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In this work we analyze an undergraduate experiment used to determine the thermal conductivity
of metals (K). We introduce few modifications in order to offer the student the chance to explore
different models, learning the basic scientific method of developing appropriate and improved ex-
planations for each experiment in order to better link theory and empirical results. Semi-empirical
corrections are introduced in the system in order to check the experimental results according to
previously reported K values. As specific cases we use copper [K = 0.92 cal /(* C s cm)], aluminum
[K =0.49 cal /(" C s cm)] and brass [K = 0.26 cal /(" C s cm)] cylinders.

Nesse trabalho analisamos um experimento de graduacao que é utilizado para se determinar a
condutividade térmica de metais (K). Introduzimos algumas modificagdes a fim de oferecer ao
estudante a oportunidade de explorar diferentes modelos, de forma a aprender o basico do método
cientifico de desenvolvimento de explicaces apropriadas, e melhoradas para cada experimento com
o objetivo de obter uma melhor afinidade entre teoria e resultados experimentais. Corregoes semi-
empiricas sao introduzidas no sistema a fim de comparar os resultados experimentais com outros
previamente tabelados. Como casos especificos utilizamos cilindros de cobre [K= 0.92 cal /(" C s
cm)], aluminio [K = 0.49 cal /(° C s cm)] e latdo brass [K = 0.26 cal /(" C s cm)].

I Introduction classes. They seem to have the behavior of collecting
the data first, and trying to understand them latter as a
homework. This philosophy must be changed, although
this is not an easy task. Even in the best cases, after
collecting all the necessary data and substituting them
into the respective equations in order to check the va-
lidity of the last (or the validity of the description of the
physical phenomena), in many occasions the students
find a disagreement between the prediction of the the-
ory and their findings in the laboratory. Most of the
time this fact happens not because the physical laws
are wrong, and not also because the experiment was
wrongly performed. This happens indeed because the
physical model is incomplete or too simple to explain
the whole experimental work. As two typical exam-
ples it can be said that during the classes of mechanics
very often the model does not take into account non-
conservative forces, and during the classes of thermody-
namics very often the model does not take into account
the loss of energy by heat conduction at some surface

During the high-school classes around the world, most
of the activities are still based on the classic seminar-
like presentation by the teacher. Most of the courses
are based on theoretical classes, where only a very low
percentage of the students have the chance to explore
any kind of practical demonstration or experimenta-
tion. Even in the best cases, the approach is very super-
ficial. The amount of experimental studies increases at
the undergraduate level, specially considering Physics
and Chemistry classes. It can thus be said that the
first contact of the students with the scientific method
of investigation occurs during the basic laboratory un-
dergraduate physics courses.

The classes of experimental physics are normally de-
veloped in parallel with the theoretical classes during
the same term or semester. In this sense, most of the
times it is assumed that the students perform their ex-

periments after the comprehension of all the physical
concepts behind the theory, as well as the development
of all the equations, etc. Unfortunately, history shows
that this is not always the case because the students do
not prepare themselves properly before the laboratory

or interface, and so on.

The important fact about the situation is that the
students cannot visualize or imagine where the discrep-
ancy comes from: they cannot easily identify the miss-



T.B. Ferrari et al.

ing concepts. The students adopt either one of two
procedures during their reports: a) they state that the
experiment is very bad, the available tools and equip-
ments are inappropriate, the results are consequently
very poor and they cannot verify what they wanted,
thus blaming the experimental errors more than they
should or could; b) they try to adopt the opposite way
of thinking, i.e., considering the many possible errors
in the experiment, they try to create a larger error bar
in order to justify any mismatch according to this ma-
neuver.

Regardless of any of the above, most of the time the
students try to blame the experiment and the experi-
mental data in a way to protect the set of theoretical
equations as a holly statement. Only a very small per-
centage of the students have in fact the courage to face
the problem and try to look for the real explanation,
even though this seems to be a hard work for them.
Some times they can even elaborate a list of possible
causes for the observed mismatch, but do not have the
feeling of how each one of them would contribute to a
final experimental value higher or lower than expected.
In general, they have trouble trying to quantify the pos-
sible causes of disagreement between expected values
and observed data.

