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Abstract 
The use of simple bar elements in nonlinear structural finite element formulations has the academic 
advantage of uncoupling element technology issues from the structural phenomena to be observed. In this 
work, we present a finite element setting for the formulation of different nonlinear material models applied 
to the transient analysis of trusses. While nonlinear elasticity is considered by studying a Hooke-like linear 
relationship between different pairs of nonlinear measures of stress and strain, hyperelasticity is formulated 
using Ogden’s model. Viscoelasticity is introduced using a generalized Kelvin rheological model to account for 
strain rate effects. The finite kinematics is set in a corotational total Lagrangian description where the virtual 
work is described using the Second Piola-Kirchhoff and the Green Lagrange measures. Although the derivation 
is omitted, the consistent tangent moduli are given for all these cases. Numerical problems involving 
simultaneously different truss models are studied and made available as benchmarks since little comparative 
data is found in literature.  
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1 INTRODUCTION 

Due to their relative simplicity, truss elements are frequently employed as a first step to study nonlinear 
formulations. Some examples are the works of Driemeier et al. (2005), Greco et al. (2006), Carniel et al. (2015), Pascon 
(2016), Rabelo et al. (2018), Guggenberger and Krenn (2019), Ananthapadmanabhan and Saravanan (2020), Endo et al. 
(2021) and Rezaiee-Pajand et al. (2023). In this work we describe the kinematics of a bar element using concepts of 
continuum mechanics and develop a finite element framework to study different material models in nonlinear elastic 
and viscoelastic transient analyses. Particularly, we extend the Saint-Venant-Kirchhoff material model, which relates 
linearly the Second Piola-Kirchhoff stress to the Green-Lagrange strain tensors, to consider linear relationships between 
other stress-strain measures. This behavior is possible provided the strains are finite, but relatively small. We also 
introduce the incompressible Ogden hyperelastic material law, which admits larger strains. Then, we use a generalized 
Kelvin rheological model to consider rate dependent effects in each of the nonlinear Hooke-like elastic material models. 
In the hyperelastic case, structural damping is introduced using a Rayleigh damping matrix. The formulation is set in a 
corotational total Lagrangian description where the virtual work is described using the Second Piola-Kirchhoff and the 
Green Lagrange measures. One of the contributions of this work is the presentation of the consistent tangent moduli for 
all these cases. Although the derivations are omitted, the expressions have been carefully validated by verification of 
quadratic convergence tests. 

The bases for the formulation framework developed in this article are summarized as follows: the nonlinear analysis 
involving different constitutive models is based on Muñoz-Rojas (2023); the considerations involving Rayleigh damping 
are based on the discussions found in Charney (2008), Jehel et al. (2014) and Chen et al. (2015); the time discretization 
follows the principles of the Newmark family methods (Subbaraj and Dokainish, 1989); the hyperelastic material law is 
the Ogden model (Ogden, 1972) which is particularized to truss analyses as, for example, in Fonseca and Gonçalves 
(2022); as for the viscoelasticity algorithm, after studying several integration methods, such as those presented by 
Evangelista (2006), Araújo et al. (2010), Keramat and Ahmadi (2012), Kühl et al. (2017). Chazal and Moutou Pitti (2009), 
Chazal and Pitti (2011) and Ananthapadmanabhan and Saravanan (2020), the algorithm presented by Carniel et al. (2015) 
is adapted to an explicit approach.  

Although there are many publications describing the limitations of linear relationships between nonlinear measures 
of stress and strain, particularly for bars (Crisfield, 1991), the corresponding discussion about a linear relationship 
between nonlinear measures of stress and strain rates is not so frequent. In this work we explore both issues with 
examples involving 2D and 3D trusses made of bars with different combinations of material models, all of them subjected 
to suddenly applied loads and undergoing snap-through instabilities. Under such conditions, the consideration of inertia 
forces is mandatory, implying the calculation of velocities and accelerations, which affect dissipation. The material 
parameters adopted in the numerical examples follow those used by Ogden (1972), Abdelrahman and El-Shafei (2021) 
and Endo et al. (2021).  

2 BAR KINEMATICS 

Consider a bar located in the three-dimensional space subjected to a uniform uniaxial stretch. The bar length, area 
and volume are denoted by 𝐿𝐿0,𝐴𝐴0 and 𝑉𝑉0 in the undeformed configuration, and 𝐿𝐿,𝐴𝐴 and 𝑉𝑉 in the current configuration. 
We define a global system of reference with origin 𝑂𝑂 and base vectors {𝒆𝒆1, 𝒆𝒆2, 𝒆𝒆3}, and a local corotational system of 
reference with origin at the beginning of the bar and base vectors �𝒆𝒆1𝐶𝐶 , 𝒆𝒆𝟐𝟐𝑪𝑪, 𝒆𝒆3𝐶𝐶�. Following classical notation, we use capital 
letters to refer to coordinates in the original (undeformed) configuration and small letters to refer to coordinates in the 
current (deformed) configuration. With this convention, in the undeformed configuration, each material point of the bar 
has global and corotational local coordinate vectors 𝑿𝑿 = (𝑋𝑋,𝑌𝑌,𝑍𝑍) and 𝑿𝑿𝑙𝑙 = (𝑋𝑋𝑙𝑙 ,𝑌𝑌𝑙𝑙 ,𝑍𝑍𝑙𝑙). Accordingly, in the current 
configuration, the coordinates of the same material point are given by the vectors 𝒙𝒙 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) and 𝒙𝒙𝑙𝑙 = (𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙 , 𝑧𝑧𝑙𝑙), 
as shown in Figure 1. 

Under uniform uniaxial stretch, the location of a material point in the current configuration can be expressed with 
respect to the corotational local system of reference as 

𝒙𝒙𝑙𝑙 = (𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙 , 𝑧𝑧𝑙𝑙) = (𝑋𝑋𝑙𝑙 + 𝑢𝑢𝑙𝑙 ,𝑌𝑌𝑙𝑙 + 𝑣𝑣𝑙𝑙 ,𝑍𝑍𝑙𝑙 + 𝑤𝑤𝑙𝑙) (1) 

where (𝑢𝑢𝑙𝑙 , 𝑣𝑣𝑙𝑙 ,𝑤𝑤𝑙𝑙) corresponds to the displacement suffered by the point.  
 Assuming that the bar behaves the same way in any direction of the cross-sectional plane, we have (Holzapfel, 

2002; Dunne and Petrinic, 2005) 
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Figure 1: Global and corotational local systems of reference for the bar. 

𝒙𝒙𝑙𝑙 = (𝜆𝜆1𝑋𝑋𝑙𝑙 , 𝜆𝜆2𝑌𝑌𝑙𝑙 , 𝜆𝜆3𝑍𝑍𝑙𝑙) (2) 

where 

𝜆𝜆1 = 𝑑𝑑𝑥𝑥𝑙𝑙
𝑑𝑑𝑋𝑋𝑙𝑙

  (3) 

and 

𝜆𝜆2 = 𝜆𝜆3. (4) 

Using the logarithmic strain measure to define the Poisson ratio, according to 

𝜈𝜈 = −  ln(𝜆𝜆2)
ln(𝜆𝜆1) = −  ln(𝜆𝜆3)

ln(𝜆𝜆1), (5) 

it turns out that 

𝜆𝜆2 = 𝜆𝜆3 = 𝜆𝜆1−𝜈𝜈. (6) 

Hence, the relation between the updated and initial cross section areas is 

𝑑𝑑𝐴𝐴 = 𝑑𝑑𝑦𝑦𝑙𝑙𝑑𝑑𝑧𝑧𝑙𝑙 = (𝜆𝜆2𝑑𝑑𝑌𝑌𝑙𝑙)(𝜆𝜆3𝑑𝑑𝑍𝑍𝑙𝑙) = 𝜆𝜆2𝜆𝜆3𝑑𝑑𝑌𝑌𝑙𝑙𝑑𝑑𝑍𝑍𝑙𝑙 = 𝜆𝜆1−2𝜈𝜈𝑑𝑑𝐴𝐴0 (7) 

and the strain gradient with respect to the corotational local system of reference is given by 

𝑭𝑭𝐶𝐶 = 𝜕𝜕𝒙𝒙𝑙𝑙
𝜕𝜕𝑿𝑿𝑙𝑙

= �
𝜆𝜆1 0 0
0 𝜆𝜆2 0
0 0 𝜆𝜆3

� = �
𝜆𝜆1 0 0
0 𝜆𝜆1−𝜈𝜈 0
0 0 𝜆𝜆1−𝜈𝜈

� (8) 

whose Jacobian is 𝐽𝐽𝑭𝑭𝑐𝑐 = 𝑑𝑑𝑑𝑑𝑑𝑑(𝑭𝑭𝑐𝑐) = 𝜆𝜆 1
−(2𝜈𝜈+1). 

From the polar decomposition theorem, it turns out that the rotated right Cauchy strain tensor is 

𝑪𝑪 = 𝑭𝑭𝐶𝐶𝑇𝑇𝑭𝑭𝑪𝑪 = 𝑼𝑼𝐶𝐶
2 , (9) 
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where the elongation tensor 𝑼𝑼𝑐𝑐 is used to define the Seth-Hill family of strain tensors  

𝑬𝑬𝐶𝐶
(𝑚𝑚) = 1

𝑚𝑚
�𝑼𝑼𝐶𝐶

(𝑚𝑚) − 𝑰𝑰� =

⎣
⎢
⎢
⎢
⎡
1
𝑚𝑚

 �𝜆𝜆1
(𝑚𝑚) − 1� 0 0

0 1
𝑚𝑚

 �(𝜆𝜆1−𝜈𝜈)(𝑚𝑚) − 1� 0

0 0 1
𝑚𝑚

 �(𝜆𝜆1−𝜈𝜈)(𝑚𝑚) − 1�⎦
⎥
⎥
⎥
⎤
. (10) 

 Due to the hypothesis of uniaxial uniform stress state assumed for the bar, the only strain component that 
produces work and must be considered is the axial one. The axial component of the Seth-Hill family of strain tensors can 
be expressed as 

𝜀𝜀(𝑚𝑚) = �
1
𝑚𝑚

(𝜆𝜆1𝑚𝑚 − 1), 𝑚𝑚 ≠ 0
ln(𝜆𝜆1), 𝑚𝑚 = 0

 (11) 

with 𝑚𝑚 defining different measures. Some measures of strain are 

• Green-Lagrange strain (𝑚𝑚 = 2): 

𝜀𝜀𝐺𝐺𝐺𝐺 = 𝜀𝜀(2) = 1
2

(𝜆𝜆12 − 1) (12) 

• Rotated engineering (Biot) strain (𝑚𝑚 = 1):  

𝜀𝜀𝑅𝑅𝑅𝑅 = 𝜀𝜀(1) = 𝜆𝜆1 − 1 (13) 

• Logarithmic strain (𝑚𝑚 = 0):  

𝜀𝜀𝐺𝐺 = 𝜀𝜀(0) = ln(𝜆𝜆1) (14) 

3 PRINCIPLE OF VIRTUAL WORK (PVW) 

The virtual work principle establishes that, for every instant of time and every kinematically admissible virtual 
displacement field, a body is in equilibrium if the sum of the internal virtual work performed by internal forces and the 
inertial work equals the external virtual work performed by the external forces (Belytschko et al., 2014). Hence, for each 
instant of time, 

𝛿𝛿𝑊𝑊𝑒𝑒𝑥𝑥𝑒𝑒 = 𝛿𝛿𝑊𝑊𝑖𝑖𝑖𝑖𝑒𝑒 + 𝛿𝛿𝑊𝑊𝑚𝑚, (15) 

where 𝛿𝛿𝑊𝑊𝑒𝑒𝑥𝑥𝑒𝑒 is the virtual work performed by the external load, 𝛿𝛿𝑊𝑊𝑖𝑖𝑖𝑖𝑒𝑒 is the virtual work performed by internal forces 
and 𝛿𝛿𝑊𝑊𝑚𝑚 is the virtual work performed by inertia forces. 

