, Mexico, Nicaragua, 
Panama, and Suriname, have been reported to use cyanide. In the Neotropical region, 
cyanide is used in both legal and/or illegal mining activities. For instance, in Minas Gerais 
(Brazil), the Mina do Engenho had dams with cyanide (S4). An example of the illegal use 
is the case of Costa Rica, in Central America. In this country, in 2019, an enforcement 
operation seized more than two tons of the product in an illegal mining area (S5).

When this pollutant reaches a water body – owing to the rupture of dams, rain, 
deliberate disposal, or other reasons – freshwater fishes are affected (Tab. 4). The main 
problem is that effluents containing the substance often end up in waterbodies (Caheté, 
1998) – despite few scientific reports documenting occurrences. For example, a tributary 
of the Jáchal River basin in Argentina was contaminated by cyanide after a spill, but the 
effects on fish are still unclear. Other examples occurred in Mexico, where high cyanide 
concentrations reached the Piaxtla River and killed several immature fish (Tab. 4), and 
Honduras, where successive accidents introduced cyanide into the Lara River; in the 
latter case, there was a strong negative impact on the ichthyofauna (Tab. 4). These kills 
may occur for different reasons, including difficulty in breathing owing to the presence 
of the substance (Eisler, 1991). 

Cyanides may affect fishes in different ways. As argued by Eisler (1991:27), “(...) 
adverse effects of cyanide on fish include delayed mortality, pathology, impaired 
swimming ability and relative performance, susceptibility to predation, disrupted 
respiration, osmoregulatory disturbances, and altered growth patterns”. These problems 
may also have afflicted assemblages of the recorded disasters (Tab. 4). Immature forms 
may suffer the effects of these substances. For example, Leduc (1978) exposed Salmo 
salar Linnaeus, 1758, to hydrogen cyanide (HCN), a compound that may be also 
present in the mining. This author observed external changes in egg color and delayed 
hatching. For larvae, Leduc (1978) observed that the exposure to hydrogen cyanide 
resulted in morphological changes. This suggests that, in environments affected by 
cyanide, the recruitment of fish populations was also severely affected. In addition, the 
impact may propagate along the food chain, because cyanides also affect plants and 
macroinvertebrates (Eisler, 1991). Thus, the trophic structure of the entire community 
may be affected.

Input of chlorides, salts, polycyclic aromatic hydrocarbons (PAH). Produced waters 
extracted during oil extraction – in addition to metals (see subsection “Input of metals”) 
– also contain other substances (Neff et al., 2011; Baqué, Doyle, 2017; Yusta-García et 
al., 2017). As mentioned, produced waters were dumped into many tributaries in the 
Amazon basin; for instance, the Corrientes, Pucacungayacu, Manchari, and Tigre Rivers 
(Yusta-García et al., 2017; see figures in Baqué, Doyle, 2017:59 and 61). There are reports 
of losses of Neotropical fish diversity from produced water (Ibáñez, 1997). Chloride, high 
levels of salts, and polycyclic aromatic hydrocarbons (PAH) (Neff et al., 2011) may play 
a role in the negative impacts on freshwater organisms. One impact may be due to the 
“chlorinity” effect in areas where produced waters are dumped (Kimerling, 2006:453). 
Ibáñez (1997) and Kimerling (2006) argued that this phenomenon may chemically block 
ecosystems and affect the routes used by the ichthyofauna during migration and spawning 
events. However, we emphasize that these effects (barriers) should be better evaluated. 
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The saline compounds, according to Neff et al. (2011), probably include sodium 
chloride (NaCl). Hintz, Relyea (2017) exposed rainbow trout Oncorhynchus mykiss 
(Walbaum, 1792) to this substance. Among their results, the authors showed that, 
depending on the concentrations of sodium chloride, individual growth was negatively 
affected. Similarly, PAH is expected to be highly damaging to freshwater fishes in both 
the short and long terms (see subsection “Input of crude oil”).

