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A revision of the recursive method proposed by S.A. Shakir [Am. J. Phys. 52, 845 (1984)] to solve bound
eigenvalues of the Schrédinger equation is presented. Equations are further simplified and generalized for com-
puting wave functions of any given one-dimensional potential, providing accurate solutions not only for bound
states but also for scattering and resonant states, as demonstrated here for a few examples.

Keywords: one-dimensional quantum potentials, numerical solutions, computational methods, Schrédinger
equation.

Uma revisao do método recursivo proposto por S.A. Shakir [Am. J. Phys. 52, 845 (1984)] para solucionar
autovalores de estados ligados da equagao de Schrodinger é apresentado. As equagdes sdo ainda mais simplifi-
cadas e generalizadas para computar funcoes de onda em qualquer potencial unidimensional, fornecendo solugoes
acuradas nao somente para estados ligados mas também para problemas de espalhamento e ressonancia, como
demonstrado aqui em alguns exemplos.

Palavras-chave: potenciais quanticos unidimensionais, solu¢ées numéricas, métodos computacionais, equagao

de Schrodinger.

1. Introduction

Predicting physical properties of quantum systems has
basically been treated as an eigenvalue problem. Since
from single atoms and molecules up to nanostructured
devices, chemical and electronic properties are deter-
mined by finding the eigenstates of the system’s Hamil-
tonian. Methods of solving eigenvalue/eigenfunction
problems are therefore an inevitable part of the quan-
tum mechanic theory. In real systems, even one-
dimensional problems can be quite difficult to solve an-
alytically and often approximative, such as in perturba-
tion theory, and/or numerical methods are required [1-
6]. Semiconductor heterostructures are good exam-
ples of one-dimensional systems of technological interest
where numerical solutions of the Schrédinger equation
(SE) are often employed for self-consistent studies of
electronic devices [7-11]. Studies of vibrational bound
states of molecules in physical chemistry, as well as of
other oscillatory systems in atomic and nuclear physics
are treated as one-dimensional problems when summa-
rized in the radial SE; they consist another class of im-
portant examples in which numerical methods are also
often employed [12-15].

Although many procedures and algorithms are
available in nowadays for solving the SE numerically
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- see for instance Refs. [16, 17], and references therein
-, they are suitable to address specific problems on dis-
tinct fields of applied and theoretical physics. There is
still a need for a general treatment that can be summa-
rized into a single routine capable to solve equally well
problems of confined modes by arbitrary potential as
well as scattering problems in open systems. Moreover,
all available numerical methods are essentially mathe-
matical solutions of a differential equation, and hence
the level of expertise required for dealing with these
methods has kept them out of most physics and chem-
istry classrooms, even on graduate courses, where the
demonstrative examples are still limited to a few cases
of quantum potentials for which the analytical solutions
are known.

More than 20 years ago, S.A. Shakir [18] presented a
recursive method to find bound eigenvalues of the SE. It
was a relatively simple method, closely related to those
used in the field of optics for calculating the Fresnel
amplitudes. In despite of its simplicity, and even of the
fact of have been rediscovered a few years latter [19-
21], this method has passed unnoted from the applied
research fields until very recently [22].

In this work, instead of concerning with mathemat-
ical methods to solve the SE for bound and scatter-
ing states, we are concerned with alternative methods
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capable of providing better physical insight about the
quantum world. In other words, methods that provide
solutions of the SE without having to solve it math-
ematically. One class of alternative methods, which
we call physical methods, is possible in one dimension.
They are based on the elemental action of a given sta-
tionary force field on the wave function of the particle.
Action that occurs at every step of a discretized poten-
tial energy function and it is qualitatively always the
same, reflecting and transmitting the incident wave as
in the Shakir’s method [18]. However, here, the origi-
nal formalism is simplified and generalized into a pro-
cedure for computing wave functions of any given po-
tential whatever related to scattering, resonance, tun-
neling, or bound states, as demonstrated for a few ex-
amples. Physical method at their actual stage of devel-
opment might require higher computational cost than
mathematical methods, but offers versatility and exact-
ness in return, as well as the fact that they can be ex-
plained and used even by undergraduate students and
no-experts in numerical methods.