In order to try to help to solve the above problem,
the present paper discusses a simple experiment and
procedure of analysis that are suggested for laboratory
classes where the students are introduced to the scien-
tific method based on the determination of the thermal
conductivity of metals.

The experiment deals with the ancient problem of
thermal conduction through a metallic cylinder whose
ends sit at temperatures T1 and T2 where T1>T2 as
shown in Fig. 1 (where L is the cylinder length and D
its diameter). Assuming an isolated system, the heat
exchange can be written as [1,2]:

AQ A

where AQ/At is the heat transfer per unit time, K is
the thermal conductivity of the material, A is the sur-
face area, L is the total length of the cylinder, and AT
is the temperature difference between the two faces, i.e.
AT = T1-T2.

In this work we review a simple experiment that can
be used to determine K for different metallic materi-
als where the theoretical model expressed by equation
1 represents only a first approximation to the reality.
The main differences between theory and experimental
facts can be explored by the student in a scientific way.
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Figure 1. Illustration of a metallic cylinder of length L and
diameter D, whose faces sit at temperatures T1 and T2.
Heat conduction occurs from face 1 to face 2 given that
T1>T2.

A

II Experimental

The experimental setup consists of a metallic cylinder
(diameter D, and length L as shown in Fig. 1) that is
used to connect two cups as illustrated in Fig. 2. For
all the experiments presented in this work it was always
adopted D = 15.85 £ 0.0lmm and L = 61.00 £ 0.01mm.
Cup 1 is made of aluminum and it is filled with water
(M1 = 300 £ 1 ml) at room temperature. The wa-
ter temperature inside Cup 1 is going to be referred as
T1, and it is monitored by the use of a thermometer.
Cup 2 is made of Teflon [3-5] and it weights Mco. It
has also a Teflon cover with a hole for the introduction
of a thermometer (+ 0.5°C) that is used to monitor
the temperature (T2) of a fixed amount of water (M2)
inside Cup 2.

Cup 1 is heated by a flame until the water inside it
starts to boil. At this moment an stirrer is introduced
inside Cup 2. This stirrer consists of a small ferromag-
netic cylinder covered with a thin layer of epoxy. Under
Cup 2 sits a rotating magnet that is used to induce the
movement of the stirrer inside Cup 2. In the sequence,
small cubes of ice are introduced inside Cup 2, and a
chronometer is started. After all the ice has melted an
increase in temperature T2 is observed, and thus the
system is under an almost stationary condition. A ta-
ble is constructed containing each degree of variation
of T2, the respective T1 and the elapsed time since the
beginning of the experiment. The table of the present
paper (not shown) was constructed from T2 equal to 0
up to 36 * C. Note that higher T2 final values could also
be used.

At the end of the experiment the amount of water
inside Cup 2 (Mz) was measured. We used M, values
of 145.0 £ 0.5 ml, 135.0 &+ 0.5 ml and 112.0 + 0.5 ml
for the experiments performed with brass, aluminum
and copper cylinders, respectively. Note that in or-
der to avoid burning accidents the external part of the
cylinder was protected by a thin Teflon layer between
the two cups (approximately 1 mm thick). After the
construction of the table with the results of the exper-
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imental data, different models were applied for their
understanding as presented in the next sections.

Thermometer Thermometer
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Figure 2. Schematic drawing corresponding to the experi-
mental set-up. Cup 1 made of aluminum is filled with water
and heated by a flame while its temperature is monitored
by a thermometer T1. Cup 2 is made of Teflon, which is
also filled with ice and water. It has a Teflon cover and
its temperature T2 is also monitored. Heat is transferred
from Cup 1 to Cup 2 through the metallic cylinder. A stir-
rer is used for a better temperature homogenization inside
Cup 2.