In order to account for structural dissipation, normally associated to friction among assembled parts, one can 
introduce an additional term in Eq. (15), which then reads  

𝛿𝛿𝑊𝑊𝑒𝑒𝑥𝑥𝑒𝑒 = 𝛿𝛿𝑊𝑊𝑖𝑖𝑖𝑖𝑒𝑒 + 𝛿𝛿𝑊𝑊𝑚𝑚 + 𝛿𝛿𝑊𝑊𝑐𝑐, (16) 

where 𝛿𝛿𝑊𝑊𝑐𝑐  is the virtual work performed by structural damping forces. As depicted in Figure 2, for each bar element the 
internal work expression is given by  

𝛿𝛿𝑊𝑊𝑖𝑖𝑖𝑖𝑒𝑒 = ∫ 𝐹𝐹𝑖𝑖𝑖𝑖𝑒𝑒𝐺𝐺0
0 (𝑿𝑿𝑙𝑙)𝑑𝑑(𝛿𝛿𝑢𝑢𝑙𝑙) = ∫ 𝐹𝐹𝑖𝑖𝑖𝑖𝑒𝑒𝐺𝐺 

0 (𝒙𝒙𝑙𝑙)𝑑𝑑(𝛿𝛿𝑢𝑢𝑙𝑙) (17) 

with 𝐹𝐹𝑖𝑖𝑖𝑖𝑒𝑒 being the axial internal force along the element length. 
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Figure 2: External and internal virtual work performed forces 𝐹𝐹𝑒𝑒𝑥𝑥𝑒𝑒 and 𝐹𝐹𝑖𝑖𝑖𝑖𝑒𝑒 due to a virtual displacement 𝛿𝛿𝑢𝑢(𝐿𝐿). 

Within each bar, the axial stress can be defined by alternative measures, for instance 

• the Cauchy stress:  

𝜎𝜎 = 𝐹𝐹𝑖𝑖𝑖𝑖𝑒𝑒/𝐴𝐴; (18) 

• the rotated engineering or First Piola-Kirchhoff stress:  

𝜎𝜎𝑅𝑅𝑅𝑅 = 𝐹𝐹𝑖𝑖𝑖𝑖𝑒𝑒/𝐴𝐴0 = 𝜆𝜆1−2𝜈𝜈𝜎𝜎; (19) 

• the Second Piola-Kirchhoff stress: 

𝜎𝜎2𝑃𝑃𝑃𝑃 = 𝜆𝜆1
−(2𝜈𝜈+1)𝜎𝜎. (20) 

These stress measures can be confirmed by the application of the classical continuum mechanics expressions  

𝑷𝑷 = 𝐽𝐽𝑭𝑭𝑐𝑐𝑭𝑭𝑐𝑐
−1𝝈𝝈 = 𝜆𝜆1

−(2𝜈𝜈−1) �
𝜆𝜆1−1 0 0

0 𝜆𝜆1𝜈𝜈 0
0 0 𝜆𝜆1𝜈𝜈

� �
𝜎𝜎 0 0
0 0 0
0 0 0

� = �
𝜎𝜎𝑅𝑅𝑅𝑅 = 𝜆𝜆1−2𝜈𝜈𝜎𝜎 0 0

0 0 0
0 0 0

� (21) 

and 

𝑺𝑺 = 𝑷𝑷𝑭𝑭𝑐𝑐−𝑇𝑇 = �
𝜆𝜆12𝜈𝜈𝜎𝜎 0 0

0 0 0
0 0 0

� �
𝜆𝜆1−1 0 0

0 𝜆𝜆1𝜈𝜈 0
0 0 𝜆𝜆1𝜈𝜈

� = �
𝜎𝜎2𝑃𝑃𝑃𝑃 = 𝜆𝜆1

−(2𝜈𝜈+1)𝜎𝜎 0 0
0 0 0
0 0 0

� (22) 

where 𝑷𝑷 and 𝑺𝑺 are the First and Second Piola-Kirchhoff tensors respectively. 
Although Eq. (17) can be expressed using any pair of energetically conjugate stress-strain tensors, the derivations 

developed in this article employ the Green-Lagrange strain tensor and the Second Piola-Kirchhoff stress tensor. Hence, 
we have (Crisfield, 1991) 

𝛿𝛿𝑊𝑊𝑖𝑖𝑖𝑖𝑒𝑒 = ∫ 𝜎𝜎2PK𝑉𝑉0
𝛿𝛿𝜀𝜀𝐺𝐺𝐺𝐺𝑑𝑑𝑉𝑉0. (23) 
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The damping and inertia virtual work parcels mentioned in Eq. (16) are respectively  

𝛿𝛿𝑊𝑊𝑐𝑐 = ∫ 𝑐𝑐�̇�𝑢𝑉𝑉0
𝛿𝛿𝑢𝑢𝑙𝑙𝑑𝑑𝑉𝑉0 (24) 

and 

𝛿𝛿𝑊𝑊𝑚𝑚 = ∫ 𝜌𝜌 �̈�𝑢𝑉𝑉0
𝛿𝛿𝑢𝑢𝑙𝑙𝑑𝑑𝑉𝑉0 (25) 

where 𝒄𝒄 and 𝝆𝝆 are the specific damping and mass coefficients. 

4 SPACE DISCRETIZATION OF THE PRINCIPLE VIRTUAL WORK 

For each bar we define the interpolation matrix 

𝑵𝑵(𝜉𝜉) = [𝑁𝑁1(𝜉𝜉) 0 0 𝑁𝑁2(𝜉𝜉) 0 0] (26) 

based on a natural coordinate 𝜉𝜉 𝜖𝜖 [−1, 1] along the element axis. This matrix is used to approximate coordinates, 
displacements, velocities and accelerations by 

𝑿𝑿𝑙𝑙∗ = 𝑵𝑵𝑿𝑿�𝑙𝑙 , (27) 

𝒙𝒙𝑙𝑙∗ = 𝑵𝑵𝒙𝒙�𝑙𝑙 , (28) 

𝒖𝒖𝑙𝑙∗ = 𝑵𝑵𝒖𝒖�𝑙𝑙, (29) 

�̇�𝒖𝑙𝑙∗ = 𝑵𝑵𝒖𝒖�𝑙𝑙̇ , (30) 

�̈�𝒖𝑙𝑙∗ = 𝑵𝑵𝒖𝒖�̈𝑙𝑙, (31) 

where the asterisk stands for continuum expressions being discretized and 𝑿𝑿�𝑙𝑙 ,𝒙𝒙�𝑙𝑙 ,𝒖𝒖�𝑙𝑙 ,𝒖𝒖�̇𝑙𝑙  and 𝒖𝒖�̈𝑙𝑙  are the nodal values of 
the corresponding element vectors. For a linear two-noded bar, the interpolation functions are 

𝑁𝑁1(𝜉𝜉) = 1
2

(1 − 𝜉𝜉), (32) 

𝑁𝑁2(𝜉𝜉) = 1
2

(1 + 𝜉𝜉). (33) 

4.1 Discretization of the virtual internal work 

Replacing Eq. (12) and (13) into (23), the virtual internal work can be discretized by  

𝛿𝛿𝑊𝑊𝑖𝑖𝑖𝑖𝑒𝑒 = ∫ (𝛿𝛿𝒖𝒖�𝑙𝑙)𝑇𝑇
1
−1 𝑩𝑩∗𝑇𝑇(𝑿𝑿�𝑙𝑙)𝜆𝜆1𝜎𝜎2𝑃𝑃𝑃𝑃𝐽𝐽(𝑿𝑿�𝑙𝑙)𝐴𝐴0𝑑𝑑𝜉𝜉, (34) 

implying 

𝒒𝒒𝑙𝑙 = ∫ 𝑩𝑩∗𝑻𝑻1
−1 (𝑿𝑿�𝑙𝑙)𝜆𝜆1𝜎𝜎2𝑃𝑃𝑃𝑃𝐽𝐽(𝑿𝑿�𝑙𝑙)𝐴𝐴0𝑑𝑑𝜉𝜉, (35) 

with 

𝑩𝑩∗(𝑿𝑿�𝑙𝑙) = 1
𝐽𝐽(𝑿𝑿�𝑙𝑙)

𝑑𝑑�𝑵𝑵(𝜉𝜉)�
𝑑𝑑𝜉𝜉

= 1
𝐽𝐽(𝑿𝑿�𝑙𝑙)

[−1 0 0 1 0 0] (36) 
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and 𝐽𝐽(𝑿𝑿�𝑙𝑙) = 𝑑𝑑𝑿𝑿�𝑙𝑙
𝑑𝑑𝜉𝜉

. 

The transformation of the internal force vector to the global system of reference is performed by 

𝒒𝒒 = 𝑻𝑻𝑇𝑇𝒒𝒒𝑙𝑙, (37) 

where 𝑻𝑻 is the rotation matrix, composed by the direction cosines (Bathe, 2006). 

4.2 Discretization of the inertia virtual work 

Replacing Eq. (29) and (31) in Eq. (25), we obtain 

𝛿𝛿𝑊𝑊𝑚𝑚 = ∫ 𝜌𝜌�̈�𝑢𝛿𝛿𝑢𝑢𝑙𝑙𝑑𝑑𝑉𝑉0 = 𝛿𝛿𝒖𝒖�𝑙𝑙𝑇𝑇 ∫ 𝜌𝜌(𝑒𝑒)1
−1𝑉𝑉0

𝑵𝑵(𝑿𝑿�𝑙𝑙)𝑇𝑇𝑵𝑵(𝑿𝑿�𝑙𝑙)𝐴𝐴0𝐽𝐽(𝑿𝑿�𝑙𝑙)𝑑𝑑𝜉𝜉𝒖𝒖�̈𝑙𝑙 = 𝛿𝛿𝒖𝒖�𝑙𝑙𝑇𝑇𝒎𝒎𝑒𝑒𝒖𝒖�̈𝑙𝑙, (38) 

where 𝒎𝒎𝑒𝑒 is the consistent element mass matrix and 𝜌𝜌(𝑒𝑒) is the specific mass of the material of the element. Further, 

𝛿𝛿𝑊𝑊𝑚𝑚 = 𝛿𝛿𝒖𝒖�𝑙𝑙𝑇𝑇𝒎𝒎𝑒𝑒𝒖𝒖�̈𝑙𝑙 = 𝛿𝛿𝒖𝒖�𝑙𝑙𝑇𝑇𝒇𝒇𝑙𝑙𝑚𝑚, (39) 

where 

𝒇𝒇𝑙𝑙𝑚𝑚 = 𝒎𝒎𝑒𝑒𝒖𝒖�̈𝑙𝑙. (40) 

The global mass matrix is assembled as usual, 

𝑴𝑴 = ⋀ 𝒎𝒎𝑒𝑒
𝑖𝑖𝑒𝑒𝑙𝑙
𝑒𝑒=1 , (41) 

where 𝑛𝑛𝑑𝑑𝑛𝑛 is the total number of elements and Λ is the assembly operator. 

4.3 Discretization of the damping virtual work 

Introducing Eq. (29) and (30) in Eq. (24), it results that 

𝛿𝛿𝑊𝑊𝑐𝑐 = ∫ 𝑐𝑐�̇�𝑢𝛿𝛿𝑢𝑢𝑙𝑙𝑑𝑑𝑉𝑉0 = 𝛿𝛿𝒖𝒖�𝑙𝑙𝑇𝑇 ∫ 𝑐𝑐(𝑒𝑒)1
−1 𝑵𝑵(𝑿𝑿�𝑙𝑙)𝑇𝑇𝑵𝑵(𝑿𝑿�𝑙𝑙)𝐴𝐴0𝐽𝐽(𝑿𝑿�𝑙𝑙)𝑑𝑑𝜉𝜉𝒖𝒖�̇𝑙𝑙 = 𝛿𝛿𝒖𝒖�𝑙𝑙𝑇𝑇𝒄𝒄𝑙𝑙𝒖𝒖�̇𝑙𝑙𝑉𝑉0

, (42) 

where 𝒄𝒄𝑙𝑙  is the consistent element damping matrix. Moreover, 

𝛿𝛿𝑊𝑊𝑐𝑐 = 𝛿𝛿𝒖𝒖�𝑙𝑙𝑇𝑇𝒇𝒇𝑙𝑙𝑐𝑐, (43) 

where 

𝒇𝒇𝑙𝑙𝑐𝑐 = 𝒄𝒄𝑙𝑙𝒖𝒖�̇𝑙𝑙. (44) 

As for the mass, the global damping matrix is obtained applying the assembly operator over all the elements, 

𝑪𝑪 = ⋀ 𝒄𝒄𝑒𝑒𝑖𝑖𝑒𝑒𝑙𝑙
𝑒𝑒=1 , (45) 

where 𝒄𝒄𝑒𝑒 = 𝑻𝑻𝑇𝑇𝒄𝒄𝒍𝒍𝑻𝑻 is the element damping matrix 𝒄𝒄𝑙𝑙  rotated to the global system of reference. 