2. Theory

For a given potential energy function U(x), it is always
possible to define the interval X = [z, zn] such that
outside its boundaries, i.e. for x ¢ X, either the poten-
tial is constant or the amplitude of the wave function
vanishes before appreciable variation of the potential.
In this interval, the potential has been discretized into
N steps, and we seek for stationary states with wave
functions in the form

N
W(w) = Y 6(0) (@) M)

=0
]
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in which
Dilw) = Ayt 4 Biem i) ()

and d;(x) =1 for x € [z;,2;41] and 0 otherwise. The
under arrow indicates that this format will be used here
for left-hand solutions, as better explained below.
Incremental distances dz; = xj4; — x;, are small
enough to guarantee a good numerical solution when
taking U(z) = U(z,;)d,(x), as shown in Fig. 1, so that

kj =\ E—Ul(x;) (3)

where ¢ = y/2m/h?. E and m stand for energy and
mass of the particle, respectively.

X1 Xy

Figure 1 - Discretization of a energy potential function U(x)
(dashed line), providing reflection, R; and Rj, and transmission,
T and Tj, coefficients at every step of the discretized function
(solid line). Coefficients with and without bar stand for right-
hand and left-hand scattering solutions, respectively. Wavevec-
tors kj at each interval of constant potential value U(z;) is also
shown.

To calculate the A; and B; amplitudes recursively, initial values at the boundaries of the interval X have to be
provided. For instance, normalized solutions for incidence from the left-hand side, i.e. incidence from = < xg, must
have By = 0 and Ay = 1. Conservation of the probability current imposes that

Y=, and Ph =] (4)

—

at every step of the potential, i.e. at every x;. The prime symbol indicates the first derivative in z. Left-hand
solutions are obtained by applying these conditions, Eqs. (4), first at 2 where By = 0 and

2kn—1

Ay = Ay —————ebnmlon=en—a) = Ay T, 5
N leN_1+kN6 N-1LN , ()
and then at xy_; where
kal - kN 2ik _
By 1= Ay gzt N 2iky_a(en—an-1) — Ay (R 6
N-1 leN—l"’kNe N-1LvN (6)
and
2kN—2 ik (z —z )
Any_1=ANn_2 NN TIN=2) = AN oTN_1 (7)

and then at xy_o where

(knv—2 —kn—1)Rn + (kn—2 + kn—1)

(kn—2 +kn—1)BNn + (kN—2 = kN=1) 2ikn s(an 1—2n_2)

By o=AN_2

(kn—o —kn—1)Rn + (kn—2 + kn—1)

e =ANy_oRNn_1 (8)
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and Ay_s is analogous to Eq. (7) when replacing N by N — 1.
This is a recursive procedure, repeatable since j = N down to 7 = 1 as summarized by

Aj = Aj—lTj and Bj = AjRj+1 (9)

where ok
T; = et etFi-1(@j—wj-1) 10a
T (kjer = k) Rjga + (kjoy + k) (102)

and
R - (ki1 + ki) Rjr + (Rjo1 = K5) i,y aj-aym0) (10b)
(kj—1—kj)Rjt1 + (kj—1 + ;)

All amplitudes are proportional to Ay, and within the condition assumed when defining the interval X, Ry11 = 0.

Solutions for incident particles from the right-hand
side, i.e. incidence from x > xy, are obtained in analo-
gous procedure, but for the sake of simplification in the
final format of the recursive equations it is convenient
to redefine the amplitudes as follow

A = CjHefikjdzj and B; = Dj+1e+ikjd1j’ (11)

and hence the wave function W(z) of the stationary
states will be calculated by using

Y i(x) = Cj+1eikj($—ivj+1) + DjJrle—i’fj(w—l’Hl) (12)
&

instead of 1 ;(z).
—
By applying the continuity of ¢ ; and 1/13, as in
— —

Egs. (4), analogous deduction of that in Egs. (5)-(8) can
be carried out but now starting from x; where C; =0
up to zy1 where Dy 11 = 1 (for normalized solutions).
It leads to the recursive equations

of the right-hand solutions where

T, = _ 2k; etki(@jr1—a;)
T (k= k)R 4 (ks + k1)
(14a)
and
oo Kt k)B4 (k) = kj1) sk (a40-a))
T (kg — k) Ry + (K + ko)
(14b)

for j=1,2,...,N and Ry = 0.