IIT Results and Discussion

II1.1 The simplest model

We observed that for the case of a copper (alu-
minum/brass) cylinder the system takes about 800
(1350/1840) seconds for the heating of T2 from 0 C up
to 36 ° C. These are important numbers that help the
professor during the preparation of the classes. In order
to determine K using the theoretical model predicted
by equation 1, AQ can be calculated using the approx-
imations that all the heat that is transferred from Cup
1 through the metallic cylinder is stored in the water
inside Cup 2. According to that simple model, for each
variation of T2 by one degree, AQ can be written as
[6,7]:

AQ = M, Cw ATw (2)

where Cy is the specific heat of water (equal to
lcal/g " C) and ATyw is the increase in temperature

equal to 1° C. For each material K can be determined
by substituting equation 2 into equation 1. We name
this model as model 1, and thus K is denoted as K;and
written as:

K) = (M» Cw ATw L)/(AT A At) (3)

Note that in equation (3) most of the parameters
are constants, besides AT and At (assuming ATy as
1°C).

Figure 3 shows the results of K; as a function of
T2 for copper (squares), aluminum (circles) and brass
(triangles) respectively. Three different regions named
A, B and C are illustrated in Fig. 3, and they are
separated by the vertical dashed lines. Each of them
will be considered separately next. The data for T2 <
5" C were not shown in region A. They were excluded
from the graph because region A represents a regions
where the system in not in equilibrium yet (a mixture
of water and ice exists inside cup2, that also presents a
temperature gradient), thus K1 values start from close
to zero and reach the equilibrium value at about T2
equal to 5" C. In this sense, region A is totally disre-
garded. Regions B and C are separated according to
room temperature, that was about 27 ° C.
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Figure 3. Experimentally obtained thermal conductivity
values (K1) according to the simplest theoretical model de-
scribed by equations 1 and 2 (see text) for three metallic
cylinders made of copper (squares), aluminum (circles) and
brass (triangles) as a function of the temperature (T2) in-
side Cup2. Vertical dashed lines separate three regions: a)
non-equilibrium region; b) quasi-equilibrium region for T2
smaller than room temperature; c) quasi-equilibrium region
for T2 higher than room temperature. Note that the ob-
tained K1 are neither constant nor linear as a function of
T2, in disagreement with the theory.

It can be observed from Fig. 3 that the experi-
mental K; is neither constant nor linear as a function
of T2. This finding is in total disagreement with the
predicted theoretical model. On top of that the experi-
mentally obtained K; maxima are considerably smaller
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than those reported for copper [0.92 cal /(° C sec cm)],
aluminum [0.49 cal /(° C sec cm)] and brass [0.26 cal
/(" C sec cm)] [8]. The difference between reported and
experimentally determined values are bigger, the higher
the reported K value. At this moment the student is
lead to think about the experimental results, and is also
lead to try to understand them and to formulate new
models that would better explain the data.

II1.2 The influence of the Teflon Cup

The model needs a correction in region B because
the total increase in T2 is due to the heat conduction
through the metallic cylinder (AQcy LiNpER), Plus the
heat conduction from the Teflon Cup (AQcy p) because
the internal part of the Teflon Cup sits at T2 while the
outmost part sits at room temperature (which is higher
than T2). In this sense, the total heat transferred to
the water inside Cup 2 can be written as:

AQwarer =AQcvrinper +AQcup (4)

AQcyrinper calculated from equation 4 can be

what suggests an even worse result than the one ob-
served in Fig. 3, given that a smaller AQcyriNDER
would be obtained. We will come back to that further
below.

The model needs to be corrected for region C also,
but in this case the total heat transferred through the
metallic cylinder is basically divided in three parts: a)
part of it is used to increase the water temperature
inside Cup 2 (AQwargr) ; b) part of it is used to in-
crease the temperature of the cup itself (AQcup_a),
and c) part of it is lost due to the mechanism of heat
transfer through Cup 2 to the atmospheric environment
(AQcup_B). Thus, AQeyLrnpercan be written as:

AQcyrLiNpEr = AQwarer +AQcup_a +AQcup.B

(8)

K
AQcyvriNpEr = My Cw ATw — { dTE

TE
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substituted into equation 1.AQw aTrr is calculated as
in equation 2, and AQgyp is calculated as:

KrrArk

AQcup = -

ATrpAt (5)

where At is the same time interval as before, ATrg
is the temperature difference between the internal and
external walls of the Teflon Cup, drg is the thickness
of the walls of the Cup (7.5 mm), Krg is the thermal
conductivity of Teflon (4.53 x 107* cal/(* C s cm)), and
Argis the effective area of the cup in contact with the
water inside it. This area can be written as the sum of
the lateral and the bottom areas, and can be approxi-
mated by the following equation using an average cup
radius Rrg (37.2 mm):

ATEZQWRTEH-FWR%E (6)

where H is the height of the water column inside Cup 2
(76.1 mm). Note that the cup is not totally filled with
water, and the top of the cup is not in contact with
the water inside it. According to the above, the right
AQcyLiNpERYO be used in equation 1 would be given
by:

(27 Rre H + 7 R3p) ATrp At} (7)

where AQw arggr is calculated as in equation 2, and
AQcyp_p is calculated as in equation 5.

