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Growth stanza in fish life history 
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Morphoanatomical or physiological changes coupled with changes in body size 
are known as allometric relationships. The objective of this study was to identify 
the points of growth changes in Centropomus based on otolith morphometry and 
morphogeometry. For this purpose, 455 individuals of C. undecimalis and 176 of 
C. parallelus were collected from artisanal fishermen of the coast of the state of 
Alagoas, Brazil. The sagittal otoliths were measured for length, height, perimeter, 
area and weighed. The potential and polyphasic models were fitted between 
total fish length and otolith length. The morphotypes otoliths wen describe by 
form Fourier descriptors and shape indices. The polyphasic model detected three 
growth phases. The first stanza for C. undecimalis was at 46.8 cm and the second 
at 75.9 cm. For C. parallelus, it was at 18.8 cm and at 41.2 cm. Each stanza has a 
specific otoliths morphotype in both species. The otoliths of C. undecimalis and C. 
parallelus exhibited ontogenetic allometric changes in their growth pattern with 
two stanzas changing points. The stanzas corresponded to specific lengths reached 
by individuals over their life cycles, such as their size at maturity and length at 
sexual reversion.
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growth, Reproduction.
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Mudanças morfoanatômicas ou fisiológicas em conjunto com mudanças no 
tamanho do corpo, são conhecidas como relações alométricas. O objetivo do estudo 
foi identificar os pontos de mudanças de crescimento de Centropomus com base na 
morfometria e morfogeometria dos otólitos. Foram coletados 455 indivíduos de C. 
undecimalis e 176 de C. parallelus, adquiridos com pescadores artesanais do estado 
de Alagoas, Brasil. Os otólitos sagitta foram medidos quanto ao comprimento, 
altura, perímetro, área e pesados. Os modelos potencial e polifásico foram ajustados 
entre o comprimento do peixe e o comprimento do otólito. Os morfotipos de 
otólitos são descritos por descritores de Fourier e índices de forma. O modelo 
polifásico detectou três fases de crescimento. A primeira stanza para C. undecimalis 
foi em 46,8 cm e a segunda em 75,9 cm. Já C. parallelus, a primeira foi em 18,8 cm 
e segunda em 41,2 cm. Cada stanza possui um morfotipo específico de otólitos em 
ambas as espécies. Os otólitos de C. undecimalis e C. parallelus exibiram mudanças 
alométricas ontogenéticas em seu padrão de crescimento com dois pontos de 
mudança de stanzas. As stanzas corresponderam a comprimentos específicos 
alcançados por indivíduos ao longo de seus ciclos de vida, como seu tamanho na 
maturidade e comprimento na reversão sexual.

Palavras-chave: Alocação energética, Crescimento polifásico, Hermafroditismo, 
Morfogeometria, Reprodução.

INTRODUCTION

The life cycle of living beings is closely related to their maximum size and omset at 
sexual maturity. Morphoanatomical or physiological changes coupled with changes in 
body size are known as allometric relationships, and can reflect the compensatory effect 
necessary to maintain efficiency in bodily functions (Begon et al., 2006). Allometry 
is a common phenomenon in a variety of taxa, from bacteria (Mitchell, 2002) and 
invertebrates (Shingleton et al., 2007; Castro et al., 2020) to large mammals, such 
as whales (Ortega-Ortiz et al., 2018). In fish species, allometry has been extensively 
described (Gisbert, 1999; Su et al., 2020; Taylor et al., 2020). The beginning of the 
reproductive life is one of the main causes of changes in growth patterns over the 
life cycle of fishes, since it implies reallocation of body energy towards reproduction 
in detriment of growth (Quince et al., 2008; Boukal et al., 2014; Minte-Vera et al., 
2016). Several models can be used to evaluate the morphological changes in allometric 
growth patterns of animals, with the model proposed by Huxley (1924), being one 
of the most used, because it allows a suitable quantitative description of the growth 
in a non-linear basis. This model is based on the potential relationship between two 
morphological variables (y = axb), assuming that body dimensions increase from an 
allometric coefficient (b of the equation) (Huxley, 1924). This model is usually applied 
to the relationship between body mass and size of individuals as an indicator of seasonal 
or interannual allometric changes (Fabré, Saint-Paul, 1998; Froese, 2006; Sousa et al., 
2015), as well as of allometry in fish otoliths (Bervian et al., 2006).