4.4 Spatially discretized equilibrium equations 

To trace the equilibrium path along the load application, the total load is divided into a finite number of time steps 𝛥𝛥𝑑𝑑. 
As the PVW must be valid for an arbitrary virtual kinematically admissible displacement, for an external force in the 
corotational local system of reference 𝒇𝒇𝑖𝑖+1𝑒𝑒𝑥𝑥𝑒𝑒  we obtain that the discretized version of the equilibrium equations is 
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𝒒𝒒𝑖𝑖+1(𝒖𝒖�𝑖𝑖+1) + 𝒇𝒇𝑖𝑖+1𝑐𝑐 �𝒖𝒖�̇𝑖𝑖+1� + 𝒇𝒇𝑖𝑖+1𝑚𝑚 �𝒖𝒖�̈𝑖𝑖+1� − 𝒇𝒇𝑖𝑖+1𝑒𝑒𝑥𝑥𝑒𝑒 = 0 (46) 

valid for an arbitrary time or load step n+1. Summing up element contributions we can assemble the global form of 
Eq. (46)(45), obtaining a residual equation for force balance as 

𝒓𝒓𝑖𝑖+1(𝒖𝒖�𝑖𝑖+1) = 𝑸𝑸𝑖𝑖+1(𝒖𝒖�𝑖𝑖+1) + 𝑪𝑪𝒖𝒖�̇𝑖𝑖+1 + 𝑴𝑴𝒖𝒖�̈𝑖𝑖+1 − 𝑭𝑭𝑖𝑖+1𝑒𝑒𝑥𝑥𝑒𝑒 , (47) 

which vanishes at equilibrium and takes non-zero values when an out-of-balance force occurs. 

5 LINEARIZATION OF THE EQUILIBRIUM EQUATIONS 

Owing to the term 𝑸𝑸𝑖𝑖+1(𝒖𝒖�𝑖𝑖+1), the residual is a nonlinear function of the global displacement vector, so that the 
solution of Eq. (47) requires the linearization 

𝒓𝒓𝑖𝑖+1
(𝑘𝑘+1) �𝒖𝒖�𝑖𝑖+1

(𝑘𝑘+1)� = 𝑸𝑸𝑖𝑖+1
(𝑘𝑘) �𝒖𝒖�𝑖𝑖+1

(𝑘𝑘) � + 𝑑𝑑𝑄𝑄𝑛𝑛+1
(𝑘𝑘)

𝒖𝒖�𝑛𝑛+1
(𝑘𝑘) Δ𝒖𝒖�𝑖𝑖+1

(𝑘𝑘+1) + 𝑪𝑪𝒖𝒖�̇𝑖𝑖+1 + 𝑴𝑴𝒖𝒖�̈𝑖𝑖+1 − 𝑭𝑭𝑖𝑖+1𝑒𝑒𝑥𝑥𝑒𝑒 = 0, (48) 

where the derivative of internal force vector 𝑸𝑸𝑖𝑖+1 with respect to the global displacement vector defines the tangent 
matrix 𝑲𝑲𝑇𝑇 and Δ𝒖𝒖�𝑖𝑖+1

(𝑘𝑘+1) = 𝒖𝒖�𝑖𝑖+1
(𝑘𝑘+1) − 𝒖𝒖�𝑖𝑖+1

(𝑘𝑘) . 

5.1 Tangent matrix 

Dropping the 𝑛𝑛 + 1 index for neatness, we can express the tangent matrix as 

𝑲𝑲𝑇𝑇
𝑘𝑘 = 𝑑𝑑𝑸𝑸�𝒖𝒖�𝑘𝑘�

𝑑𝑑𝒖𝒖�𝑘𝑘
= ⋀ 𝒌𝒌𝑇𝑇𝑒𝑒

𝑖𝑖𝑒𝑒𝑙𝑙
𝑒𝑒=1 , (49) 

where 𝒌𝒌𝑇𝑇𝑒𝑒  is the element tangent matrix with respect to the global system of reference. Employing the chain rule of 
differentiation on Eq. (49), this matrix can be written as the sum of two other matrices, 𝒌𝒌𝑇𝑇1  and 𝒌𝒌𝑇𝑇2  . 

𝒌𝒌𝑇𝑇𝑒𝑒 = 𝒌𝒌𝑇𝑇1
(𝑒𝑒) + 𝒌𝒌𝑇𝑇1

(𝑒𝑒), (50) 

where 

𝒌𝒌𝑇𝑇1
(𝑒𝑒) = 𝑑𝑑𝑻𝑻𝑇𝑇𝒒𝒒𝒍𝒍

𝑑𝑑𝒖𝒖�
= ∫ 𝑩𝑩𝑇𝑇(𝑿𝑿�𝑙𝑙)𝜎𝜎2𝑃𝑃𝑃𝑃

1
−1 𝑯𝑯𝑩𝑩(𝑿𝑿�𝑙𝑙)𝐴𝐴0𝐽𝐽(𝑿𝑿�𝑙𝑙)𝑑𝑑𝜉𝜉, (51) 

𝑩𝑩(𝑿𝑿�𝑙𝑙) and 𝑯𝑯 are given by (Muñoz-Rojas, 2023) 

𝑩𝑩(𝑿𝑿�𝑙𝑙) = 1
2𝐽𝐽(𝑿𝑿�𝑙𝑙)

�
−1
 0 
0

 0
 −1 

0

0 
0 
−1 

 1 
0 
0 

0
1
0

 0 
 0
 1
�, (52) 

𝑯𝑯 = �𝑰𝑰 − � 1
𝜆𝜆1
�
2
𝑩𝑩(𝑿𝑿�𝑙𝑙)𝒙𝒙�𝒙𝒙�𝑇𝑇𝑩𝑩𝑇𝑇(𝑿𝑿�𝑙𝑙)�, (53) 

𝑰𝑰 is the identity matrix and 𝒙𝒙� is the vector of nodal current coordinates with respect to the global system of reference. 
On the other hand, 

𝒌𝒌𝑇𝑇2
(𝑒𝑒) = 𝑻𝑻𝑇𝑇 𝑑𝑑𝒒𝒒𝒍𝒍

𝑑𝑑𝒖𝒖�
= 𝑻𝑻𝑇𝑇 𝑑𝑑𝒒𝒒𝒍𝒍

𝑑𝑑𝒖𝒖�𝒍𝒍

𝑑𝑑𝒖𝒖�𝒍𝒍
𝑑𝑑𝒖𝒖�

= 𝑻𝑻𝑇𝑇 𝑑𝑑𝒒𝒒𝒍𝒍
𝑑𝑑𝒖𝒖�𝒍𝒍

𝑻𝑻 = 𝑻𝑻𝑇𝑇𝒌𝒌𝑇𝑇2𝑙𝑙
(𝑒𝑒)𝑻𝑻, (54) 

with 
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𝒌𝒌𝑇𝑇2𝑙𝑙
𝑒𝑒 = ∫ 𝑩𝑩∗𝑇𝑇(𝑿𝑿�𝑙𝑙)𝐸𝐸�𝑩𝑩∗(𝑿𝑿�𝑙𝑙)𝐴𝐴0

1
−1 𝐽𝐽(𝑿𝑿�𝑙𝑙)𝑑𝑑𝜉𝜉, (55) 

where (Muñoz-Rojas, 2023) 

𝐸𝐸� = 𝜆𝜆12𝐸𝐸𝑇𝑇 + 𝜎𝜎2𝑃𝑃𝑃𝑃, (56) 

and 𝐸𝐸𝑇𝑇 is the tangent modulus 

𝐸𝐸𝑇𝑇 = 𝜕𝜕𝜎𝜎2𝑃𝑃𝑃𝑃

𝜕𝜕𝜀𝜀𝐺𝐺𝐺𝐺
 , (57) 

where (𝜎𝜎2𝑃𝑃𝑃𝑃 , 𝜀𝜀𝐺𝐺𝐺𝐺) is the conjugate pair adopted in this work.  
Notice that the differentiation of 𝜎𝜎2𝑃𝑃𝑃𝑃  causes a dependence on the material model adopted. This important issue 

will be further discussed in Sec. 7. 

5.2 Simplifications on the damping matrices 

It is usual to replace the consistent damping matrix by the so-called Rayleigh matrix, which is defined as a global 
damping matrix obtained by the linear combination of global mass and stiffness matrices. For this, the literature displays 
three alternatives (Charney, 2008; Jehel et al., 2014), 

1. constant coefficients 𝑎𝑎 and 𝑏𝑏 in the linear combination between mass and the initial tangent stiffness (equal to the 
linear stiffness matrix) 

𝑪𝑪 = 𝑎𝑎𝑴𝑴 + 𝑏𝑏𝑲𝑲; (58) 

2. constant coefficients 𝑎𝑎 and 𝑏𝑏 in the linear combination between mass and the updated tangent stiffness  

𝑪𝑪 = 𝑎𝑎𝑴𝑴 + 𝑏𝑏𝑲𝑲𝑇𝑇; (59) 

3. updated coefficients 𝑎𝑎𝑒𝑒 and 𝑏𝑏𝑒𝑒 in the linear combination between mass and the updated tangent stiffness  

𝑪𝑪 = 𝑎𝑎𝑒𝑒𝑴𝑴 + 𝑏𝑏𝑒𝑒𝑲𝑲𝑇𝑇. (60) 

In Eq. (58), (59) and (60), 𝑎𝑎 and 𝑏𝑏 are called Rayleigh constants and the lower index 𝑑𝑑 indicates that the values are 
updated at each load step and iteration.  

The application of Rayleigh matrix is mainly for numerical convenience but allows to consider, in a simplified way, 
both, material dissipation (viscous materials) and structural friction at joints and supports. However, it is frequent to 
disregard dependence on 𝑲𝑲 or 𝑲𝑲𝑻𝑻 adopting 𝑏𝑏 = 0 (Chen et al., 2015). Moreover, viscous materials are treated in a more 
adequate way by employing appropriate material models, as those described in Section 7.3 . 