At certain energies E = &,, quantum confinements
can occur at local minima of the potential in which
U(z) < &,; given that each minimum is bounded on
both sides by non-tunnelable barriers. Around one of
such local minima, stationary wave solutions only ex-
ist when the waves reflected at both bounding “walls”
interfere constructively to each other at any instant of
time. It means that left-hand and right-hand scatter-
ing solutions must coexist in the confinement region,

i.e. ¥ j(x) = ¢ ;(z), which takes us back to Egs. (11).
— «—

Since Bj = A;Rj;1 and Cj11 = Dji1R;, as given by
Egs. (9) and (13), all amplitudes cancel each other out

in Eq. (11) so that R;R;41 = exp(2ik;dz;). This latter
relationship provides a criterion for numerical determi-
nation of the allowed modes in any confinement region
of the potential since a minimization function such as

FB) =) |RjR;yq — €475 (15)
J

can be defined with j running over all values where
U(z;) < E. Then, the condition f(E) = 0 is fulfilled
only for a set of discrete &, values of energy, correspond-
ing to the eigenvalues of the one-dimensional SE at a
given local minimum of U(x).

Eigenfunctions W¥,, of the energy eigenvalues &,,
are computed as either i j(x) or g j(x) solutions in
the classical allowed region around the minimum. But
both solutions are required to compute the evanescent
parts of the eigenfunctions inside the bounding walls
and then it is necessary to match the amplitudes of
these solutions at some point. If the hth step, for which
U(zxp) < &, is taken as the matching point, ﬂh = ih

and hence Dj, = Ay(1 + Rpy1)/(1 + Ry_1). By pro-
viding an arbitrary value to Ay, such as A, = 1, the
non-normalized eigenfunction

Yji(z), fh<j<N
\If,,(w)zzj:%(w)x{zj(z), if1<j<n 16

can be calculated over the entire interval X. Since
S = E;.V:'Bl |W, (z;)|?dz; has to be equal to one for a
normalized eigenfunction, VS is the normalization fac-
tor.

3. Examples and discussions

A simple application of this recursive method is to find-
ing transmission coefficients,

T = |An/Ao|” =1 — |Bo/Aol?, (17)

across arbitrary potential barriers. It is known as being
able to provide exact results even for truncated poten-
tials where the most common approximative methods
are used to fail, as compared elsewhere [23]. Besides ex-
actness, another advantage of the present formalism is
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that it is not just computing the values of T, but the en-
tire wave function instead. Hence, for more complex po-
tential barriers, as those usually find in heterostructures
and nanodevices where resonance can take place inside
the barriers amplitudes [17, 22, 24, 25], and evanescence
times of resonant modes are simultaneously computed.

As an example, consider the potential given in
Fig. 2, which is a double barrier with V-shaped well the
middle. By scanning the energy values E, Eq. (3), in a
chosen range from E,,;, to Fpq, in Np steps of width
dE so that E,, = Enin + (n— 1)dE and Eyn, = Enag,
a T(FE) curve is obtained as the one shown in Fig. 2(a).
By storing the coefficients A;(E,) and B;(E,) when
calculating the T values, high-resolution plots of the
wave functions in the interval X also as a function of
energy are already available, i.e.

N
U(z, En) ~ Y 6;(x)[A;(En) + Bj(En)], (18)
j=0

given that dz; << A\; = 2n/|k;|. Hence, amplitudes
and attenuations of the waves through the entire bar-
rier can be visualized. For this particular potential, it
shows that the mode undergoing resonant-tunneling, at
E = 0.406eV, has two maxima in the well as can be seen
in Fig. 2(b).