Otoliths are calcified structures located in the inner ear of fish, being an important 
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component of their mechanoreceptor system (Popper, Coombs, 1982; Cousseau, 2010). 
These structures allow the understanding of several aspects of fish’s life history (Campana, 
Neilson, 1985; Volpedo, Vaz-dos-Santos, 2015; Assis et al., 2020) because otolith growth 
shows a strict relationship to somatic growth (Francis, 1990). In addition, otoliths are 
conservative structures that have species-specific morphological characteristics, with 
the phylogenetic history of a particular taxon being usually reflected in its otolith 
shape (Nolf, 1985; Monteiro et al., 2005; Tuset et al., 2008, 2016). Therefore, it is not 
surprising that otolith morphology and morphometry have been used as powerful tools 
to detect physiological changes caused by many key factors of fish’s life cycle, such as 
reproduction or sexual maturity (Bervian et al., 2006; Capoccioni et al., 2011; Carvalho 
et al., 2015; Maciel et al., 2019). Otolith allometry has been widely applied in growth 
studies of both freshwater and marine species (Pérez, Fabré, 2009, 2013; De Queiroz 
et al., 2018), whereas otolith shape analysis has been employed in distinguishing fish 
stocks, populations and species (Capoccioni et al., 2011; Santos et al., 2017; Assis et al., 
2020; Song et al., 2020), with Elliptic Fourier Analysis (FEA) being the most commonly 
used method in shape studies (Santos et al., 2017). Nevertheless, up to the present, the 
use of otolith allometry and its shape study as a response variable in fish reproductive 
cycle has been little addressed in hermaphroditic fish (Walker, McCormick, 2004; 
Munday et al., 2009; Walker, McCormick, 2009a,b; Mejri et al., 2018; Barr et al., 2019), 
especially for protandrous species.

Hermaphroditism is a polyphyletic condition that has been documented for 
approximately 2% of teleost species (Avise, Mank, 2009). It can occur sequentially and 
is characterized by a sex transition, either from male to female (protandry) or from 
female to male (protogyny) (Warner, 1975). According to the sex allocation theory, 
sex change is favored to increase the population’s reproductive fitness when the fertility 
of one particular sex, as a function of size and age, increases more rapidly compared 
to the other (Charnov, 1982). However, the energetic cost of sex change is as high as 
that involved in sexual maturation, which means that it can imply in decreased growth 
rates (Higgins et al., 2015; Matthias et al., 2016; Neves et al., 2017). For many years, 
sequential hermaphroditism was interpreted as an automatic sex change that occurred 
when individuals reached a certain body size or age (Allsop, West, 2003; Avise, Mank, 
2009). However, some evidence points out that specific conditions in the population 
structure can trigger the sex change of sequential hermaphrodites (Munday et al., 2006; 
Walker, McCormick, 2009a), as observed by Shapiro (1987) in reef fish species.