6 TIME DISCRETIZATION 

The Newmark family of time discretization methods is based on the expressions 

𝑴𝑴𝒖𝒖�̈𝑖𝑖+1 + 𝑪𝑪𝒖𝒖�̇𝑖𝑖+1 + 𝑲𝑲𝑇𝑇𝒖𝒖�𝑖𝑖+1 = 𝑭𝑭𝑖𝑖+1𝑒𝑒𝑥𝑥𝑒𝑒 , (61) 

𝒖𝒖�𝑖𝑖+1 = 𝒖𝒖�𝑖𝑖 + Δ𝑑𝑑𝒖𝒖�̇𝑖𝑖 + (Δ 𝑑𝑑)2 ��1
2
− 𝛽𝛽𝑁𝑁�𝒖𝒖�̈𝑖𝑖 + 𝛽𝛽𝑁𝑁𝒖𝒖�̈𝑖𝑖+1�, (62) 

𝒖𝒖�̇𝑖𝑖+1 = 𝒖𝒖�̇𝑖𝑖 + Δ𝑑𝑑�(1 − 𝛾𝛾𝑁𝑁)𝒖𝒖�̈𝑖𝑖 + 𝛾𝛾𝑁𝑁 𝒖𝒖�̈𝑖𝑖+1�, (63) 

where 𝛽𝛽𝑁𝑁 and 𝛾𝛾𝑁𝑁 define the specific method adopted and Δ𝑑𝑑 is the length of time steps. Isolating  𝒖𝒖�̈𝑖𝑖+1 in Eq. (62), and 
substituting Eq. (62) and (63) in (61) we find that, for each iteration k, the effective stiffness matrix 𝑲𝑲�𝑇𝑇𝑘𝑘  and the effective 
external force vector 𝑭𝑭�𝑘𝑘 are defined as (Subbaraj and Dokainish, 1989) 
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𝑲𝑲�𝑇𝑇 = 1
𝛽𝛽𝑁𝑁(Δ𝑒𝑒)2 𝑴𝑴 + 𝛾𝛾𝑁𝑁

𝛽𝛽𝑁𝑁Δ𝑒𝑒
𝑪𝑪 + 𝑲𝑲𝑻𝑻, (64) 

𝑭𝑭�𝑘𝑘 = (𝑭𝑭𝑒𝑒𝑥𝑥𝑒𝑒)𝑘𝑘 + 𝑴𝑴� 𝟏𝟏
𝛽𝛽𝑵𝑵(𝚫𝚫𝒕𝒕)𝟐𝟐

𝒖𝒖�𝒌𝒌 + 𝟏𝟏
𝛽𝛽𝑵𝑵𝚫𝚫𝒕𝒕

𝒖𝒖�̇𝒌𝒌 + � 𝟏𝟏
𝟐𝟐𝛽𝛽𝑵𝑵

− 𝟏𝟏�𝒖𝒖�̈𝒌𝒌� + +𝑪𝑪 � 𝟏𝟏
𝛽𝛽𝑵𝑵Δ𝒕𝒕

𝒖𝒖�𝒌𝒌 + �𝛾𝛾𝑵𝑵
𝛽𝛽𝑵𝑵
− 𝟏𝟏�𝒖𝒖�̇𝒌𝒌 + Δ𝒕𝒕

𝟐𝟐
�𝛾𝛾𝑵𝑵
𝛽𝛽𝑵𝑵
− 𝟐𝟐�𝒖𝒖�̈𝒌𝒌�, (65) 

and the solution of the resulting global system via the Newton-Raphson method gives 

𝑲𝑲�𝑇𝑇𝑘𝑘Δ𝒖𝒖�𝑘𝑘+1 = −𝒓𝒓�(𝒖𝒖�𝑘𝑘+1) (66) 

𝒖𝒖�𝑘𝑘+1 = 𝒖𝒖�𝑘𝑘 + Δ𝒖𝒖�𝑘𝑘+1 (67) 

In Eq. (66), 𝒓𝒓��𝒖𝒖�𝒌𝒌� is the residual given by Eq. (48) with the effective external force in Eq. (65) in place of 𝑭𝑭𝑒𝑒𝑥𝑥𝑒𝑒. It is 
well known that, in the case of quasi-static problems, the use of the exact tangent matrix should result in quadratic 
convergence (close to the roots). On the other hand, Chang (2004) shows that when using the Newmark family algorithms 
to solve nonlinear problems involving inertia forces, quadratic convergence cannot be expected.  

In this work we adopt the method of average accelerations, for which 𝛽𝛽𝑁𝑁 = 1/4 and 𝛾𝛾𝑁𝑁 = 1/2. 

7 MATERIAL MODELS 

In Section 5.1, the tangent modulus was defined by Eq. (57) as the derivative of the stress with respect to strain employed 
to describe the internal virtual work, which depends implicitly on the material behavior. It is important to remark that the 
constitutive behavior of a given material has nothing to do with the conjugate pair employed to describe the internal virtual 
work. Considering that we are adopting the conjugate pair (𝜎𝜎2𝑃𝑃𝑃𝑃 , ε𝐺𝐺𝐺𝐺) to express the internal virtual work, for any given 
stress-strain pair chosen to describe the material behavior, say (𝜎𝜎∗, ε∗), the tangent modulus will have the form 

𝐸𝐸𝑇𝑇 = 𝜕𝜕𝜎𝜎2𝑃𝑃𝑃𝑃

𝜕𝜕𝜀𝜀𝐺𝐺𝐺𝐺
= 𝜕𝜕𝜎𝜎2𝑃𝑃𝑃𝑃

𝜕𝜕𝜎𝜎∗
𝜕𝜕𝜎𝜎∗

𝜕𝜕𝜀𝜀∗
𝜕𝜕𝜀𝜀∗

𝜕𝜕𝜀𝜀𝐺𝐺𝐺𝐺
. (68) 

7.1 Linear relationship between nonlinear stress and strain measures 

Particularly, for a constitutive law that relates linearly the arbitrary stress and strain measures *σ  and *ε , 

𝜎𝜎∗ = 𝐸𝐸𝜀𝜀∗ (69) 

𝐸𝐸𝑇𝑇 = 𝜕𝜕𝜎𝜎2𝑃𝑃𝑃𝑃

𝜕𝜕𝜀𝜀𝐺𝐺𝐺𝐺
= 𝜕𝜕𝜎𝜎2𝑃𝑃𝑃𝑃

𝜕𝜕𝜎𝜎∗
𝐸𝐸 𝜕𝜕𝜀𝜀∗

𝜕𝜕𝜀𝜀𝐺𝐺𝐺𝐺
. (70) 

Table 1 shows the tangent moduli for constitutive laws that relate linearly different stress-strain pairs, where the 
well-known Saint-Venant-Kirchhoff model corresponds to σ2𝑃𝑃𝑃𝑃 = 𝐸𝐸ε𝐺𝐺𝐺𝐺 (Muñoz-Rojas, 2023). 

Table 1. Tangent moduli for linear relationships between different stress-strain measures and internal virtual work evaluated using 
the conjugate pair (𝜎𝜎2𝑃𝑃𝑃𝑃 , 𝜀𝜀𝐺𝐺𝐺𝐺) . 

Constitutive law 𝑬𝑬𝑻𝑻 

𝜎𝜎𝑅𝑅𝑅𝑅 = 𝐸𝐸𝜀𝜀𝑅𝑅𝑅𝑅  𝐸𝐸𝑇𝑇 = λ1−2(𝐸𝐸 − σ2𝑃𝑃𝑃𝑃) 
𝜎𝜎2𝑃𝑃𝑃𝑃 = 𝐸𝐸𝜀𝜀𝐺𝐺𝐺𝐺 𝐸𝐸𝑇𝑇 = 𝐸𝐸 
σ = 𝐸𝐸𝜀𝜀𝐺𝐺 𝐸𝐸𝑇𝑇 = 𝜆𝜆1−2 �𝐸𝐸𝜆𝜆1

−(2𝜈𝜈+1) −  (2𝜈𝜈 + 1)𝜎𝜎2𝑃𝑃𝑃𝑃� 

Noteworthy, the choice of a linear relationship between a given stress-strain pair implies in a nonlinear 
relationship when considering a different pair. Also, adoption of a linear relationship between stresses and strains 
normally produces an unphysical behavior for large compressive strains (finite stress for λ1 = 0). The exception is 
σ = 𝐸𝐸ε𝐺𝐺, as shown in Figure 3. Notwithstanding, for moderate strains (represented by vertical lines in the range 
between 𝜆𝜆1 = 0.6 and 𝜆𝜆1 = 1.4 for illustrative purpose), such linear relationships can be used to model different 
material behaviors. Figure 4 shows the interesting fact that the linear relation σ𝑅𝑅𝑅𝑅 = 𝐸𝐸ε𝑅𝑅𝑅𝑅  can model an auxetic 
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material (𝜈𝜈 = −0.1) respecting the physical condition that the Cauchy stress σ → −∞ when λ1 → 0. As expected, 
when small strain occurs, a linear relationship between any different stress-strain pairs leads practically to the same 
material behavior. 

 
Figure 3: Unphysical behavior for large compressive strains (for stretch approaching zero) in the cases of 𝜎𝜎𝑅𝑅𝑅𝑅 = 𝐸𝐸𝜀𝜀𝑅𝑅𝑅𝑅  and 𝜎𝜎2𝑃𝑃𝑃𝑃 = 𝐸𝐸𝜀𝜀𝐺𝐺𝐺𝐺. 

 
Figure 4: Cauchy stress 𝜎𝜎 versus stretch 𝜆𝜆1 for different values of the Poisson ratio 𝜈𝜈: (a) 𝜎𝜎𝑅𝑅𝑅𝑅 = 𝐸𝐸𝜀𝜀𝑅𝑅𝑅𝑅  and (b) 𝜎𝜎2𝑃𝑃𝑃𝑃 = 𝐸𝐸𝜀𝜀𝐺𝐺𝐺𝐺. 

7.2 Hyperelasticity (Ogden's model) 

When the work done by the stresses during a strain process depends only on the initial state at time 𝑑𝑑0 and the final 
configuration at time 𝑑𝑑, the material is termed hyperelastic (Bonet and Wood, 2008). The hyperelastic model proposed 
by Ogden (Ogden, 1972) is defined in terms of the stretch tensor eigenvalues (principal stretches), λ1, λ2, λ3, where the 
elastic strain energy is given by 

𝑊𝑊 = ∑ 𝜇𝜇𝑖𝑖
𝛼𝛼𝑖𝑖
�𝜆𝜆1

𝛼𝛼𝑖𝑖 + 𝜆𝜆2
𝛼𝛼𝑖𝑖 + 𝜆𝜆3

𝛼𝛼𝑖𝑖 − 3�,𝑁𝑁
𝑖𝑖=1  (71) 

and 𝜇𝜇𝑖𝑖 and α𝑖𝑖  are material parameters. To obtain a physically consistent condition, the following constraints must 
be satisfied  

𝜇𝜇𝑖𝑖α𝑖𝑖 > 0, (72) 

∑ 𝜇𝜇𝑖𝑖𝛼𝛼𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 2𝜇𝜇, (73) 
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where 𝜇𝜇 is the shear modulus in the reference (undeformed) configuration. It is usual to consider that hyperelastic 
materials are incompressible, in which case 

𝑑𝑑𝑑𝑑𝑑𝑑(𝑭𝑭𝑐𝑐) = 𝐽𝐽𝑭𝑭𝑐𝑐 = 𝜆𝜆1𝜆𝜆2𝜆𝜆3 = 1, (74) 

where 𝑭𝑭𝑐𝑐 was defined in Eq. (8).  

Introducing Eq. (6) into (74) we verify that for uniform uniaxial stretch, the incompressibility condition is met when 
𝜈𝜈 = 0.5, so that the strain energy is given by 

𝑊𝑊(𝜆𝜆1) = ∑ 𝜇𝜇𝑖𝑖
𝛼𝛼𝑖𝑖
�𝜆𝜆1

𝛼𝛼𝑖𝑖 + 2𝜆𝜆1
−𝛼𝛼𝑖𝑖/2 − 3�𝑁𝑁

𝑖𝑖=1 . (75) 

Moreover, the Second Piola-Kirchhoff stress is obtained differentiating the strain energy with respect to the Green-
Lagrange strain,  

𝜎𝜎2𝑃𝑃𝑃𝑃 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝜀𝜀𝐺𝐺𝐺𝐺

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝜆𝜆1

𝑑𝑑𝜆𝜆1
𝑑𝑑𝜀𝜀𝐺𝐺𝐺𝐺

= ∑ 𝜇𝜇𝑖𝑖 �𝜆𝜆1
𝛼𝛼𝑖𝑖−2 + 2𝜆𝜆1

−𝛼𝛼𝑖𝑖2 −2�𝑁𝑁
𝑖𝑖=1 . (76) 

Figure 5 shows that this incompressible material law respects the physical constraint that the Cauchy stress 𝜎𝜎 →
−∞ when λ1 → 0, hence allowing its use for large compressive strains. For comparison purpose, the relationships of 
σ𝑅𝑅𝑅𝑅 = 𝐸𝐸ε𝑅𝑅𝑅𝑅  and σ2𝑃𝑃𝑃𝑃 = 𝐸𝐸ε𝐺𝐺𝐺𝐺 are also displayed for 𝜈𝜈 = 0.5. The vertical lines at values 𝜆𝜆1 = 0.6 and 𝜆𝜆1 = 1.4 delimit a 
range of moderate stretches, where all material laws provide coherent, although different values. 