In order to calculate AQcyp_a we assume a linear
temperature distribution though the thickness of the
Teflon cup as illustrated by the solid line in Fig. 4(a).
We also assume that for each At the temperature distri-
bution varies qualitatively according to the dashed line
in Fig. 4(a), once that the temperature of the internal
wall increases by 1° C, and the temperature of the ex-
ternal wall stays at room temperature. Of course this
is just a first simple approximation, since the higher
the value of the temperature of the internal wall of the
cup, the bigger the difference between the temperature
of the external wall and the external ambient. This is
going to be latter addressed in more detail. According
to this first approximation, the total heat stored inside
the cup material itself would be given by:

dTE dTE
AQcup, = / prE Are Crp AT (2) de = prE ATE C'TE/ AT(z) dz (9)
0 0
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where prg is the mass density of Teflon (2200 kg/m?),
Arg is given by equation 6, Crp is the specific heat of
Teflon (0.28 cal/(g * C)), and AT(x) is the temperature
variation inside the thickness of the cup as a function of
the length for 0 < x < dpg. In order to solve the above
integral, AT(x) must be known. This information can
be extracted from Fig. 4(a) using the difference be-
tween the two equations that describe each of the linear
dependence of T with x before and after At. According
to that, the initial distribution of temperature would be
given by:

AT (z) =T2(x) —T1(z) = Trnt2 — TinTo1 + {

Tinta —TexT

Tl(w) = T]NT_l—al -x with al = dTE

(10)
and the final distribution of temperature after At was
elapsed would be given by:

Tint2 —TexT

(11)

Using equation 10 and 11, AT(x) can be written as:

T2(z) =Tinr2—a2 -z with a2 = -

T -T
INT_1 INT_Q} . (12)

drge

Taking into account that the variation from Tjn7_1 to Tyyr_2 is equal to 1° C, equation 12 can be reduced to:

T

AT(z)=1— — (13)
drg
The substitution of equation 13 into equation 9 leads to:
dre z dre
AQcup_a = pTE ATE C'TE/ 1— —dz =prg Arg CrE—— (14)
0 drg 2

Then, the expression for AQcyrinypercan be obtained by substituting equations 2, 5 and 14 into equation 8:

K
AQcyrinpeEr = My Cw ATw + { dTE

TE

TiNT 2 P2
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Figure 4. Schematic illustration of temperature distribu-
tion: a) from the inner surface of the Teflon wall of Cup
2 to the outer surface; and b) along the extension of the
metallic cylinder from Cup 1 to Cup 2. The solid line (num-
bered 1) represents the initial temperature distribution and
the dashed line (numbered 2) represents the final tempera-
ture distribution after the time interval At, for both curves.
In a) the horizontal axis corresponds to the wall thickness
(from 0 to d7g); Texr is the external temperature, Tryr_1
and T;ny7_2 are the internal initial and final temperatures
respectively. In b) the horizontal axis corresponds to the
cylinder length (from 0 to L); T1 is the constant tempera-
ture of Cup 1; T2_; and Ts_y are the initial and final tem-
peratures of Cup 2 respectively.