In this context of sequential hermaphroditic fishes, two species of the genus 
Centropomus, C. undecimalis (Bloch, 1792) and C. parallelus (Poey, 1860), stand out in 
Brazil because of their both wide distribution along the coast and high commercial value. 
These two species are protandrous hermaphrodites, being commonly found throughout 
the tropical western South Atlantic ( Rivas, 1986; Taylor et al., 2000; De Figueiredo-
Filho et al., 2021). Both species inhabit different habitats throughout their life cycle, 
being characterized as estuarine dependent fish (they breeding and growing in estuarine 
areas) that migrate to the sea to grow and feed (Blewett et al., 2009; Daros et al., 2016; 
Da Silva et al., 2018). They play important ecological roles such as top-down control in 
tropical coastal ecosystems (Lira et al., 2018). In addition, these two species have high 
commercial value in artisanal and sport fisheries (Alvarez-Lajonchère, Tsuzuki, 2008; 
Dantas, Barletta, 2016; Garrone-Neto et al., 2018). In Brazil, for example, an average of 
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3,541 tons of snooks are annually caught (considering catches between 2009 and 2018), 
making it the second highest catching country for this group, behind Mexico only 
(FAO, 2019). Despite this high catch, there is no evidence to date of population decline 
for these species. However the rising trend in fishing effort is worrying (Mendonça et 
al., 2019a,b).

Motivated by the biological peculiarities of these species, we hypothesized that the 
inherent sequential sex change is expressed by changes in otolith allometric patterns 
and shape. This is based on the assumption that otoliths are able to record changes 
due to shifts in growth patterns over specific stages of fish’s life cycle. Therefore, the 
objective of this study was to detect changes in the growth pattern of C. undecimalis and 
C. parallelus throughout their life cycle, based on the morphometry and shape of sagittal 
otoliths, as well as to identify what factors are related to these changes.

MATERIAL AND METHODS

Study area and material collection. The coast of the state of Alagoas is 230 km long 
(08°54’51.3” to 10°30’24.2”S and 35°09’07.1” to 36°23’15.1”W), being characterized 
by a narrow continental shelf (50 km) with different coastal ecosystems throughout its 
extension (e.g., estuaries, coastal ridges, coral reefs and sandstone reefs) (Dorigo Correia, 
Sovierzoski, 2008; Oliveira, Kjerfve, 1993). These area has a semi-humid tropical 
climate, with rainy periods from March to August and dry periods between September 
and February. There Centropomus are targeted by small-scale coastal fisheries, conducted 
primarily with gillnets at maximum depths of 30 meters (Rangely et al., 2010), with 
young Centropomus individuals being very abundant in mangrove areas (Teixeira, 1997; 
Da Silva et al., 2018).

The sampling of individuals were conducted throughout the coast between July 2017 
and January 2020, focusing on the main landing point of the state, the Port of Jaraguá 
(Rangely et al., 2010). Individuals were acquired directly from artisanal fishermen right 
after landing, being captured by different types of fishing gear (e.g., gillnet, trawlnet, 
longline, and hand-line) to collect fish from all size-classes. Specimens were taken to the 
laboratory to identification following Menezes, Figueiredo (1980).

Data analysis. The total length (TL, cm) of each fish was measured and the sagittal 
otoliths were removed. Fish lengths were organized by classes following the Sturges 
rule (Sturges, 1926), thus, C. undecimalis was grouped into size classes of 5 cm and 
C. parallelus data was grouped into 3 cm classes. The right otolith of each fish, when 
available, was weighed (OW, g) on a high precision scale (0.0001 g), then photographed 
by a Leica S8 APO stereo microscope with camera. Larger otoliths were photographed 
by a Canon Pc2264 camera in macro mode with a standardized height. Length (OL, 
mm) and height (OH, mm) were measured from otoliths images (Fig. 1), as well as 
perimeter (OP, mm) and area (AO, mm2). All measurements were recorded using 
ImageJ software version 1.48 (Schneider et al., 2012).

Initially, we fitted the potential Huxley model (y = axb); where a is the angular coefficient 
and b is the allometric coefficient) and tested for heteroscedasticity of these relationships 
by the Breusch-Pagan test (Breusch, Pagan, 1979). This test found heteroscedasticity 
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for both species (P < 0.05). To correct for this, we calculated the residuals proportional 
to OL, given by the equation , where PR is the proportional residual, OLo 
is the observed otolith length, and OLp is the predicted otolith length (Barradas et al., 
2016). Proportional residuals were applied because the variance of the error should be 
constant (homoscedastic) when conditionally analyzing the explanatory variable. We 
subsequently recalculated the values of a and b from Huxley’s potential relationship 
applying the nonlinear least-squares method, based on the proportional residuals, using 
Microsoft Excel Solver (Fylstra et al., 1998).