Equation (76) is replaced in the expressions (35) and (51) of 𝒒𝒒𝑙𝑙 and 𝒌𝒌𝑇𝑇1. Differentiation of Eq. (76) provides the 
tangent modulus defined in Eq. (57) 

𝐸𝐸𝑇𝑇 = 𝑑𝑑σ2𝑃𝑃𝑃𝑃

𝑑𝑑ε𝐺𝐺𝐺𝐺
= ∑ 𝜇𝜇𝑖𝑖 �(α𝑖𝑖 − 2)λ1

α𝑖𝑖−4 + �α𝑖𝑖
2

+ 2� λ1
−α𝑖𝑖2 −4�𝑁𝑁

𝑖𝑖=1 , (77) 

which must be introduced in the expression (54) for 𝒌𝒌𝑇𝑇2. 

 

Figure 5: Cauchy stress 𝜎𝜎 versus stretch 𝜆𝜆1 for incompressible hyperelastic and linear stress-strain relationships (𝜈𝜈 = 0.5). 
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7.3 Viscoelasticity 

7.3.1 Linear Viscoelasticity 

In linear viscoelasticity, for given constant constitutive parameters, the material response depends only on time, 
and it is possible to apply the Boltzmann superposition principle. This principle is given by the integrals 

𝜎𝜎(𝑑𝑑) = ∫ 𝐺𝐺(𝑑𝑑 − 𝜏𝜏)𝜀𝜀̇(𝜏𝜏)𝑑𝑑𝜏𝜏𝑒𝑒
0  (78) 

and 

𝜀𝜀(𝑑𝑑) = ∫ 𝐽𝐽(𝑑𝑑 − τ)σ̇(τ)𝑑𝑑𝜏𝜏𝑒𝑒
0 , (79) 

where 𝐺𝐺(𝑑𝑑) and 𝐽𝐽(𝑑𝑑) are the stress relaxation and the creep-compliance functions, respectively (Kühl et al, 2017). 
Equations (78) and (79) completely define the material response since the linear viscoelastic material properties are 
considered ideally constant. 

Particularly, for creep-compliance response, a stress σ𝑐𝑐 is suddenly applied at time 𝑑𝑑0 and kept constant, while the 
stress is observed over time, that is  

σ(𝑑𝑑) = 𝐻𝐻(𝑑𝑑 − 𝑑𝑑0)σ𝑐𝑐 (80) 

and 

σ̇(𝑑𝑑) = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑒𝑒

(𝑑𝑑 − 𝑑𝑑0)σ𝑐𝑐 = 𝛿𝛿(𝑑𝑑 − 𝑑𝑑0)σ𝑐𝑐, (81) 

where 𝐻𝐻(𝑑𝑑 − 𝑑𝑑0) and 𝛿𝛿(𝑑𝑑 − 𝑑𝑑0) are the Heaviside and Dirac delta functions respectively, and σ𝑐𝑐 is the creep stress.  
Replacing Eq. (81) in (79) and applying the filter property, it turns out that 

𝜀𝜀(𝑑𝑑) = 𝐽𝐽(𝑑𝑑 − 𝑑𝑑0)𝜎𝜎𝑐𝑐 , (82) 

or 

𝐽𝐽(𝑑𝑑 − 𝑑𝑑0) = 𝜀𝜀(𝑒𝑒)
𝜎𝜎𝑐𝑐

, (83) 

where frequently time 𝑑𝑑0 is taken as 𝑑𝑑0 = 0 (see Figure 6).  
Notice that the compliance is defined by Eq. (83) and in linear viscoelasticity this function does not depend on 

the creep stress σ𝑐𝑐 applied. A typical curve of linear creep-compliance (nonlinear in time) for any value of 𝜎𝜎𝐶𝐶  is given 
in Figure 7.  

 
Figure 6: A constant stress suddenly applied at instant 𝑑𝑑0, the resulting strain profile in time and the corresponding creep-compliance function. 
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Figure 7: Compliance 𝐽𝐽 = 𝜀𝜀/𝜎𝜎𝑐𝑐  is independent of the creep stress level. 

7.3.2 Nonlinear Viscoelasticity 

When we work with finite strains, the use of the pairs (𝜎𝜎𝑐𝑐2𝑃𝑃𝑃𝑃 , 𝜀𝜀𝐺𝐺𝐺𝐺) and (𝜎𝜎𝑐𝑐𝑅𝑅𝑅𝑅 , 𝜀𝜀𝑅𝑅𝑅𝑅) in Eq. (82) implies a nonlinear 
relationship between the Cauchy stress and the logarithmic strain. For example, if the chosen constitutive measures are 
the second Piola-Kirchhoff stress and the Green-Lagrange strain, Eq. (82) becomes 

𝜀𝜀𝐺𝐺𝐺𝐺(𝑑𝑑) = 𝐽𝐽(𝑑𝑑 − 𝑑𝑑0)𝜎𝜎𝑐𝑐2𝑃𝑃𝑃𝑃 . (84) 

As it is possible to denote the Second Piola-Kirchhoff stress in terms of the Cauchy stress and the GL strain in terms 
of the logarithmic strain, it follows that 

𝑑𝑑2𝜈𝜈𝜀𝜀𝐺𝐺+1�𝑑𝑑2𝜈𝜈𝜀𝜀𝐺𝐺 − 1� = 2𝐽𝐽(𝑑𝑑 − 𝑑𝑑0)𝜎𝜎𝑐𝑐 , (85) 

which can be expressed as 

𝑔𝑔(𝜀𝜀𝐺𝐺) = 𝑑𝑑2𝜈𝜈𝜀𝜀𝐺𝐺+1�𝑑𝑑2𝜀𝜀𝐺𝐺 − 1� − 2𝐽𝐽(𝑑𝑑 − 𝑑𝑑0)σ𝑐𝑐 = 0. (86) 

Similarly, if a linear viscoelastic behavior is defined between the engineering stress and strain, Eq. (82) in terms of 
the Cauchy stress and logarithmic strain is given by 

𝑑𝑑2𝜈𝜈𝜀𝜀𝐺𝐺�𝑑𝑑𝜀𝜀𝐺𝐺 − 1� = 𝐽𝐽(𝑑𝑑 − 𝑑𝑑0)σ𝑐𝑐 , (87) 

which can be rewritten as 

𝑔𝑔(𝜀𝜀𝐺𝐺) = 𝑑𝑑2𝜈𝜈𝜀𝜀𝐺𝐺�𝑑𝑑2𝜀𝜀𝐺𝐺 − 1� − 𝐽𝐽(𝑑𝑑 − 𝑑𝑑0)σ𝑐𝑐 = 0.  (88) 

In both cases (Eq.(87) and (88)) we can define the compliance as 

𝐽𝐽𝑁𝑁𝐺𝐺(𝑑𝑑 − 𝑑𝑑0) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒 𝑅𝑅𝑜𝑜 𝑔𝑔�𝜀𝜀𝐺𝐺�
σ𝑐𝑐

. (89) 

where 𝜎𝜎𝐶𝐶  is the Cauchy creep stress.  
Figure 8 exemplifies the difference between the creep-compliance curves defined in terms of Cauchy stress and 

logarithmic strain when linearity is considered between other stress-strain pairs for given Cauchy stress values. 
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Figure 8: Compliance 𝐽𝐽𝑁𝑁𝐺𝐺 = 𝜀𝜀𝐺𝐺/𝜎𝜎𝑐𝑐  for finite strains considering the linear relationship between (a) Green-Lagrange strain 

Second Piola-Kirchhoff stress and (b) engineering strain and stress, both with 𝜈𝜈 = 0. 

7.3.3 Generalized Kelvin-Voigt rheological model 

The simple Kelvin-Voigt rheological model consists of a spring of elastic constant 𝐸𝐸𝑖𝑖 arranged in parallel with a 
dashpot of viscosity constant 𝜂𝜂𝑖𝑖, as shown in the detail of Figure 9 (Ward and Sweeney, 2004). The generalized Kelvin-
Voigt model consists in a series arrangement of a sole spring with a finite number of Kelvin-Voigt blocks, as shown in the 
same figure. For our purpose we consider that the springs obey a linear relationship between nonlinear stress and strain 
measures according to Eq.(69). Damping in the dashpots is given by a linear relationship between the same measures for 
stress and strain rate. To avoid an excessive number of superscripts, in this Section we drop the asterisks that indicate 
the choice of a given stress-strain pair in Eq.(69). 

The stress-strain relationship for a single Kelvin block i  is given by 

𝜎𝜎(𝑑𝑑) = 𝐸𝐸𝑖𝑖𝜀𝜀𝑖𝑖𝑣𝑣𝑒𝑒(𝑑𝑑) + 𝜂𝜂𝑖𝑖𝜀𝜀�̇�𝑖𝑣𝑣𝑒𝑒(𝑑𝑑), (90) 

where 𝜀𝜀𝑣𝑣𝑒𝑒(𝑑𝑑) and 𝜀𝜀̇𝑣𝑣𝑒𝑒(𝑑𝑑) are the viscoelastic strain and its time rate. Equation (90) can be rewritten as 

𝜀𝜀�̇�𝑖𝑣𝑣𝑒𝑒(𝑑𝑑) = � 1
𝜏𝜏𝑖𝑖𝑅𝑅𝑖𝑖

� 𝜎𝜎(𝑑𝑑) − �1
𝜏𝜏𝑖𝑖
� 𝜀𝜀𝑣𝑣𝑒𝑒(𝑑𝑑), (91) 

where τ𝑖𝑖 = η𝑖𝑖
𝑅𝑅𝑖𝑖

 is the relaxation time of the rheological block.  

 
Figure 9: Simple and generalized Kelvin-Voigt rheological models. 

Because we have a series arrangement, in each rheological block it holds that 

𝜎𝜎(𝑑𝑑) = 𝜎𝜎𝑆𝑆,𝑖𝑖(𝑑𝑑) + 𝜎𝜎𝐷𝐷,𝑖𝑖(𝑑𝑑), (92) 
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where 

�
𝜎𝜎𝑆𝑆,𝑖𝑖(𝑑𝑑) = 𝐸𝐸𝑖𝑖𝜀𝜀𝑖𝑖𝑣𝑣𝑒𝑒(𝑑𝑑); 𝑖𝑖 = 1,2, . . . ,𝑛𝑛𝑛𝑛𝑏𝑏 (spring stress)
𝜎𝜎𝐷𝐷,𝑖𝑖(𝑑𝑑) = 𝜂𝜂𝑖𝑖𝜀𝜀�̇�𝑖𝑣𝑣𝑒𝑒(𝑑𝑑); 𝑖𝑖 = 1,2, . . . ,𝑛𝑛𝑛𝑛𝑏𝑏 (dashpot stress) (93) 

and 𝑛𝑛𝑛𝑛𝑏𝑏 is the number of rheological blocks involved in the material model. On the other hand, the stress of the 
sole spring is 

𝜎𝜎(𝑑𝑑) = 𝐸𝐸0[𝜀𝜀(𝑑𝑑) − 𝜀𝜀𝑣𝑣𝑒𝑒(𝑑𝑑)], (94) 

where the viscous strain corresponds to the sum of the viscous strains of each rheological block, so that 

𝜎𝜎(𝑑𝑑) = 𝐸𝐸0�𝜀𝜀(𝑑𝑑) − ∑ 𝜀𝜀𝑗𝑗𝑣𝑣𝑒𝑒(𝑑𝑑)𝑖𝑖𝑛𝑛𝑛𝑛
𝑗𝑗=1 �. (95) 