At this moment the student should be able to per-
form new calculations taking into account the contri-
bution of each different mechanism described so far.
We do not present these data here. Instead, we move
one step further and discuss in the next section extra
mechanisms that must also be taken into account for
the construction of a better model.
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II1.3 Losses through the cylinder

Two other different mechanisms exist, besides the
heat conduction from cup 1 to cup 2 by the metallic
cylinder. The first of them regards the heat that is lost
through the surface of the cylinder (AQgsygrr) (in its
radial direction, i.e. along the vertical arrow in Fig. 1)
because, in principle, each section of the cylinder sits at
a temperature T higher than room temperature. The
second mechanism regards the storage of heat inside
the metallic cylinder itself (AQsrorED) as previously
described for Cup 2. In this sense, the total heat lost
(AQrosr) can be written as:

AQr, ., = AQSURF + AQSTORED (16)

The heat lost through the surface AQgsy g is one of
the most difficult to be quantified, mainly because of its
three-dimensional character. As a very rough approxi-
mation, it could be said that the heat transfer rate at
each section of the cylinder (i.e. in its radial direction)
would be given, as in the case of equation 1, by [1,2]:
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AQsurr Aspc

where At is the elapsed time as before, K is the ther-
mal conductivity of the metallic cylinder, AT(x) is the
temperature difference between the highest tempera-
ture inside each section of the cylinder and room tem-
perature, Aggc is an effective area and Lggc is an
effective length for the heat transfer, respectively. Just
as a simple approximation it could be assumed that:
a) Asgc can be approximated by the perimeter of the
section at position x, i.e., Aggc = 7 D; and b) the
highest temperature inside the section is localized at
the cylinder axis, i.e., a linear gradient of temperature
will be assumed for each section with the highest tem-
perature value sitting at the cylinder axis and the lowest
temperature value sitting at the external surface thus
leading to Lggc = D/2. It is obvious that this is not
the exact case, and thus extra discussion about these
approximations is needed. Anyway, according to the
above AQsygrrcould be written as:

L' KorD L
AQsurr = / T”At AT(z) dr =21 K At / AT(z) dz (18)
0 0

Note that L in equation 18 refers to the cylinder length between the two cups.
In order to solve the above equation AT(x) must be known. Applying the same approximation as in the previous
section, AT(x) = Trn7 - Texr, and Ty can be approximated by a linear function of x as:

TINT =T1—ax 5

Then AQsygrr can be finally written as:

L
AQSURF =21 K At / (Tl _TEXT) — < I
0

T1-T2

T1-T2

with a= ——— (19)

L

2

T1 -T2
>£Ud5l7:27TKLAt (Tl—TEXT—7> (20)

On the other hand, the heat stored inside the cylinder itself AQsrorep can be calculated using the same
procedure as before for the case of Cup 2. The only difference now is the fact that the temperature distribution
inside the cylinder and its variation after At would be illustrated by Fig. 4(b). According to Fig. 4(b), AT(x)

could be written as:

T1-T2_f T1 -T2 x . x
st=ri- (D2, (T2 ) o2
because the difference between T2_f and T2.i is always kept equal to 1° C.
The heat stored in each section of the metallic cylinder can be written as:
D\ 2
AQ(z)=pu T (5> Cn AT (x) (22)

where pyr and Cps are the mass density and specific heat of the metallic cylinder, respectively. par (Car) is equal
to 8400 (0.090), 2700 (0.215) and 8920 (0.092) kg/m? (cal/(g ° C)) for the case of brass, aluminum and copper,
respectively [8]. The total stored heat can be calculated by the integration of equation 22 along the whole extension
L of the cylinder from Cup 1 to Cup 2, after the substitution of equation 21 into 22:
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L 2 2
D T D L
A = — — = — — 2
QsTORED /0 pM7r<2> C’MLda: pM7r<2> CM2 (23)
The substitution of equations 20 and 23 into equation 16 leads to the final AQros7:
T1-T2 D\’ L
AQrost =27 K L At (Tl —TpxT — — ) +pu T (5> Cumr 3 (24)

For region B, all contributions (equations 7 and 24) discussed in the last two sections add up as:

AQcyrinpEr = M> Cw ATw — {KTE (27 Rrp H + 7 R%p) ATrg At} +

dre ) (25)
27 K LAt (T1—Texr — 252 +pun (8) Cu &
The substitution of equation 25 into equation 1 would lead to a final K value for region B of:
1\

Kp = Z (26)

where

K D\’ L
U = M, Cy ATy — { dTE(2 7 Rrg H + 7 R3y) ATrp At} FpouT <5> Cu 5 (27)
TE
and
A T1-T2

Z:ZAtATw—QTr L At (T]-_TEXT_T> (28)