With this new value of a, we used the polyphasic approach which considers the 
variable a, as invariant, and the value of b as variant according to size class (Bervian et al., 
2006). This approach assumes a growth pattern composed of different phases, separated 
by a stanza change point (SCP), which indicates the TL at the moment when the 
growth pattern changes. Therefore, TL (in the size class of 5 and 3 cm for C. undecimalis 
and C. parallelus, respectively) was plotted against the mean OL values. Considering the 
fixed value of a (Huxley model), we calculated the allometric coefficient of each size 
class (bsc), from the equation: OL = aTLbsc. Then, a third-degree polynomial model was 
fitted between the bsc and the average TL classes. This model was derived (bsc’), giving 
rise to a second-degree equation. The obtained parabola was used to calculate the TL 
values (bsc’ = 0), at which growth changes occur.

To validate the growth stanzas, we analyzed whether the otolith contour followed 
the same changing pattern. For that, we analyzed the harmonics of the Elliptic Fourier 
Descriptors (EFD) of 120 otoliths from C. undecimalis (40 per allometric group) and 90 
otoliths from C. parallelus (30 per allometric group), using the Shape software (Iwata, 
Ukai, 2002; Assis et al., 2020). This difference in sample size between species was due 
to the low number of C. parallelus in the study. From the otolith harmonics, a linear 
discriminant analysis (LDA) was performed to test the power of shape discrimination by 
growth stanzas, followed by a PERMANOVA test. R statistical software (R Development 
Core Team, 2013) and its Vegan package (Oksanen et al., 2020) were used to run LDA 
and PERMANOVA.

FIGURE 1 | Otoliths of Centropomidae. A. Centropomus undecimalis. B. Centropomus parallelus. OL = Otolith length; OH = Otolith height; a = 

anterior; p = posterior; v = ventral; d = dorsal.
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Finally, after establishing the morphotypes for both species, a characterization of 
otoliths’ morphotypes was performed for each group. We described the morphotypes 
by calculating shape indices related to the aspect ratio, circularity, roundness, 
rectangularity, and ellipticity of otoliths (Tuset et al., 2003; Volpedo, Echeverría, 2003; 
Bani et al., 2013) (Tab. 1). Circularity and roundness compare the otolith shape to 
a perfect circle; whereas rectangularity describes the variation in length and width 
in relation to the total area; ellipticity indicates whether the changes in the axes are 
proportional; and the aspect ratio estimates the irregularity of the surface area (Tuset 
et al., 2003; Volpedo, Echeverría, 2003; Bani et al., 2013). The Kruskal-Wallis test was 
used to compare these indices between morphotypes, considering a significance level 
of 0.05. When significant differences between the various classifications were detected, 
the Mann-Whitney U-test was subsequently applied for pairwise comparison between 
species (Zar, 2014).

TABLE 1 | Equations used to estimate the shape indices of the otoliths. OL = otolith length, OH = 

otolith height, P = perimeter, and A = area.

shape index Equation

Aspect ratio OL / OH

Circularity P2 / A

Roundness 4A / π x OL2

Rectangularity A / OL x OH

Ellipticity OL - OH / OL + OH

RESULTS

We collected 455 specimens of C. undecimalis, with total length ranging from 9 to 111 
cm, with a bimodal distribution (peaks at 15 and 65 cm) (Fig. 2A). The number of C. 
parallelus was smaller, with only 176 individuals ranging in total length from 8 to 57 
cm (Fig. 2B).