If a stress is applied to the model, it acts on each rheological block and on the sole spring in the same way. Then Eq. 
(90) and (94) can be compared, resulting in  

𝜀𝜀�̇�𝑖𝑣𝑣𝑒𝑒(𝑑𝑑) + 1
𝜏𝜏𝑖𝑖
𝜀𝜀𝑖𝑖𝑣𝑣𝑒𝑒(𝑑𝑑) + 𝜔𝜔𝑖𝑖

𝜏𝜏𝑖𝑖
𝜀𝜀𝑖𝑖𝑣𝑣𝑒𝑒(𝑑𝑑) = 𝜔𝜔𝑖𝑖

𝜏𝜏𝑖𝑖
𝜀𝜀𝑖𝑖(𝑑𝑑), (96) 

where ω𝑖𝑖 = 𝐸𝐸0/𝐸𝐸𝑖𝑖. 
In the case of viscous behavior, we define a linear relationship between stress and strain rate (𝜎𝜎 = 𝜂𝜂𝜀𝜀̇), as displayed 

in Figure 10. Notice that the strain rate depends on the stretch suffered by the material, yielding the expressions given 
in Eq. (97) 

⎩
⎨

⎧ 𝜀𝜀𝐺𝐺 = ln(𝜆𝜆1) ⇒  𝜀𝜀̇𝐺𝐺 = 1
𝜆𝜆1
�̇�𝜆1

𝜀𝜀𝑅𝑅𝑅𝑅 = 𝜆𝜆1 − 1 ⇒  𝜀𝜀̇𝑅𝑅𝑅𝑅 = �̇�𝜆1
𝜀𝜀𝐺𝐺𝐺𝐺 = 1

2
�𝜆𝜆𝑖𝑖2 − 1� ⇒  𝜀𝜀̇𝐺𝐺𝐺𝐺 = 𝜆𝜆1�̇�𝜆1

, (97) 

which replaced in the Hooke-like material relationships lead to  

�

𝜎𝜎 = 𝜂𝜂𝜀𝜀̇𝐺𝐺 ⇒  𝜎𝜎 = 𝜑𝜑(𝜆𝜆1)�̇�𝜆1, with 𝜑𝜑(𝜆𝜆1) = 𝜂𝜂
𝜆𝜆1

 

𝜎𝜎𝑅𝑅𝑅𝑅 = 𝜂𝜂𝜀𝜀̇𝑅𝑅𝑅𝑅  ⇒  𝜎𝜎 = 𝜑𝜑(𝜆𝜆1)�̇�𝜆1, with 𝜑𝜑(𝜆𝜆1) = 𝜂𝜂𝜆𝜆12𝜈𝜈

𝜎𝜎2𝑃𝑃𝑃𝑃 = 𝜂𝜂𝜀𝜀̇𝐺𝐺𝐺𝐺 ⇒  𝜎𝜎 = 𝜑𝜑(𝜆𝜆1) �̇�𝜆1, with 𝜑𝜑(𝜆𝜆1) = 𝜂𝜂𝜆𝜆1
2(𝜈𝜈+1)

 . (98) 

 
Figure 10: Purely viscous system. 

The discussion made here on the implications of adopting different stress-strain rate pairs is relevant, since there 
are studies such as Douven et al. (1989) and Kaliske and Rothert (1997), that relate linearly pairs that are different than 
the Cauchy stress and the logarithmic strain rate.  

Figure 11 shows the graphs of the auxiliary function 𝜑𝜑(𝜆𝜆1) defined in Eq. (98) for the (𝜎𝜎, 𝜀𝜀𝐺𝐺), (𝜎𝜎𝑅𝑅𝑅𝑅 , 𝜀𝜀𝑅𝑅𝑅𝑅) and 
(𝜎𝜎2𝑃𝑃𝑃𝑃 , 𝜀𝜀𝐺𝐺𝐺𝐺) material models. As well as when there is a linear relationship between stress and strain (Fig. 3), each of the 
constitutive laws represents a different material for moderate strains (for example, 𝜆𝜆1 between 0.6 and 1.4). In the case 
of large strains in compression, the relationships exhibit non-physical behavior. We would expect that, as the stretch 
approaches zero, the stresses would take on increasing values, as happens in the case of (𝜎𝜎, 𝜀𝜀𝐺𝐺). However, for both 
constitutive laws (𝜎𝜎𝑅𝑅𝑅𝑅 , 𝜀𝜀𝑅𝑅𝑅𝑅) and (𝜎𝜎2𝑃𝑃𝑃𝑃 , 𝜀𝜀𝐺𝐺𝐺𝐺), when the stretch tends to 0, the values of 𝜑𝜑(𝜆𝜆1) also tend to 0. 
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Since, according to Eq. (98) the stresses are obtained by multiplying 𝜑𝜑(𝜆𝜆1) by the strain rates, it follows that the stresses 
tend to zero independent of �̇�𝜆1 values, contrary to the expected behavior.  

 
Figure 11: Unphysical behavior for large compressive strains (for stretch approaching zero) in the cases of 𝜎𝜎𝑅𝑅𝑅𝑅 = 𝜂𝜂𝜀𝜀̇𝑅𝑅𝑅𝑅  and 𝜎𝜎2𝑃𝑃𝑃𝑃 = 𝜂𝜂𝜀𝜀̇𝐺𝐺𝐺𝐺 

considering 𝜂𝜂 = 1 and 𝜈𝜈 = 0.5. 

Figure 12 shows the behavior of (𝜎𝜎2𝑃𝑃𝑃𝑃 , 𝜀𝜀𝐺𝐺𝐺𝐺) and (𝜎𝜎𝑅𝑅𝑅𝑅 , 𝜀𝜀𝑅𝑅𝑅𝑅) for different values of 𝜈𝜈. Although (𝜎𝜎𝑅𝑅𝑅𝑅 , 𝜀𝜀𝑅𝑅𝑅𝑅) presents 
physical sense for auxetic materials, the (𝜎𝜎2𝑃𝑃𝑃𝑃 , 𝜀𝜀𝐺𝐺𝐺𝐺) constitutive law does not give coherent results for any of the Poisson 
ratio values tested when large strains in compression are considered.  

7.3.4 Numerical Integration of viscous strains 

The numerical integration of viscous strains used in this work follows the explicit approach (Backward Euler 
Method), which was based on the adaptation of the three-dimensional formulation of Nedjar and Le Roy (2013) of 
implicit integration presented by Carniel et al. (2015). Other approaches are proposed by Zienkiewicz et al. (1968), 
Evangelista (2006) and Araújo et al (2010).  

We assume that, for the numerical implementation, time is discretized into 𝑁𝑁 steps of equal size Δ𝑑𝑑. For each step 
0 < 𝑛𝑛 < 𝑁𝑁, the next step 𝑛𝑛 + 1 will be equal to the time elapsed until the previous time step 𝑛𝑛, 𝑑𝑑𝑖𝑖, plus the time interval, 
i.e., 𝑑𝑑𝑖𝑖+1 = 𝑑𝑑𝑖𝑖 + Δ𝑑𝑑. Also, the total strain at step 𝑛𝑛 + 1 is known and therefore will be constant throughout this time 
step. Then for time step 𝑛𝑛 + 1, eq. (96) is such that 

𝜀𝜀�̇�𝑖,𝑖𝑖+1𝑣𝑣𝑒𝑒 + 1
𝜏𝜏𝑖𝑖
𝜀𝜀𝑖𝑖,𝑖𝑖𝑣𝑣𝑒𝑒 + 𝜔𝜔𝑖𝑖

𝜏𝜏𝑖𝑖
𝜀𝜀𝑖𝑖𝑣𝑣𝑒𝑒 = 𝜔𝜔𝑖𝑖

𝜏𝜏𝑖𝑖
𝜀𝜀𝑖𝑖+1, 𝑖𝑖 = 1,2, … ,𝑛𝑛𝑛𝑛𝑏𝑏, (99) 

where 

𝜀𝜀�̇�𝑖,𝑖𝑖+1𝑣𝑣𝑒𝑒 = 𝜀𝜀𝑖𝑖,𝑛𝑛+1
𝑣𝑣𝑒𝑒 −𝜀𝜀𝑖𝑖,𝑛𝑛

𝑣𝑣𝑒𝑒

Δ𝑒𝑒
. (100) 

 
Figure 12 : Cauchy stress 𝜎𝜎 versus stretch 𝜆𝜆1 for different values of the Poisson ratio 𝜈𝜈 in the viscoelastic model:  

(a) 𝜎𝜎𝑅𝑅𝑅𝑅 = 𝜂𝜂𝜀𝜀̇𝑅𝑅𝑅𝑅  and (b) 𝜎𝜎2𝑃𝑃𝑃𝑃 = 𝜂𝜂𝜀𝜀̇𝐺𝐺𝐺𝐺 . 
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Replacing Eq. (100) into (99), for each rheological block 𝑖𝑖, 

𝜀𝜀𝑖𝑖,𝑖𝑖+1𝑣𝑣𝑒𝑒 = 𝜀𝜀𝑖𝑖,𝑖𝑖𝑣𝑣𝑒𝑒 + Δ𝑑𝑑 𝜔𝜔𝑖𝑖
𝜏𝜏𝑖𝑖

(𝜀𝜀)𝑖𝑖+1 −
Δ𝑒𝑒
𝜏𝜏𝑖𝑖
𝜀𝜀𝑖𝑖,𝑖𝑖𝑣𝑣𝑒𝑒 − Δ𝑑𝑑 𝜔𝜔𝑖𝑖

𝜏𝜏𝑖𝑖
𝜀𝜀𝑖𝑖𝑣𝑣𝑒𝑒 (101) 

with 

𝜀𝜀𝑖𝑖𝑣𝑣𝑒𝑒 = ∑ 𝜀𝜀𝑗𝑗,𝑖𝑖
𝑣𝑣𝑒𝑒𝑖𝑖𝑛𝑛𝑛𝑛

𝑗𝑗=1  (102) 

or 

τ𝑖𝑖ε𝑖𝑖,𝑖𝑖+1𝑣𝑣𝑒𝑒 = [τ𝑖𝑖 − Δ𝑑𝑑]ε𝑖𝑖,𝑖𝑖𝑣𝑣𝑒𝑒 + Δ𝑑𝑑ω𝑖𝑖ε𝑖𝑖+1 − Δ𝑑𝑑ω𝑖𝑖 ∑ ε𝑗𝑗,𝑖𝑖
𝑣𝑣𝑒𝑒𝑖𝑖𝑛𝑛𝑛𝑛

𝑗𝑗=1 = [𝜏𝜏𝑖𝑖 − Δ𝑑𝑑(1 − 𝜔𝜔𝑖𝑖)]𝜀𝜀𝑖𝑖,𝑖𝑖𝑣𝑣𝑒𝑒 + Δ𝑑𝑑𝜔𝜔𝑖𝑖𝜀𝜀𝑖𝑖+1 − Δ𝑑𝑑𝜔𝜔𝑖𝑖 ∑ 𝜀𝜀𝑗𝑗,𝑖𝑖
𝑣𝑣𝑒𝑒𝑖𝑖𝑛𝑛𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 . (103) 

Eq. (103) can be written as a linear system 𝑨𝑨𝛆𝛆𝑖𝑖+1𝑣𝑣𝑒𝑒 = 𝒃𝒃 where 

𝑨𝑨 =

⎣
⎢
⎢
⎢
⎡𝜏𝜏10

0
⋮
0

 

0
𝜏𝜏2
0
⋮
0

 

0
0
𝜏𝜏3
⋮
0

 

. . .

. . .
0
0

. . .

. . .

. . .