For region C, on the other hand, all contributions (equation 15 and 24) discussed in the last two sections add
up as:

AQCYLINDER = M2 CW ATW + {KTE (2 ™ RTE H + 7 R%“E) ATTE At} + PTE ATE CTEdTTE“‘

dre ) (29)
2n K LAt (T1—Texr — 252 +pum (B) Cu &
The substitution of equation 29 into equation 1 would lead to a final K value for region C of:
T
Ko = 7 (30)

where

TE

K
T:MQCWATw+{d

D\’ L d
— (27 Rrg H+ 7 R3.p) ATrg At} +pu T <—> Cum 5 trTE Arg CTE% (31)

2

and Z is given by equation 28. Note that even though the mathematical models are
not correct, the most important physical mechanisms
for heat conduction and heat storage have been identi-
fied. Thus the calculations presented so far represent a
way of inducing the students to the continuous interro-

gation of the experimental results and to the continuous

It is obvious that the models described above ei-
ther for region B or C are not exact. In fact lots of
approximations have been made just because it was as-
sumed that the students do not have enough mathe-

matical tools yet, given that this experiment could be
performed during the first year (second semester) of the
undergraduate course. In fact, the present authors have
already adopted this experiment as part of a laboratory
course called Laboratério de Fisica II, at the DFM-
FFCLRP-USP with great success for two semesters.

development of better and more specific models. As a
simple example, starting with the analysis of region B,
the students can easily observe by simple substitution
of the variables’ values into the equations that the sec-
ond term of Z given by equation 28 is overestimated.
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According to that, Z would have a final negative value,
lacking any real physical significance. This shows that
AQsurrF , as obtained by equation 20 is overestimated
mainly due to the incorrect temperature distribution
inside each section of the cylinder as presented by equa-
tions 18 and 19.

In order to better understand the system, a different
approach can be adopted by a huge turn in the experi-
ment. The students can: a) adopt the reported K values
as known constants; b) introduce a function F(T2) that
would represent the correction that must multiply the
second term of Z in equation 28 for the right answer,
thus leading to a new function called Z2; and c) deter-
mine F(T2) using expressions 26, 27 and the corrected
equation 28. Note that a new semi-empirical model for
the second term of equation 28 would be obtained this
way.

Curiously, after the proper substitution, the ob-
tained F(T2) is a linearly decreasing function of T2 in
the region 5 < T2 < 27° C for the three cylinders, i.e.,
F(T2) = a - b.T2. Fig. 5 presents the experimental
data for the case of the aluminum cylinder only. The
corresponding coefficients of the linear fits for the case
of the three metallic cylinders are presented in the in-
set of Fig. 5. Note that each metallic cylinder has its
own set of fitted parameters, indicating that the correc-
tion function F(T2) is in fact a function of the cylinder
material also.

20 . . . ,
Aluminum
15+ .
o
= 107 K12 =a-b.T2 i
N . 2 4
= Material a(10™) b(107)
- 0.5+ Brass 1.27 26 T
Aluminum 1.80 35
Copper 1.90 40
0.0 + } + } ;
0 10 20 30
Temperature T2 (°C)

Figure 5. Empirical function F(T2) as a function of the
temperature inside Cup 2 for the correction of the second
term in equation 28 (for the analysis of region B in Figure
3) for the case of an aluminum cylinder. Note that F(T2)
is a linear function of T2, the same being true for the case
of the other metallic cylinders. The corresponding fitting
parameters are given at the inset.

The fitted parameters a and b are plotted in Fig.
6 as a function of each reported K value, where the
cylinder material is also identified. Parameter a is plot-
ted as solid squares at the left axis, while parameter
b is plotted as open triangles at the right axis. It is
also interesting to observe the non-linear variation of
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both parameters as a function of the reported K value,
indicating that once again the cylinder material itself
plays a very important hole. Note that both a and b
parameters increase with K, and that while the ratio of
the highest to lowest reported K value is about 3.5, the
ratio of highest and lowest a (or b) parameters is less
than 2. The dashed line in Fig. 6 is only a guide for
the eyes, and no fitting was tried because of the limited
amount of experimental data. Finally, the final semi-
empirical correction to the second term of equation 28
would depend on two variables (K and T2) as:

F(T2,K) = a(K) — b(K) . T2 (32)

regardless of other parameters intrinsically related to
the geometry of the system.