The relationship between TL and OL, using the proportional residuals, in C. 
undecimalis individuals showed positive allometry, b > 1 (OL = 0.235 x TL1.09, r² = 0.948, 
P = 0.001) (Fig. 3A), with the residual analysis showing three growth phases (Fig. 3B). 
The third-degree polynomial model resulted in the following equation bsc = 7E-7 x 
TL3 - 1.4E-4 x TL2 + 8E-3 x TL +0,99 (r² = 0.529) (Fig. 3C). The model fitted for the 
allometry coefficient derivative (bsc’) as a function of the TL(bsc’ = 2E-6 x TL2 - 3E-4 x 
TL2 + 8E-3), detected two growth stanzas, one at 46.8 cm and another at 75.9 cm (Fig. 
3D).

https://www.ni.bio.br/
https://www.scielo.br/ni


Reginaldo Medeiros, Cicero D. Oliveira, Daniele Souto, Jordana Rangely and Nídia N. Fabré

Neotropical Ichthyology, 19(4): e200145, 2021 7/19ni.bio.br | scielo.br/ni

Reconstruction of the otolith shape of C. undecimalis indicated three different 
morphotypes. Morphotype 1, with OL smaller than 15.4 mm, morphotype 2 with OL 
between 15.4 and 26.1 mm, and the third comprising otoliths with lengths greater than 
26.1 mm (Fig. 4A). The LDA showed high jack-knifed classification success (91.7%) 
(Fig. 4B), with significant differences among the three morphotypes (P = 0.0001).

For C. parallelus, the relationship between TL and OL, using the proportional 
residuals, showed an isometric growth, b = 1(OL = 0.389 x TL1.01, r² = 0.931, P = 0.001) 
(Fig. 5A), with residual analysis pointing to three growth phases (Fig. 5B). The third-

FIGURE 2 | Frequency distribution of Centropomus undecimalis (A) and Centropomus parallelus (B) collected in the state of Alagoas, Brazil. 

FIGURE 3 | Growth changes in Centropomus undecimalis based on a polyphasic growth model. A. Potential regression for fish total length 

as a function of otolith radius; B. Residual distribution; C. Exponential coefficient (bsc) for length class; D. Derivative of the third-degree 

polynomial function, and indication of the change points of the stanza (SCP 1 and SCP 2).
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degree polynomial model resulted in (bsc = 2E-6 x TL2 - 3E-4 x TL2 + 8E-3) (r² = 0.559) 
(Fig. 5C). The model fitted for the allometry coefficient derivative (bsc’ = 2E-6 x TL2 - 
3E-4 x TL + 8E-3), also detected two growth stanzas, first at 18.8 cm and the second at 
41.2 cm (Fig. 5D).

The otolith contours also indicated three morphotypes: first composed of the otoliths 
with OL smaller than 7.5 mm; second between 7.5 and 16.5 mm; and the last one OL 
larger than 16.5 mm (Fig. 6A). The LDA showed a jack-knifed classification success of 
92.2% (Fig. 6B), with a significant difference between morphotypes (P = 0.0001).

Therefore, both species exhibited three morphotypes. In C. undecimalis, the ratios 
between OL/OH and OL/OW grow differently among the morphotypes. Furthermore, 
all shape indices showed a significant difference. Morphotype 1 presented a less elongated 
aspect and a higher circularity value than the other two morphotypes. Morphotype 2, on 
its turn, is elongated and presents higher rectangularity and roundness, and Morphotype 
3 presented higher aspect ratio and ellipticity values (Tab. 2). The otoliths of C. parallelus 
showed a similar trend to its congener C. undecimalis, with different relative growth 
between the biometric proportions of their morphotypes. Two shape indices showed 
some similarities among the groups (roundness and circularity), but the other indices 
were significantly different among morphotypes. Morphotype 1 was less elongated and 
had a higher circularity value, whereas Morphotype 2 presented the greatest roundness, 
and Morphotype 3 was the most elongated and the most rectangular (Tab. 2).