Erosion and siltation. Mining activities (iron, bauxite, gold, and copper) cause 
erosion and/or siltation in nearby waterbodies (e.g., Lin, Caramaschi, 2005; Nascimento 
et al., 2012; Verbete, 2012; Wantzen, Mol, 2013; Lobo et al., 2016; Melo et al., 2018), and 
in some cases the sediment may be contaminated by metals and other pollutants (Lopes 
et al., 2019). The extraction of other ores, like crude oil, may play a role in erosion and 
siltation (especially through deforestation and roads). These processes can have direct 
or indirect negative effects on fish. Erosion and siltation affect fish physiology, such as 
gill functioning (Wantzen, Mol, 2013). Other impacts include reduced water quality, 
loss of environmental heterogeneity, and altered habitats for fish feeding, refuge, 
reproduction, and development (Mol, Ouboter, 2004; Wantzen, Mol, 2013), especially 
through impacts on substrate interstices, leaf pack sedimentation, and aquatic plants. In 
a study evaluating the effects of erosion from a gold mine in Suriname, Mol, Ouboter 
(2004) showed that mining increased water turbidity with eroded material released 
from the mine. In addition, they reported “low habitat diversity, and a fish community 
with reduced diversity, few young fishes, and many fishes adapted to low light” (Mol, 
Ouboter, 2004:210). Erosion also contributes to the entry of mercury present in soil 
into the aquatic ecosystem, causing fish contamination (Richard et al., 2000). Another 
important case of siltation occurred in a lake in the Brazilian Amazon. Bauxite mining 
effluents, which include clay, were deposited for a decade in Lake Batata, in the 
Trombetas River basin (Bozelli, 1994; Lin, Caramaschi, 2005), and likely caused effects 
on fish diversity (Lin, Caramaschi, 2005). 

In general, additional research is needed to better elucidate the negative impacts of 
siltation resulting from different mining activities on Neotropical fishes. However, 
silting from other human activities (Tab. 5) may serve as a baseline to predict the impacts 
of silting from mining. Inputs of sediments into aquatic environments resulting from 
anthropogenic actions have been incorporated into species extinction risk assessments 
(ICMBio, 2018). For example, silting is among the negative impacts listed to justify 
the classification of Brycon vermelha Lima & Castro, 2000, an endemic Brazilian fish, as 
endangered on the Brazilian red list (Santos et al., 2018). We emphasize that sediments 
from mining may carry metals (Lopes et al., 2019), which further increases the likelihood 
of adverse effects on freshwater fishes. 

Deforestation. Mining activities (crude oil, gold, iron, copper, and bauxite) are also 
responsible for expanding deforestation (Kimerling, 2006; Swenson et al., 2011; Sonter et 
al., 2017; Espejo et al., 2018; Melo et al., 2018; Dethier et al., 2019; Diringer et al., 2020), 
directly or indirectly. For example, after a global crisis in the 2000s that affected several 
economies, the value of gold increased and, consequently, deforestation increased also 
in several Neotropical countries (Alvarez-Berríos, Aide, 2015) – indicating a strong 
correlation between mining and removal of vegetation. 
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The negative impact of deforestation from other activities (e.g., conversion to pasture) 
on fish diversity is known (Tab. 6). However, negative effects of deforestation arising 
from mining require more research in Neotropical regions. In general, deforestation 
of riparian vegetation has resulted in strong changes in the ichthyofauna (e.g., Tab. 6). 
The negative effects include, for instance, changes in taxonomic and functional features 
(Casatti et al., 2012) and losses of species, especially those sensitive to impacts (Dala-
Corte et al., 2016). These same effects – or perhaps worse, because of contamination by 
metals – may occur on fishes in areas deforested owing to mining activities. 

Roads. Virtually all types of mining (including crude oil, gold, iron, copper, and 
bauxite) need roads to transport the extracted ores or inputs (e.g., cyanide). Therefore, 
the maintenance, rehabilitation, and construction of new roads are common processes 
in mining areas (Kimerling, 2006; Edwards et al., 2014). Construction of new roads 
is especially common in remote regions. For example, Texaco, the oil company, 
constructed long roads (> 600 km) in the Amazonian forest (Kimerling, 2006). New 
roads precipitate a sequence of disturbances from deforestation (e.g., Barber et al., 2014) 
to erosion process and silting (Kimerling, 2006), besides introducing barriers to fish 
dispersal in small waterbodies (Leitão et al., 2018). The reasons for road construction are 
varied (Edwards et al., 2014), but their impacts are similar. The most important aspect is 
that roads fuel mining and other activities, including illegal ones. 

TABLE 4 | Reports of cyanide spills due to mining in Neotropical region – including those with negative impacts on fish diversity (based on 

Methods and Search results in S6A and S6B, respectively).