=
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Figure 2 - Resonant tunneling in a double barrier with V-shaped
well at the middle. (a) Transmission coefficient T, Eq. (17),
as a function of the particle’s energy E. (b) Potential energy
function of the barrier and wave functions for the two energies
(0.406 eV and 0.45 eV) pointed out by arrows in (a). A set
of curves is shown for each wave function solution, correspond-
ing to W(x)e ! for several values of wt. The amplitude of the
wave function for £ = 0.45 eV has been magnified by a fac-
tor of 2 regarding the amplitude of the resonant wave. Vertical
displacements of both sets of curves are not related to the en-
ergy scale at left. Solutions computed for m = 511 keV/C27 i.e.
0 =5.1232 eV~1/2 nm~1 in Eq. (3), and an uniform step width
of dr; = 0.02 nm in the interval z 0 = £10 nm (N=1000).

Optionally one can compute only the R;’s and T}’s,
Eq. (10), to obtain T = |]_[;.V:1Tj|2 and either stop the
calculation there if only the T'(E) curve is desired or
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compute the A;’s and B;’s, Egs. (9), later for a chosen
set of energies. The options on how the present formal-
ism can be programmed for optimizing computational
tasks are detailed in Appendix A.

Although the stored set of solutions, Eq. (18), could
be used to study the scattering of wave packets in the
barriers, obtaining normalized wave packets would not
be as straightforward as possible because the solutions
are evenly spaced in energy, not in momentum. There-
fore, if one wants to compute wave solutions only once,
and also study wave packets composed of these solu-
tions as well as their transmission coefficients, it is bet-
ter to first define the form of the initial wave packet.

Gaussian wave packets has become a benchmark in
computing time evolution of this sort [17], hence let use

1 )
\I/(J},O) _ emoze—(x—xoﬁ/mﬁc (19)

TN/

as reference for our initial free-particle wave packet in
t = 0, centered at xg, and described by a single mode
of energy Ey so that kg = ¢v/Ep. It is normalized
since [ |¥(z,0)|?dz = 1, and its full width at half
maximum (FWHM), W, can be chosen by providing
o, = W/vV2Ind ~ 0.6 W.

Numerov-type solutions of the time-dependent SE
can handled the time evolution of such wave packet,
Eq. (19), through a given potential barrier [17], but in
the present recursive method it is not possible to start
with such expression of ¥(z,0) since it is an artificial
expression that happens to have the same shape, at
t = 0, of the actual wave packet

NEg
1 —i
\I’(ZE, t) = \/72771_ Z Cn\IJ(J?, En)e Ent/h (20)
n=1
where
Cp = ! e~ (kn—ro)?/207} (21)

U/C\/E

and o}, = o, . For sake of normalization, the wave vec-
tors k, must be equally spaced, i.e. Kpy1 — kp = dk,
so that

Ng
Z len[2drk = 1. (22)
n=1

Since the ¢,’s out of the range k, — kg = +3.50y

have negligible amplitude, the Np modes with wave
vectors K1, Ko, ..., Ky, are taken in this range to com-
pose the wave packet, whose spectrum of energy is given
by E, = (kn/¢)?. Energy difference between adjacent
modes,

dE, = E,i1—E, ~ 2r,ds/¢?%,
increases as n runs toward Ng. Hence, the maximum
interval of time by which the evolution of the wave
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packet can be studied is

h h AE
At < ~(Ng—1)— (1- ==
= 2(En, — Enp_1) (N& )4AE< 2E0)

(23)
when the energy range Fy + AE comprises all E),’s.

