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Why is it that div and curl crop up everywhere in the study of vector �elds? These theorems by
Helmholtz explain.

Por que os operadores div e rot aparecem em toda parte, no estudo de campos vetoriais? Estes
teoremas de Helmholtz explicam.

I Introduction

What is usually called Helmholtz theorem[1] is the fact

that a vector �eld ~V which vanishes at in�nity is com-
pletely determined by giving, everywhere, div ~V and
curl ~V . Helmholtz arrived at it in his study of vortices
in 
uids[4]. Nowadays it is mostly used in Electrody-
namics, where the very Maxwell equations express its
importance by being nothing else than the speci�cation
of what the div and curl of the electric and magnetic
�elds are.

II The First Theorem

Actually, the Helmholtz theorem1 proves a slightly dif-
ferent thing, from which the statement above follows
immediately: a vector �eld ~V which vanishes at the
boundaries can be written as the sum of two terms,
one of which is irrotational and the other, solenoidal
(that is, divergenceless)[2]. Consider the following well-

known identity for an arbitrary vector �eld ~Z(~r) :

�~r2 ~Z = �~r(~r: ~Z) + ~r� ~r� ~Z : (1)

If we now take our vector �eld to be

~V = �~r2 ~Z (2)

then it follows that

~V = �~rU + ~r� ~W (3)

with

U = ~r: ~Z (4)

and
~W = ~r� ~Z : (5)

Equation(3) is Helmholtz's theorem, as ~rU is irrota-

tional and ~r� ~W is solenoidal.

But, is it general? It assumes that our vector �eld
can be written as the Laplacian of some other one. This
constitutes, however, no problem if ~V vanishes at in�n-
ity fast enough, for, then, the equation

~r2 ~Z = �~V ; (6)

which is Poisson's equation, has always the solution

~Z(~r) =
1

4�

Z
d3~r0

~V (~r0)

j~r � ~r0j
: (7)

It is now a simple matter to prove, from Eq.(3), that
~V is determined from its div and curl. Taking, in fact,
the divergence of Eq.(3), we have

div~V = �~r2U ; (8)

which is, again, Poisson's equation, and, so, determines
U as

U(~r) =
1

4�

Z
d3~r0

~r0:~V (~r0)

j~r � ~r0j
: (9)

Take now the curl of Eq.(3). We have

~r� ~V = ~r� ~r� ~W

= ~r(~r: ~W )� ~r2 ~W : (10)

Now, ~r: ~W = 0, as ~W = ~r � ~Z, so another Poisson
equation determines ~W . Using U and ~W so determined
in Eq.(3) proves our contention.

1In modern form, much generalized, this is the famous Kodaira-Hodge-De Rham decomposition theorem [6].



156 H. Fleming

III Applications

We start with a very simple one. Consider a homoge-
neous, ohmian conductor, and let the current density ~j
vanish at the closed surface which encircles it. We want
to inquire as to the possibility that a stationary current
may exist in this conductor. We then have ~r:~j = 0, as
the current is supposed to be stationary, and ~j = � ~E,
which is Ohm's law. Also, ~r � ~E = 0, for a static ~E.
But then,

~r�~j = �~r� ~E = 0 (11)

and so we have both ~r:~j = 0 and ~r�~j = 0. Besides,
~j vanishes at the boundaries. It follows, then, from
Helmholtz's theorem, that ~j = 0. So, no stationary cur-
rent can run under these conditions. Notice that this is
true also for a torus and its continuous deformations, so
that it applies to any closed circuit, proving the neces-
sity that the condition ~j = � ~E be broken somewhere in
the circuit (where the electromotive force is located).

Consider now the electromagnetic potentials. The
Maxwell equation

~r: ~B = 0 (12)

states that there exists a vector �eld ~A such that

~B = ~r� ~A; (13)

this ~A being called the vector potential. We may as-
sume that ~A vanishes at in�nity. Now, what we know
about ~A is just its curl. Therefore, by Helmholtz's the-
orem, we are free to choose the value of its divergence.
For instance, we may take ~r: ~A = 0, determining com-
pletely ~A. This is the so-called Coulomb gauge. But we
can also put ~r: ~A = � 1

c
@�
@t
, � being the scalar potential.