0
⋮

𝜏𝜏𝑖𝑖𝑛𝑛𝑛𝑛⎦
⎥
⎥
⎥
⎤
,  𝛆𝛆𝑖𝑖+1𝑣𝑣𝑒𝑒 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜀𝜀1,𝑖𝑖+1
𝑣𝑣𝑒𝑒

𝜀𝜀2,𝑖𝑖+1
𝑣𝑣𝑒𝑒

𝜀𝜀3,𝑖𝑖+1
𝑣𝑣𝑒𝑒

⋮
𝜀𝜀𝑖𝑖𝑛𝑛𝑛𝑛,𝑖𝑖+1
𝑣𝑣𝑒𝑒 ⎦

⎥
⎥
⎥
⎥
⎤

, (104) 

𝒃𝒃 = �

τ1 − Δ𝑑𝑑(1 + ω1) −ω1Δ𝑑𝑑
−ω2Δ𝑑𝑑 τ2 − Δ𝑑𝑑(1 + ω2)

. . . −ω1Δ𝑑𝑑

. . . −ω2Δ𝑑𝑑
⋮ ⋮

−ω𝑖𝑖𝑛𝑛𝑛𝑛Δ𝑑𝑑 −ω𝑖𝑖𝑛𝑛𝑛𝑛Δ𝑑𝑑
 ⋮  ⋮

 . . .  τ𝑖𝑖𝑛𝑛𝑛𝑛 − Δ𝑑𝑑(1 + ω𝑖𝑖𝑛𝑛𝑛𝑛)

�

⎣
⎢
⎢
⎡
𝜀𝜀1,𝑖𝑖
𝑣𝑣𝑒𝑒

𝜀𝜀2,𝑖𝑖
𝑣𝑣𝑒𝑒

⋮
𝜀𝜀𝑖𝑖𝑛𝑛𝑛𝑛,𝑖𝑖
𝑣𝑣𝑒𝑒 ⎦

⎥
⎥
⎤

+ Δ 𝑑𝑑 �

𝜔𝜔1
𝜔𝜔2
⋮

𝜔𝜔𝑖𝑖𝑛𝑛𝑛𝑛

� 𝜀𝜀𝑖𝑖+1 (105) 

Note that matrix 𝑨𝑨 being diagonal implies that the cost of solving the system is zero. Despite this, there would be 
an operational cost due to the need to allocate space to store it, which is unnecessary. Therefore, although the equations 
are presented as a system, it is more efficient to solve them in a decoupled way, 

ε𝑖𝑖,𝑖𝑖+1𝑣𝑣𝑒𝑒 = 1
τ𝑖𝑖
�(𝜏𝜏𝑖𝑖 − Δ𝑑𝑑)𝜀𝜀𝑖𝑖,𝑖𝑖𝑣𝑣𝑒𝑒 + Δ𝑑𝑑𝜔𝜔𝑖𝑖�𝜀𝜀𝑖𝑖+1 − ∑ 𝜀𝜀𝑗𝑗,𝑖𝑖

𝑣𝑣𝑒𝑒𝑖𝑖𝑛𝑛𝑛𝑛
𝑗𝑗=1 ��, 𝑖𝑖 = 1,2, … ,𝑛𝑛𝑛𝑛𝑏𝑏. (106) 

The consistent tangent modulus of a viscoelastic material (not to confuse with the tangent modulus defined in 
Eq.(68)) in the time step 𝑛𝑛 + 1 is, by definition, 

𝐸𝐸𝑖𝑖+1𝑣𝑣𝑒𝑒 = 𝜕𝜕𝜎𝜎𝑛𝑛+1
𝜕𝜕𝜀𝜀𝑛𝑛+1

 (remember that the asterisks have been dropped: 𝜕𝜕𝜎𝜎 𝑛𝑛+1
∗

𝜕𝜕𝜀𝜀𝑛𝑛+1∗  in Eq. (68)) (107) 

where σ𝑖𝑖+1 = 𝐸𝐸0(ε𝑖𝑖+1 − ε𝑖𝑖+1𝑣𝑣𝑒𝑒 ). Then 

𝐸𝐸𝑖𝑖+1𝑣𝑣𝑒𝑒 = 𝐸𝐸0 �1 − ∑ 𝜕𝜕𝜀𝜀𝑗𝑗,𝑛𝑛+1
𝑣𝑣𝑒𝑒

𝜕𝜕𝜀𝜀𝑛𝑛+1
𝑖𝑖𝑛𝑛𝑛𝑛
𝑗𝑗=1 �. (108) 

Using Eq. (105) we can write 

𝐸𝐸𝑖𝑖+1𝑣𝑣𝑒𝑒 = 𝐸𝐸0�1 − ∑ 𝑎𝑎𝑗𝑗𝑖𝑖𝑛𝑛𝑛𝑛
𝑗𝑗=1 �, (109) 

where 𝑎𝑎𝑗𝑗 are the rows of the vector given by  
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𝒂𝒂 =

⎣
⎢
⎢
⎢
⎡
𝜔𝜔1/𝜏𝜏1
𝜔𝜔2/𝜏𝜏2
𝜔𝜔3/𝜏𝜏3
⋮

𝜔𝜔𝑖𝑖𝑛𝑛𝑛𝑛/𝜏𝜏𝑖𝑖𝑛𝑛𝑛𝑛⎦
⎥
⎥
⎥
⎤

Δ𝑑𝑑. (110) 

8 NUMERICAL EXAMPLES 

Inspired in the work of Driemeier et al. (2005), Greco et al. (2006) and in the analyses of Carniel et al. (2015), we study 
two and three-dimensional trusses subjected to large displacements and strains under an unstable behavior (snap-through) 
along the strain path. The structures achieve high accelerations and require inclusion of inertia forces. Hence, within the 
framework of finite elements, we require to consider the kinematics of finite strains associated with the proper material 
model and transient geometric nonlinear formulation to obtain a response consistent with the physical phenomena 
involved. These structures are analyzed with different material laws and stress-strain pairs for material description. 

For the viscoelastic analyses, we considered bars made of a hypothetical polymeric material introduced by Keramat 
and Ahmadi (2012) and used by Abdelrahman and El-Shafei (2021) with parameters shown in Table 2. As a numerical 
exercise this material was also analyzed neglecting the viscous effect in purely elastic simulations. In this case, in order 
to find the corresponding coefficient of elasticity, we considered the complete release of the dampers, leading to a 
regular series association of the springs. Thus, the value of the coefficient of elasticity considered for the elastic model 
corresponds to 109 MPa. 

Table 2 Viscoelastic material properties (Abdelrahman and El-Shafei, 2021) 

𝝂𝝂 𝝆𝝆[𝒌𝒌𝒌𝒌/𝒎𝒎𝟑𝟑] 𝑬𝑬𝟎𝟎[𝑴𝑴𝑷𝑷𝒂𝒂] 𝑬𝑬𝒊𝒊[𝑴𝑴𝑷𝑷𝒂𝒂] 𝛕𝛕𝒊𝒊[𝒔𝒔] 

0.50 12000.00 1.0035 E +13 1.086957 E +11 1.101 E -03    
9.049774 E +09 3.0115 E -02 

   1.281558 E +09 1.50784 E -01 

The material parameters for hyperelastic bars correspond to natural rubber (Endo et al., 2021; Ogden, 1972). These 
parameters are given in Table 3. Damping can be introduced by inclusion of the Rayleigh damping matrix which, when 
considered, is taken as 10M.  

Table 3 Hyperelastic material properties of natural rubber (Endo et al., 2021) 

𝝁𝝁𝒊𝒊[𝐌𝐌𝐌𝐌𝐌𝐌]  𝛂𝛂𝒊𝒊 
0.7.7817 E +05 2.7971 
-1.1229 E +04 -2.7188 

1.269 E -01 10.505 
1.6169 E +07 0.33382 

To simplify and standardize the nomenclature in the graphs that display results in this section, we have chosen to 
use the abbreviations Cauchy-Log, Eng - Eng and 2PK-GL, which correspond to Cauchy stress and logarithmic strain (and 
strain rate), engineering stress and strain (and strain rate) and Second Piola-Kirchhoff stress and Green-Lagrange strain 
(and strain rate) material laws, respectively. In addition, to make it easier to compare the behavior of the different stress 
measures over time, they were all converted to the Cauchy stress using Eq. (19) to (20). Viscous strain rate measures 
were all converted to logarithmic viscous strain rates, using Eq. (97). 

Finally, all the algorithms used here have been validated with the results presented by Abdelrahman and El-Shafei 
(2021) for small strains. The results obtained for both small and large strains were consistent with those expected. 

8.1 Two-bar symmetric structure 

The first problem consists of the classical two-bar truss subjected to a vertical load (Figure 13). The simulation time 
is divided into two parts: for 0 ≤ 𝑑𝑑 ≤ 0.2𝑠𝑠, the timesteps length is Δ𝑑𝑑 = 10−4𝑠𝑠 and for 0.2𝑠𝑠 ≤ 𝑑𝑑 ≤ 1.0𝑠𝑠, Δ𝑑𝑑 = 8 × 10−5𝑠𝑠. 
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Figure 13: (a) Two-dimensional truss structure: initial geometry and (b) load history. 

8.1.1 Two viscoelastic bars 

Figure 14 presents the vertical displacement history of node 2 when both bars are viscoelastic, using the properties 
of Table 2. Comparing the plots obtained for each of the linear relationships, it is noticeable that after the snap-through, 
the behavior for the three models is similar, although displaced with respect to time (Figs.14(a) and (b)). On the other 
hand, the oscillatory motion of the 2PK-GL material model appears first in relation to the others, followed by the Eng-
Eng and the Cauchy-Log material models. As time evolves, the displacement values get closer, coinciding at 0.33s. From 
then on, the Cauchy-Log model presents a smaller displacement in relation to the others, tending to 0.33 m in the vertical 
direction. The 2PK-GL model is less rigid, tending to a displacement of 0.32 m (Fig.14(c)). 

Figure 15 shows that the Cauchy stress curves for the different constitutive laws present a behavior similar to the 
displacements in the sense that the curves are shifted with respect to time. The snap-through happens first for the 2PK-GL 
material model, which shows the lowest Cauchy stress value in compression, followed by the Eng-Eng material model and 
the Cauchy-Log material model.  

Finally, Figure 16 presents the comparison between total and viscous logarithmic strain rates over time. Note that the 
viscous contribution is much smaller than the elastic one for all three material laws. Furthermore, while the rate of total 
deformation is nearly symmetric in traction and compression, this is not the case for the viscous strain rate, where the rate 
of traction is much higher than that of compression. Over time, the total strain rate and the viscous strain rate tend to 0. 

 
Figure 14: 2D truss: displacement history of node 2 for both bars viscoelastic. (a) Whole time range evaluated (from 0 to 1 seconds), 

(b) detail in the neighborhood of the snap-throughs and (c) the moment when curves change position. 

 
Figure 15: 2D truss: (a) Cauchy stress history for both bars viscoelastic; (b) detail of the plot between 0.15s and 0.3s. 
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Figure 16: 2D truss: (a) Total logarithmic strain rate and (b) viscous logarithmic strain rate histories of node 2 for both bars viscoelastic. 

8.1.2 Two elastic bars 

As mentioned in the introduction of this section, we performed a numerical exercise in which the viscous part of 
the material was disregarded in the model described by Eq. (68). The displacements of node 2 are depicted in Fig. 17 and 
the Cauchy stress in Fig. 18. The main difference between the curves is the amplitude of the displacements, with the one 
corresponding to the Cauchy-Log model being larger, followed by the Eng - Eng model and the 2PK-GL model. The 
opposite trend is observed in the stress amplitude, as Fig. 18 shows increasing amplitude and nominal values in the same 
sequence of the material models. 

 
Figure 17: 2D truss: Displacement history of node 2 for both elastic bars with (a) Cauchy-Log, (b) Eng-Eng and (c) 2PK-GL material models. 

 
Figure 18: 2D truss: Cauchy stress history for both elements with (a) Cauchy-Log, (b) Eng-Eng and (c) 2PK-GL material models. 

8.1.3 Two hyperelastic bars 

We now consider both members composed of the hyperelastic material defined by the properties in Table 3. This 
material model has no dissipation in the formulation, but the introduction of Rayleigh damping matrix, where 𝑪𝑪 = 10𝑴𝑴 
causes both the displacement of node 2 and the element stresses to decrease considerably over time. Note that in Figure 
19 it is not possible to identify the snap-through. This is because, given the material properties, the snap-through occurs 
very quickly. For illustration, some intermediate configurations of the truss are shown for the undamped case. When 
damping is considered, the positions are different. 