FIGURE 4 | Shape of otoliths of Centropomus undecimalis by morphotypes. A. Otolith mean outline and standard deviation (SD). B. Linear 

discriminant (LD) analysis of harmonics of elliptic Fourier descriptors of otoliths. red = Morphotype 1; blue = Morphotype 2; green = 

Morphotype 3.
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FIGURE 5 | Growth changes in Centropomus parallelus based on a polyphasic growth model. A. Potential regression for fish total length 

as a function of otolith radius; B. Residual distribution; C. Exponential coefficient (bsc) for length class; D. Derivative of the third-degree 

polynomial function, and indication of the change points of the stanza (SCP 1 and SCP 2).

FIGURE 6 | Shape of otoliths of Centropomus parallelus by morphotypes. A. Otolith mean outline and standard deviation (SD). B. Linear 

discriminant (LD) analysis of harmonics of elliptic Fourier descriptors of otoliths. red = Morphotype 1; blue = Morphotype 2; green = 

Morphotype 3.
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TABLE 2 | Morphometric relations and shape index of the otoliths of Centropomus undecimalis and C. parallelus per morphotype. Means with 

the different lower-case letter superscripted are significantly different (P < 0.05). OW = Otolith weigh.

Species Class N OW Aspect ratio Roundness Circularity Rectangularity Ellipticity

C
en

tr
op

om
u

s 
u

n
de

ci
m

al
is

All 455
0.423 

± 0.329
2.031 

± 0.154
0.425 

± 0.082
23.605 
± 4.573

0.680 
± 0.138

0.339 
± 0.033

Morphotype 1 146
0.085 

± 0.098
1.904 

± 0.115a

0.377 
± 0.124a

26.859 
± 6.501a

0.567 
± 0.198a

0.310 
± 0.027a

Morphotype 2 238
0.489 

± 0.134
2.075 

± 0.120b

0.454 
± 0.030b

21.870
 ± 1.661b

0.737 
± 0.026b

0.349 
± 0.025b

Morphotype 3 71
0.917 

± 0.329
2.146 

± 0.156c

0.430 
± 0.038c

22.728
 ± 2.372c

0.721 
± 0.027c

0.363 
± 0.031c

C
en

tr
op

om
u

s 
pa

ra
ll

el
u

s

All 176
0.157

± 0.121
1.814

± 0.156
0.510

± 0.075
19.999
± 5.037

0.724
± 0.102

0.287
± 0.037

Morphotype 1 33
0.035 

± 0.023
1.727

± 0.152a

0.445
± 0.129a

24.804
± 9.736ab

0.602
± 0.181a

0.264
± 0.040a

Morphotype 2 103
0.135 

± 0.071
1.797

± 0.111b

0.529
± 0.036b

18.241
± 1.464a

0.743
± 0.025b

0.284
± 0.028b

Morphotype 3 40
0.318 

± 0.121
1.919

± 0.193c

0.517
± 0.065b

20.689
± 2.045b

0.772
± 0.059c

0.312
± 0.040c

DISCUSSION

The otoliths of C. undecimalis and C. parallelus exhibited clear ontogenetic changes 
in their growth pattern with two stanzas changing points (SCPs) (P < 0.001 for both 
species). There stanzas corresponded to specific lengths reached by individuals over 
their life cycles, such as their size at maturity (L50) and length at sexual reversion (SRL50) 
(Fig. 7). In both species, SCPs (SCP 1 and SCP 2) allowed us to identify three growth 
phases, which were expressed by significant morphogeometric variations in otoliths’ 
shape (P < 0.001 for both species) (Fig. 7), creating a specific morphotype for each 
phase (Morphotype 1, Morphotype 2 and Morphotype 3). Interspecific differences 
were observed in the ontogenetic development of the otoliths, in which for both 
species Morphotype 1 was less elongated and rectangular, typical of more sedentary 
fish conversely as the structure grows it becomes more rectangular and elongated, 
which are features of more active fish (Volpedo et al., 2008; Tuset et al., 2015). There 
were high shape differences by morphotypes (classification = 90%), with the greatest 
similarities occurring especially in otoliths close in size to the transition lengths between 