This is the Lorentz gauge.

IV The Second Theorem

There is another important result by Helmholtz in the
same paper we mentioned above. It concerns the most
general in�nitesimal deformation of a plastic (that is,
non-rigid) body.2

Consider a small volume element of a deformable
body (a 
uid, say). Putting the origin of the coordi-
nates inside this volume element, let ~r be the position
of a generic point P . The origin is denoted by O. After
a deformation, the material point P has a new posi-
tion vector, ~r + ~s. Also the point of the body located
at the origin moved, its position now being given by
~s0. We assume, as physically reasonable, that ~s is, as
a function of position, continuous and di�erentiable to
any order. In what follows, in order to get results of
enough generality, we assume P very close to O, that
is to say, we consider an in�nitesimal volume of the
body. Notice that ~s itself does have to be small in

what follows, though, in considering deformations, this
is somewhat academic, as �nite deformations can al-
ways be obtained from in�nitesimal ones (for instance,
by Lie group methods). This notwithstanding, the ge-
ometrical interpretation we will get is only clear for
in�nitesimal ~s. On the other hand, the application for
the electric �eld which is done below would be impov-
erished by con�ning ~s to be in�nitesimal.

A Taylor expansion for ~s gives

~s(~r) = ~s0 + (~r:~r)~s (14)

neglecting further corrections, what is allowed by the
restriction to in�nitesimal volume. Here we wrote ~s0
for ~s(~0). In more detail, if si is the i-th component of
~s, one has

si(~r) = (s0)i +
X
l

xl(
@si

@xl
)~r=0: (15)

This can be abbreviated to

si = (s0)i + xl@lsi (16)

or,
si = (s0)i + xlTli: (17)

where, obviously,

Tli = (@lsi)~r=0 : (18)

In order to analyse this deformation in terms of more
basic ones, let us decompose Tli in the following way:

Tli =
1

2
(Tli + Til) +

1

2
(Tli � Til) (19)

and consider separately the symmetric and the anti-
symmetric parts. The antisymmetric part is

1

2
(@lsi � @isl) =

1

2
�lik(curl ~s)k : (20)

The symmetric part is Sli �
1

2
(Tli + Til). It can be

decomposed as follows:

Sli =
1

3
ÆliS + (Sli �

1

3
ÆliS) (21)

where S � Tr(Sli) = Sii : Now, Sli =
1

2
(@lsi+ @isl), so

that
S = @isi = ~r:~s : (22)

We can therefore write Eq.(21) as

Sli =
1

3
Æli~r:~s+ S0li; (23)

where S0li is a traceless symmetric tensor. Going now
to Eq.(17), we can write

si = (s0)i + xl
1

2
�lik(curl ~s)k +

1

3
xi div~s+ xlS

0

li (24)

2A beautiful treatment of this topic, as well as of the whole vector analysis, is found in Sommerfeld's Mechanics of Deformable

Bodies[5].
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or,

~s = ~s0 +
1

2
(curl ~s� ~r) +

1

3
~rdiv ~s+ ~r:S0 (25)

where the last term is a vector whose i-th component is
xlS

0

li. An object like S0 is sometimes called a dyadic.It
is a second-order tensor. Let us examine the meaning
of the several terms of Eq.(25). The �rst term of the
second member is a translation. The second is an in-
�nitesimal rotation around the axis (curl ~s)~r=0, and the
remaining terms describe a dilatation of the volume ele-
ment. To understand them better, let us suppose tem-
porarily that the translation and the rotation vanish,
so that we have, for a component of ~s:

si =
1

3
div ~s xi + xlS

0

li : (26)

Now, S0li is a symmetric matrix, so it can be diagonal-
ized. This means that we can change coordinate axes in
such a way that, in the new ones, the matrix elements
of S0 have the form S0li = ÆliS