Waterbodies Country Year of spill Amount (liters)
Negative impacts on 

fish diversity 

Bambana River Nicaragua 1978 Unknown Possibly

Omai and Essequibo Rivers Guyana 1995
~1,230,258,830 to 

~3,000,000,000
Yes

Several waterbodies Panama 1998 Unknown Possibly

Lara River Honduras 2003 Unknown Yes

Lara River Honduras 2009 ~568 Yes

San Sebastián River El Salvador Unknown Unknown Possibly 

Puyango-Tumbes River Ecuador Unknown Unknown Possibly

Tributary of Velhas River Brazil 2011 Unknown Yes

Several waterbodies Argentina 2015 1,000,000 Possibly

Piaxtla River Mexico 2018 200 Yes

Tapajós River Brazil 2018 Unknown Possibly

TABLE 5 | Examples of negative effects of siltation on Neotropical freshwater fishes (Methods in S7).

Siltation reason Disturbance Country References

Pasture Decrease of the integrity of fish assemblages Brazil Casatti (2004)

Agriculture Affect negatively the functional diversity Brazil Dala-Corte et al. (2016)

Mining Decrease in fish diversity Brazil Lin, Caramaschi (2005)

Mining Reduction of fish diversity Suriname Mol, Ouboter (2004)
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New roads cause direct deforestation and open opportunities for ancillary activities, 
such as logging, construction of settlements, and other types of occupation (Barber et 
al., 2014). In addition, they cause direct and indirect erosion (Smith et al., 2018). New 
roads also fragment aquatic habitats, and many studies (e.g., Belford, Gould, 1989; 
Mariano et al., 2012; Brejão et al., 2020) have demonstrated that road culverts hinder 
hinder the movement of fishes. For example, Makrakis et al. (2012) evaluated the 
negative impacts of culverts, showing that 90% of them seriously threat fish movements. 
Brejão et al. (2020), studying Amazonian streams, found that roads crossing these 
small waterbodies affected the distribution of ichthyofauna by fragmenting habitats. 
A case of roads constructed for mining that generated negative impacts on fishes 
was reported for the Amazon. Kimerling (2001:330) described how the company 
Occidental Petroleum constructed a road in the El Eden region, in Ecuador, that 
“blocked the migration of fish from a lake into seasonally flooded forest”.

Roads also directly or indirectly pollute aquatic ecosystems. For example, exploration 
for crude oil in Ecuadorian Amazonia resulted in roads coated with oil that, in turn, 
polluted several waterbodies with high fish diversity (Kimerling, 2006). Run-off may 
have generated several negative effects, lethal and non-lethal, on fishes (see subsection 
“Input of crude oil”). Another type of pollution may come from the usage of these 
roads for mining. An event that received prominence was the contamination of 
the Yaqui River, in Mexico (near the Neotropical limits), with cyanide (S9). The 
pollution occurred after an accident with a truck transporting the substance to a mine 
(S9). Cases like these are likely to occur frequently in the Neotropical region, but 
they are not reported to authorities and do not receive the attention of the media. 
Other types of pollution arising from roads are eutrophication processes (Smith et al., 
2018), plastics (Windsor et al., 2019), and solid and liquid waste from traffic. These 
disturbances harm the aquatic biota.

A GROWING THREAT

Currently, political forces work to expand mining activities across Neotropical 
countries. In Brazil, particularly, plans are afoot to expand the activity across the 
country, especially in the Amazon, Southeast, and Northeast regions (Ferreira et al., 
2014; Villén-Perez et al., 2017). The strong lobby of the mining sector has spurred 
revisions in Mining Code legislation (Meira-Neto, Neri, 2017). A direct result of 
this movement has been the creation of the National Mining Agency in 2017, which 
has increased the sector’s autonomy and political power against environmental 
restrictions. Moreover, the Brazilian Congress is currently analyzing bills that propose 
mining in protected areas and indigenous lands, in addition to a constitutional 
amendment that proposes simplifying the environmental licensing system (El Bizri 
et al., 2016; Villén-Perez et al., 2017; Congresso Nacional, 2020). Such simplification, 
if approved, will enable the construction/operation of large-scale projects, including 
mining, without the need for rigorous environmental assessments (Fearnside, 2016). 
The mining lobby strengthened after the election of President Jair Bolsonaro, who 
has defended a “development” agenda with little regard for the environment and 
sustainability (Azevedo-Santos et al., 2021; Thomaz et al., 2020; Pelicice, Castello, 
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2021) and with political and legal incentives for the agrarian and mining sectors 
(Campo-Silva, Peres, 2019). The president himself has expressed his desire to allow 
the exploration for mineral resources in protected areas and indigenous lands of the 
Amazon. Rather than these current activities, Brazil should play an important role 
in avoiding policies that erode the Neotropical ichthyofauna. This is because, based 
on recent publications on described species (ICMBio, 2018; Albert et al., 2020), we 
estimate that the country holds a little more than 50% of species richness of freshwater 
fishes of the Neotropics. Using other sources of information (ICMBio, 2018; Fricke, 
Eschmeyer, 2021), we suggest that Brazil harbors between 16 to 18% of the species 
richness of freshwater fishes of the planet. This is an extraordinarily high diversity for 
a single jurisdiction. This outsize role suggests that political action, for example, at 
the federal level to expand mining at any cost, can affect a considerable portion of the 
Neotropical freshwater fishes.