morphotypes. However, the limitations of these results for Morphotype 1, can be 
attributed to intra-population variations, which could not be tested due to uncertainty 
of the type of environment where they were caught. Comparing the timing of the 
changes in growth pattern, it was observed that the first stanza occurs earlier in C. 
parallelus (31.4% of the maximum length) than in C. undecimalis (39.1%). In contrast, 
the second stanza occurs earlier in C. undecimalis (63.3%), with C. parallelus only 
changing its growth pattern when it reaches 68.6% of its maximum length (Fig. 7). 
Allometric changes in the otoliths of Centropomus are observed in the first phase as a 
greater energetic investment in increasing fish size to the detriment of otolith size. The 
second allometry is produced by an inverse process, where otoliths grow more than fish 
size proportionally. Therefore, the morphogeometry of otoliths of Centropomus may be 
an appropriate indicator of their ontogenetic phases.
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The allometry found in our study is well known in fish (Bervian et al., 2006; Carvalho 
et al., 2015; Barradas et al., 2016; Maciel et al., 2019). In gonochoric fish, this pattern 
is commonly associated with the onset of sexual maturity as observed by Carvalho et 
al. (2015), for Anchoa tricolor; Barradas et al. (2016) for Corydoras paleatus; and Maciel et 
al. (2019) for Genidens genidens. These authors also made use of the polyphasic method 
and found two growth stanzas, the first being very similar to the maturation size (L50) 
of these species. This occurs because sexual maturation is a key-point in the life history 
of fish, where changes in energy allocation typically occurs. Before sexual maturation, 
it is exclusively directed to body growth, whereas after first maturation, the energy 
allocation changes to support the development of reproductive structures (Quince et al., 
2008; Wilson et al., 2018).

For sequential hermaphroditic fishes, this polyphasic growth methodology to break 
down when growth changes occur had not yet been applied. However, it did not show 
any difference for the gonochoric fishes, as the growth stanzas found were also very 
similar with estimated reproductive parameters for C. undecimalis and C. parallelus (Tab. 
3). In both species, the first stanza was within the estimated L50 size, and the second 
stanza was close to the sexual reversal of males into active female size (SRL50). Therefore, 
the reproductive factor was also the main possible cause, similar to that found for 
gonochoric fishes (Bervian et al., 2006; Carvalho et al., 2015; Barradas et al., 2016; Maciel 

FIGURE 7 | Ontogenetic phases for Centropomus undecimalis and Centropomus parallelus, and indications of growth stanzas. L
50

 = maturation 

length; SRL
50

 = sexual reversion length; literaturea for C. undecimalis = Gassman et al. (2017) and Cruz-Botto et al. (2018); literaturea for C. 

parallelus = Cunha Chaves, Nogueira (2018), Assis et al. (2019) and Costa e Silva et al. (2021); literatureb for C. undecimalis = Gassman et al. (2017) 

and Young et al. (2020); literatureb for C. parallelus = Cerqueira (2005), Gómez-Ortiz et al. (2011) and Assis et al. (2019).
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et al., 2019). Sequential hermaphroditic species also require high energetic demands 
due to the amount of complex physiological processes involved in gametogenesis and 
subsequent sex change (Higgins et al., 2015; Matthias et al., 2016).