22 r r r r 45
201 F(T2)=a-b.T2 % 140
N,-\ 1.8“ //%_,- __3.5?/\
. 1 o
S e 130
T L4t na =
© - % A b lss

12+
Brass Aluminum Copper 12.0

1-0 T T T T
0.0 0.2 04 0.6 0.8 1.0
Reported K value (cal / °C scm)

Figure 6. Fitted parameters of F(T2) for the case of the
three metallic cylinders (as presented in the inset of Fig.
5) plotted as a function of the corresponding thermal con-
ductivity of each material, the last ones obtained from the
literature (see text).

Note that although an experimental function is
found, the students cannot totally understand its phys-
ical meaning and origin, what can contribute to their
own stimulation for the following courses of physics,
mathematics and numerical calculus.

Moving to the analysis of region C, the corrected
72 term should be used in place of Z in equation 30
as discussed above. Nevertheless, even in this case, the
K value calculated according to equation 30 is overes-
timated. The first three terms in equation 31 are ba-
sically the same as in equation 27 (the only difference
being the fact that the second term is now added rather
than subtracted in the whole expression). According to
the previous discussion about region B, these terms can
be considered mathematically correct, and in this case,
the only possibility of disagreement must come from the
fourth term in equation 31. That is indeed the case as
can be numerically confirmed: the fourth term in equa-
tion 31 is more than twice as big as the sum of the other
three in the same expression. Thus, it is reasonable to
assume that the fourth term has been the overestimated
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one. The main reason for that is the very simple (and
incorrect) distribution of temperature inside the walls
of Cup?2 itself.

Following the same procedure as for region B, the
student can try to determine a function G(T2) that
would multiply the fourth term in equation 31, thus
leading to a corrected Y2 value in substitution to Y in
equation 31. Once again, a semi-empirical model would
be obtained. In practice, once again the obtained func-
tion is linearly dependent on T2, and can be written as
G(T2) = ¢ + d . T2. The fitted parameters ¢ and d
are plotted in Fig. 7 for the case of the three metallic
cylinders. As in the previous case, the fitted parame-
ters depend on the material also, and the final G(T2)
could then be written as:

G(T2,K) = ¢(K) + d(K) . T2 (33)
. . , : 20
30T G(T2)=c+d.T2
20+ [ "Al e
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Figure 7. Fitted parameters of G(T2) for the case of the
three metallic cylinders plotted as a function of the cor-
responding thermal conductivity of each material, the last
ones obtained from the literature (see text). G(T2) is the
empirical function that corrects the fourth term in equation
31.

Fig. 8 shows the final results for the case of the three
metallic cylinders for a clear comparison of the models
discussed. The K1 calculated according to equation 1
are shown as open squares. The final Kf calculated ac-
cording to the corrections introduced for regions B and
C are shown as solid squares, and the reported values
for K for each material is shown as a solid line. The
improvement of the semi-empirical model is outstand-
ing.

The main reason behind the need for functions F
and G in the corrected models is the fact that the tem-
perature distribution inside each section of the cylinder
and inside the walls of Cup 2 were oversimplified. In
order to better present a physical model the students
need more mathematical and computational tools, not
available for them yet during their first year of the un-
dergraduate course.
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Figure 8. Comparison of the results that would be obtained
with the simples model (K1, open squares) and with the
model that takes into account several corrections, including
the empirical functions F and G (Kf, solid squares). The
thermal conductivity values obtained from the literature are
shown as horizontal solid lines (K7). Results are shown for
the case of the three metallic cylinders (copper, aluminum
and brass).

IV  Conclusion

In fact, the findings of this experiment are important
not because of the final results, but because they can
show the students how complex a physics experiment
can be even though it might look too simple from the
beginning, and how simplified the theoretical models
can be sometimes. This is an experiment that leaves
student thinking about it even after the end of the
class, and sure contributes to their self motivation dur-
ing other classes of physics, math and numerical calcu-
lus. Finally, more than the simple verification of certain
equations, the students are forced to think about the
nature of many physical mechanisms during heat con-
duction.
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