0

ii, where no sum is im-
plied in this last expression. So, if the new coordinates
are denoted by Xi, we have

X
l

xlS
0

li =
X
l

XlÆliS
0

ii = XiS
0

ii no sum on i ; (27)

so that

si =
1

3
div ~sXi + S0iiXi (no sum) : (28)

Consider the in�nitesimal \cube" centered at O, with
P as a vertex. (The \cube" may have curvilinear
edges, at least after the deformation). Its volume
before the deformation was, in the new coordinates,
V = X1X2X3. After the deformation, it is V 0 =
(X1 + s1)(X2 + s2)(X3 + s3). As we have, consider-
ing only the dilatation,

si =
1

3
div ~sXi + S0iiXi = Xi(

1

3
div ~s+ S0ii) (29)

then

Xi + si = Xi(1 +
1

3
div ~s+ S0ii) � Xi(1 + �i) (30)

and, for the volume,

V 0 = X1X2X3(1 + �1)(1 + �2)(1 + �3) (31)

which, to �rst order is

V 0 = V (1 + �1 + �2 + �3) (32)

that is,

V 0 = V (1 + div ~s+ S0
11

+ S0
22
+ S0

33
) : (33)

But, as S0ij is traceless,

V 0 = V (1 + div ~s) : (34)

So, the S0ij do not contribute to the change of volume,
but do contribute to the change of the form of the lit-
tle cube. Referring again to Eq.(25), we see that ~s

is written as a sum of a translation, plus a rotation,
plus an isotropic dilatation, plus a volume-conserving
deformation.3

Notice that Eq.(25) was obtained using only Calcu-
lus. So, it should apply to any vector �eld whatsoever.
To shed more light on the role of each term of the ex-
pansion, let us use it for the electric �eld. We then
have:

~E(~r) = ~E(~0) +
~r

3
(div ~E)0

+
1

2
[(curl ~E)0 � ~r] + ~r:S0 : (35)

As (div ~E)0 = 4��(~0), the second term reads

~r

3
(div ~E)0 =

~r

3
4��(~0) =

4�

3
r3�(~0)

~r

r3
: (36)

Now, this is the �eld of a uniformly charged sphere of
radius r at a point of its surface. It is a radial �eld to
be added to ~E0.

The second term vanishes if the �elds are static.
Otherwise,

(curl ~E)0 = �
1

c
(
@ ~B

@t
)0 (37)

and
1

2
[(curl ~E)0 � ~r] = �

1

2c

@

@t
[ ~B(~0)� ~r] : (38)

Consider a uniform magnetic �eld of value ~B(~0). A
vector potential corresponding to it is

~A(~r) =
1

2
~B(~0)� ~r (39)

so that we have

1

2
[(curl ~E)0 � ~r] = �

1

c

@ ~A

@t
: (40)

This means that the third term of Eq.(35) is the con-
tribution of the magnetic �eld at the origin, treated as
follows: extend the value of ~B at ~0 to a uniform �eld.
Compute its vector potential and then add the term

� 1

c
@ ~A
@t

to ~E(~0). All the rest of the �eld at ~r (and that
could be a lot!) comes from the term S

0.

3This is, in fact, the decomposition, following Weyl[3], of the tensor Tli into its irreducible components under rotations. This corre-
sponds to analysing an in�nitesimal deformation in terms of quantities which transform as irreducible representations of the rotation
group. In particular, the traceless symmetric tensor \carries" an irreducible representation of dimension 5, an anisotropic object.
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V Conclusion

The �rst Helmholtz theorem explains why the div and
curl are so ubiquitous in vector �elds. It also explains
the structure of Maxwell equations, usually written in
such a way that the �rst member of each is either a div
or a curl. The second explains the meanings, and so
also the names, of those operators. Considering that
Hermann von Helmholtz graduated in Medicine, not in
Physics, that was not a bad job at all!

I wish to thank Walter F. Wreszinski for enlighten-
ing comments.
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