The trend of expanded mining activity has been observed in many other countries 
of the Neotropical region (Hammond et al., 2013) and will complicate the current 
scenario. Small-scale mining is widespread in Neotropical nations (Harlow et al., 2019), 
and many mines are located within protected areas (Kamino et al., 2020). In addition, 
illegal activities are frequent in remote regions, for example, in parts of Amazonia. 
Currently, inspection and monitoring of mining activities have been insufficient, 
while fines and sanctions for environmental damage have rarely been paid (especially in 
large-scale catastrophes), and emergency, management, and environmental restoration 
plans have been negligent, precarious, or absent (Cionek et al., 2019; Salvador et al., 
2020). Further weakening legislation will reduce environmental restrictions and fuel 
the expansion of the activity, including in protected areas, where more than 10,000 
projects await authorization (Villén-Perez et al., 2017). One important concern is the 

TABLE 6 | Examples of negative impacts of deforestation on Neotropical freshwater fishes (Methods in S8).

Deforestation type Disturbance Country References 

Agriculture and pasture  Changes in density Ecuador Bojsen, Barriga (2002)

Pasture "Negative threshold responses" Brazil Brejão et al. (2018)

Pasture and agriculture Alterations in both taxonomic and functional features Brazil Casatti et al. (2012)

Pasture Changes in species composition Brazil Costa et al. (2020)

Pasture and agriculture Alterations in the size of fishes Brazil Ilha et al. (2018)

Agriculture Increase of abundance of some species Brazil Ilha et al. (2019)

Agriculture
Change in functional 

composition
Brazil Leitão et al. (2018)

Pasture and grassland “Functional changes” Brazil Lobón-Cerviá et al. (2016)

Pasture Changes in abundance Costa Rica Lorion, Kennedy (2009)

Pasture Change in functional groups Brazil Teresa et al. (2015)

Pasture Changes in richness and abundance Brazil Virgilio et al. (2018)
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political influence of the mining sector, because mining companies have traditionally 
financed political campaigns, which has fueled corruption (Meira-Neto, Neri, 2017). 

As mining activities – together with hydroelectric power plans (Winemiller et al., 
2016) and other human actions (Pelicice et al., 2017, 2021; Tófoli et al., 2017; Daga et 
al., 2020; Mezzaroba et al., 2021) – expand in different nations, impacts on Neotropical 
biodiversity will become increasingly prominent. The maintenance of freshwater fish 
diversity in the region will depend on policies that regulate mining activities so that 
their expansion is balanced with the protection of ecosystems and biodiversity.

CONCLUSION

The diversity of Neotropical fishes, together with their ecosystem services, have been 
affected in different ways by mining activities. The main negative impacts come from 
input of crude oil, contamination by metals and other pollutants, erosion, silting, 
deforestation, and road construction. Some consequences, especially crude oil spills 
and the rupture of tailing dams, have brutal and long-lasting negative impacts on 
aquatic ecosystems. Although impacts are undisputable, there is a clear need for more 
scientific research. The present review demonstrated that the number of studies is still 
relatively small, and some impacts remain largely uninvestigated. The unpredictable 
nature of accidents, in particular, makes it difficult to plan studies, indicating the need 
for continuous and long-term monitoring of the fish fauna, especially in large or risky 
mining operations. Experimental and field studies are needed to fill important gaps 
concerning the response of fish to different consequences of mining activities.

The fact that mining activities damage the fish fauna should guide Neotropical 
countries to review their mining plans to establish more rigorous regulations and to 
adopt measures to contain illegal developments. We emphasize that some activities 
cause acute impacts in particular conditions (i.e., TDS spills), whereas others affect 
the environment continuously (e.g., gold mining), making it difficult to mitigate 
their effects. This fact increases the need for advances in inspection and monitoring 
programs, especially in areas where impacts have been reported and where they are 
likely to occur.
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