The SRL50 shows high variation, especially for C. parallelus (Tab. 3). This may be 
related to fishing (Hunter et al., 2015), since overfishing can directly affect size at 
maturity, longevity, and fecundity (Hutchings, 2002; Hunter et al., 2015; Da Silva et 
al., 2019). In addition, sex allocation theory points out that sex change occurs when 
reproductive potential in the first sex is no longer as efficient (Charnov, 1982). However, 
Charnov, Skúladóttir (2000) proposed a dimensionless model, which presents the idea 
that sex change occurs when individuals reach a certain size/age (low variability). In 
contrast to this approach, in some species sex changes take place as a response to known 
social or demographic conditions of local populations, such as local sexual proportion 
(Shapiro, Lubbock, 1980; Shapiro, 1987). Since empirical evidences associate body size 
and otolith morphometry in both species, our study supports the model proposed by 
Charnov, Skúladóttir (2000). By applying the same conceptual approach, Allsop, West 
(2003) predicted sex change at 80% of maximum body size as an invariant relation 
modeled for over 50 species. If it is assumed that the second stanza coincides with the sex 
change in both examined species, this phenomenon should occur at 63% of maximum 
body size for C. undecimalis and 68% of maximum body size for C. parallelus. These 
changes, which could be considered early according to the empirical model proposed 
by Allsop, West (2003), may be related to higher growth rates, which are typical of 
tropical regions (Houde, 1989). Therefore, for both species, the first stanza may be 
related to sexual maturation and the second stanza may be related to sexual reversion.

TABLE 3 | Reproductive parameters of Centropomus undecimalis and C. parallelus. L
50

 = length at first sexual maturation; SRL
50

 = length at 

sexual reversal of males into active female size; NI = Not informed.

Species L50 (cm) SRL50 (cm) Geographical coordinates References

C. undecimalis 40–50 NI
10°58’55”N

74°18’29.1”W
Cruz-Botto et al. (2018)

C. undecimalis 59 73.6
10°11’30” – 10°20’20”N
65°41’10” – 65°57’20”W

Gassman et al. (2017)

C. undecimalis NI 73.1
27°50’00” – 26°50’00”N
80°00’00” – 80°30’00”W

Young et al. (2020)

C. parallelus 19 NI
25º52’00”S
48º39’00”W

Chaves, Nogueira (2018)

C. parallelus 15 23
15°43’00”S
38°55’00”W

Assis et al. (2019)

C. parallelus 18 NI
25°45’00”S
48°20’00”W

Costa e Silva et al. (2021)

C. parallelus NI 45
27°35’02”S
48°26’35”W

Cerqueira (2005)

C. parallelus NI 32
21°30’00” – 22°48”00”N
97°36’00” – 98°00’00”W

Gómez-Ortiz et al. (2011)

https://www.ni.bio.br/
https://www.scielo.br/ni


Reginaldo Medeiros, Cicero D. Oliveira, Daniele Souto, Jordana Rangely and Nídia N. Fabré

Neotropical Ichthyology, 19(4): e200145, 2021 13/19ni.bio.br | scielo.br/ni

Although some features of the reproductive biology of the species may impact the 
overall shape of otoliths, which could explain why three otoliths morphotypes were 
found for both studied species, there are many other factors that may also be related to 
changes in otoliths shape. For instance, habitat type can also be an important factor as 
changes in habitat use can directly impact otolith shape (Tuset et al., 2003, 2018; Vignon, 
2012; Zischke et al., 2016). In this context, it might be expected that C. undecimalis and 
C. parallelus would present different morphotypes as found in this study, due to their 
migratory behaviour between marine, estuarine and continental waters throughout their 
life history (Daros et al., 2016; Bot Neto et al., 2020; Purtlebaugh et al., 2020; Stevens et 
al., 2021). However, since we acquired specimens from fishermen at the time of landing, 
we cannot state whether habitat type, feeding, depth, or temperature influenced the 
morphotypes due to the uncertainties of where the fish were captured. Therefore, we 
can observe that the allometry present in the otoliths of C. undecimalis and C. parallelus 
represents complex processes associated with evolutionary and demographic issues that 
need to be better studied by evaluating growth rates and the effect of habitat changes 
characteristic of these estuarine dependent species.

Finally, we can conclude that C. undecimalis and C. parallelus show polyphasic 
growth, with observed changes in growth resulting from reproductive processes such 
as maturation and sexual reversion. Furthermore, we detected that the otolith shape also 
followed the pattern of allometric relationships, indicating three different morphotypes 
for each species. This study reinforces the importance of life-history studies of C. 
undecimalis and C. parallelus.
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