Transient analysis of trusses considering nonlinear elastic and viscoelastic material models Débora Cristina Brandt et al. 

Latin American Journal of Solids and Structures, 2024, 21(1), e521 22/31 

 
Figure 19: 2D truss:(a) Displacement and (b) stress history of node 2 for both bars hyperelastic (undamped and damped). 

8.1.4 One bar viscoelastic and one bar hyperelastic 

When the truss is composed of one viscoelastic and one hyperelastic members, node 2 moves in both directions 
and two vertical peak amplitudes can be identified, as shown in Fig. 20.  

In this example, the choice of the material law has a negligible influence on the results found for both, the 
displacement, and the stress values over time. For this reason, we have chosen to display only the graphs that adopt the 
Cauchy-Log constitutive relation. 

 
Figure 20: 2D truss structure with hyperelastic and viscoelastic materials: (a) horizontal and (b) vertical displacements of node 2. 

Figure 21 shows the displacement of node 2 in the x-y plane as time elapses. Figure 21(a) displays a sequence of 
geometric configurations for the instants 𝑑𝑑 = 0, 𝑑𝑑 = 0.0068, 𝑑𝑑 = 0.013, 𝑑𝑑 = 0.7766 and 𝑑𝑑 = 0.7786, where the path 
followed by node 2 is shown in blue (show the node numbers in the figure). The initial position of the truss is depicted 
in black. As time elapses, node 2 starts to move down and rightwards, producing traction in the viscoelastic bar and 
compression in the hyperelastic bar, until a snap-through occurs in the instant t = 0.068s (this configuration is depicted 
in purple). From then on, the strain energy stored in the bars is released, causing node 2 to move to the left of the 
initial position. As the stiffness of the hyperelastic bar is extremely low compared to the viscoelastic one, node 2 tends 
to stabilize oscillating with respect to a vertical line passing through node 1 (configurations depicted in red, orange 
and green in the plot). Notice that in this region, after a while, the length of the viscoelastic bar remains practically 
unchanged, and dissipation becomes negligible. Hence, the oscillatory motion does not vanish and the length of the 
hyperelastic bar continues to change along time. Figure 21(b) shows the same curve as above, now in 3 dimensions, 
but taking time into account. 

Due to the aforementioned behavior, the dissipation effect fades out rapidly and the choice of the viscoelastic 
material law does not influence much the result. Figure 22 shows that the magnitude of the stress suffered by the 
viscoelastic element is much higher than that of the hyperelastic one. 
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Figure 21: 2D truss structure with hyperelastic and viscoelastic materials: relationship between X and Y displacements 

 
Figure 22: 2D truss: Cauchy stress history (a) Viscoelastic element (b) Hyperelastic element. 

8.2 Three-dimensional star truss 

The second problem consists of a 3D truss whose central node is subjected to a vertically applied force. As in the 
previous example, the simulation time is divided into two parts: for 0 ≤ 𝑑𝑑 ≤ 0.2 we consider the timesteps length 
Δ𝑑𝑑 = 10−4𝑠𝑠 and for 0.2 ≤ 𝑑𝑑 ≤ 1.0, Δ𝑑𝑑 = 8 × 10−5𝑠𝑠 (see Figure 23). 

 
Figure 23: Three-dimensional star truss structure: initial geometry and corresponding (a) nodes and elements, (b) front and 

perspective views and (c) load history. 
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8.2.1 All bars viscoelastic 

Figure 24(a) shows the vertical displacement of node 7 for the three Hooke-like material laws when all the bars 
are viscoelastic (Table 2). In the beginning, all the curves follow a similar pattern and present a lag according to the 
material law considered, as displayed in the detail given in Fig. 24(b). As time goes by, the models start to distance 
from each other. The material model 2PK-GL presents the highest stiffness, while the Cauchy-Log material model is 
the less stiff. The star-shaped truss has two snap-throughs that occur very close to each other, which are highlighted 
in Fig. 24 by a diamond and a square marker, respectively. The first snap-through occurs at 𝑑𝑑 = 0.0044𝑠𝑠, followed by 
the second one at 𝑑𝑑 = 0.0047𝑠𝑠. From then on, the structure starts to oscillate, with the amplitude of the movement 
decreasing over time.  

 

Figure 24: 3D truss: (a) vertical displacements of node 7 for all bars viscoelastic; (b) detail of the plot in the oscillatory region.  

Figure 25 shows some configurations and the time at which they occur when the Cauchy-Log material model governs 
the behavior of the bars. 

 

Figure 25: 3D truss: some configurations for the viscoelastic case (Cauchy-Log material model). 

Owing to their different positions in the truss layout, elements 1, 10 and 23 are representative of the whole 
structure. Figures 26 to 28 display the Cauchy stress for such elements, where we notice the difference between the 
compression and tension peaks of the different stress measures. Again, all the curves show a similar behavior, although 
shifted, with a small difference in amplitude according to the material law considered, which is evinced by Figures 26(b) 
to 28(b). Cauchy stress in elements 1 and 23 increase until 𝑑𝑑 = 0.2𝑠𝑠, when it becomes constant. This instant coincides 
with the moment when the load applied to the truss becomes constant as well.  
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Figure 26: 3D truss: (a) Cauchy stress history for element 1. All bars viscoelastic; (b) detail of the plot in the oscillatory region. 

 
Figure 27: 3D truss: (a) Cauchy stress history for element 10. All bars viscoelastic; (b) detail of the plot in the oscillatory region. 

 
Figure 28: 3D truss: (a) Cauchy stress history for element 23. All bars viscoelastic; (b) detail of the plot in the oscillatory region. 

The viscous strain rate values (Figures 29 to 31) are much lower than those of the total strain rates, indicating the 
predominance of elastic behavior during the process. Over time, up to 𝑑𝑑 = 0.2𝑠𝑠, they tend to a value close to 1.0𝑀𝑀𝑀𝑀𝑎𝑎/𝑠𝑠, 
while the total strain rate is already zero, i.e., they start to act strongly in damping the oscillations. From the instant 𝑑𝑑 =
0.2𝑠𝑠 - which corresponds to the instant when the applied load becomes constant - the viscous rates decrease to zero.  
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Figure 29: 3D truss: (a) total and (b) viscous logarithmic strain rates for Cauchy-Log material model. 

 
Figure 30: 3D truss: (a) total and (b) viscous logarithmic strain rates for Eng-Eng material model. 

 
Figure 31: 3D truss: (a) total and (b) viscous logarithmic strain rate for 2PK-GL material model. 

8.2.2 All bars hyperelastic 

Considering the entire 3D truss composed of hyperelastic bars (Table 3), a drastic difference is observed for the 
vertical displacement of node 7, as expected. Figure 32(a) shows such displacement for an undamped structure and the 
same displacement but with the introduction of a damping matrix 𝑪𝑪 = 10𝑴𝑴. Figure 32(b) shows a detail of the plot in 
the initial 0.3 seconds, where damping clearly reduces considerably the amplitude of the oscillations. Also, Figure 33 
shows the evolution of the Cauchy stress in elements 1, 10 and 23 for the hyperelastic model with and without damping. 
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Notice that while elements 1 and 23 only suffer traction, element 10 suffers traction and compression, as it is not 
so demanded due to its position in the truss. 

 
Figure 32: 3D truss: (a) vertical displacements of node 7 for all bars hyperelastic; (b) detail of the plot in the first 0.3 seconds. 

 
Figure 33: 3D truss: Stress history for element (a) 1, (b) 10 and (c) 23 with and without structural damping. All bars hyperelastic. 

8.2.3 Mixed viscoelastic and hyperelastic bars 

We now consider elements 1, 5, 8, 18, 19 e 22 being hyperelastic and the remaining ones viscoelastic. Once again, 
there is no significant difference between the displacement history of node 7 for different material models in the 
viscoelastic laws. However, in the presence of bars made of different materials distributed non symmetrically, horizontal 
displacements occur in directions X and Y, as shown in Figure 34. The initial position is marked with a red diamond while 
the final position is marked with a red square.  

 
Figure 34: 3D truss: Relationship between the displacements of node 7 in the (a) X and Z, (b) Y and Z and (c) X and Y directions. 

Mixed viscoelastic and hyperelastic bars. 
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Figures 35 and 36 present the Cauchy stresses for the viscoelastic element 4 and for the hyperelastic element 1 
respectively, which geometrically occupy similar positions in the truss. Once again, the choice of the constitutive model 
for the viscoelastic material does not influence the results. While Figures 35(a) and 36(a) show the general behavior of 
the Cauchy stress curves along time, Figs. 35(b) and 36(b) detail the corresponding plots from the beginning up to 0.1 
seconds. It is noticeable that both frequency and amplitude of the stress oscillations are considerably higher for the 
viscoelastic bars compared to the hyperelastic ones. Furthermore, the difference in stiffness between the two materials 
is evident, since the stress values acting on the viscoelastic bar are much higher than on the hyperelastic bar. Figure 37 
shows the geometric behavior of the 3D truss over time. 

 
Figure 35: Mixed 3D truss: Cauchy stress for viscoelastic element 4; (b) detail of the plot in the first 0.1 seconds. 

 
Figure 36: Mixed 3D truss: (a) Cauchy stress for hyperelastic element 1; (b) detail of the plot in the first 0.1 seconds. 

 
Figure 37: 3D truss structure with hyperelastic and viscoelastic materials: behavior over time. 

9 CONCLUDING REMARKS 

In this paper, we present a finite element formulation for trusses made of different elastic and viscoelastic materials 
in transient nonlinear analyses. In the formulation, we emphasize the fact that the energy-conjugate pair considered in 
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the VWP need not necessarily be the same as the stress-strain measure related by the constitutive equation and that the 
choice of the conjugate pair does not affect the results, regardless of the choice of the material law used. In this sense, 
we study different material behaviors by linearly relating different stress and strain measures, which we consider 
admissible if the compressive and tractive strains are moderate. We extend the derived geometric and material nonlinear 
formulation to account for rate effects using a generalized Kelvin rheological model. The numerical integration of the 
viscous strain rate is given by explicit uncoupled equations and is simpler than other methods found in the literature. We 
also present the Ogden hyperelastic model in the framework of the proposed formulation with dissipation introduced 
using a Rayleigh matrix proportional only to the mass. Transient problems are solved using the mean acceleration 
method. Two numerical examples involving different arrangements of trusses with members made of different materials 
are studied. The results obtained for the numerical problems studied are highly dependent on the properties of the 
materials adopted for the bars and the material law chosen to describe them.  

It is noteworthy that the usual practice of adopting the same stress-strain pair as a work-conjugate measure and for 
the material behavior is not always the most appropriate approach, since the former is arbitrary, and the latter should 
match experimental results. Furthermore, in the case of finite strains, the constitutive model does not always provide a 
physically realistic result. In the compressive case, the only material law that has a coherent behavior for both elastic and 
viscoelastic materials is the linear relationship between Cauchy stress and logarithmic strain (and strain rate).  

The article is focused on bar elements as an attempt to observe the implications of different choices of nonlinear 
material models in a simple finite element setting. Interesting insights are obtained which can be useful for extending 
the analyses to continuum finite elements. For instance, Figs. 14(a) and (c) of example 8.1.1 show that in the beginning 
of the phenomenon, the Cauchy-Log and the 2PK-GL material models yield the stiffest and the less stiff structures, 
respectively. However, this condition reverted completely along time, which is not directly intuitive. In example 8.2.1, 
another interesting issue can be remarked: according to the Hooke-like material model adopted, the viscous strain rate 
changes its qualitative pattern of evolution. Figures 29(b), 30(b) and 31(b) show increasing, constant and decreasing 
values for the Cauchy-Log, Eng-Eng and 2PK-GL material models, respectively. The relative simplicity of the bar element 
formulation, which does not demand complexities associated to element technology, allows focusing on structural 
effects of particular choices for the material model. 
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