To be more illustrative, let construct an initial
guassian wave packet within a previously chosen range
of energy, for instance, with E,, in the narrow range
Ey + 0.058 eV around the energy Ey; = 0.406 eV
of the resonant mode in Fig. 2. It leads to o =~
©AE/7VEy = 0.0666 nm~! and to W = 25.0 nm
as the FWHM of |¥(z,0)|?. By composing the wave
packet with 101 modes, our limit of time for studying
its evolution is At < 1654fs, Eq. (23). Figure 3 shows
the scattering process of such wave packet by the dou-
ble barrier (Fig. 2) as computed via Eq. (20). The
reflection of the entire wave packet occurs in a time in-
terval no longer than 170fs, Fig. 3(a) through Fig. 3(c),
but the resonant mode trapped in the well survives for
much longer than that, Fig. 3(d). Its evanescence in
time is dictated by an exponential decay of time con-
stant of 184.5fs regarding the probability of finding the
particle inside the well after ¢ = 232.3fs, Fig. 3(c).

In case of potential with localized minima not reach-
able by tunneling from either sides, computing both
left-hand and right-hand solutions is necessary. The
procedure is very similar to the previous one used to
obtain the W(x, En) set of wave functions evenly spaced
— FE, = dE. DBut, most of
these unilateral solutions do not exist under confine-

in energy where F,

ment. Hence, prior to calculate A;’s, B;’s, and T}’s
from Egs. (9) and (10a), we first compute the R;’s and
R;’s, Egs. (10b) and (14b), to generate the f(E) plot
according to Eq. (15). In Fig. 4(a) there are examples
of such plot for a Lennard-Jones potential, a type of
potential used to describe diatomic molecules and that
has a single minimum. Only after providing an energy
eigenvalue, &,, all other required coefficients for plot-
ting the eigenfunction ¥, (x), Eq. (16), are calculated.
For v =1, 2, and 3, the eigenfunctions are shown in Fig.
4(b) where the one-dimensional variable x stands for
the nuclei distance in the molecule. Although reduced
mass, equilibrium distance, and ionization energy val-
ues are close of those for the Hy molecule, the width of
the depression in U(z) is much narrow than in the ac-
tual molecule [26]. It means a stronger restoring force
and hence larger energy gaps in between adjacent vibra-
tional states, which is used here for illustrative purposes
only. In this hypothetical molecule, the non-constancy
of the gap values is more evident, as can be seen in Fig.
4(a). It indicates how the exact solution would differ
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from the harmonic oscillator approximation.

Computational task involved in finding the energy
eigenvalues £ = &, in which f(E) = 0 can be enor-
mous depending on number and accuracy of the desired
eigenvalues. There will be no difficult in determining a
few eigenvalues with reasonable accuracy, for instance
&1 =—-34416 eV, E = —1.8793 eV, E3 = —0.8660 eV,
and & = —0.2991 eV in Fig. 4(a), are obtained at
once in just a few seconds and with an accuracy of
dE/2 = 0.0022 eV (Ng = 1000); o = 0.002 nm,
zy = 0.2 nm, and dz; = 0.0005 nm (N = 396). The
problem relies in finding many eigenvalues, with high
accuracy, occurring at different densities along a broad
energy range. But practical needs of finding all pos-
sible eigenvalues are unusual, although it can be real-
ized by developing search routines to reduce computa-
tional time since the method does not have any intrinsic
limitation; as for instance the frequency distortion, or
phase-lag, errors of the Numerov-type methods [12, 13].

t=580.71fs

t=2323"fs

t=1549fs

Time Evolution

110 nm |

Figure 3 - Scattering of a gaussian wave packet in a double bar-
rier with V-shaped well (thick line, Fig. 2). Time evolution of
U(x,t) (thin line) and |¥(z,t)|?> (gray shaded curves), increas-
ing from (a) to (d), as indicated aside of each snapshot. Wave
packet obtained according to Egs. (20) and (21), as described in
the text. Group velocity vg = 0.378 nm/fs (ko = 3.264 nm~1),
dE = 2 MeV, initial position at g = —60 nm from the center
of the barriers, and FWHM of 25 nm (o, = 1/0 = 15 nm).
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Figure 4 - (a) Vibrational energy eigenvalues estimated via mini-
mization of f(E), Eq. (15), for a Lennard-Jones type of potential
and for two rotational states, with J = 0 (solid line) and with
J = 8 (dash-dot line). Step width dz; = 0.95pm. Potential en-
ergy functions given by U(z) = A/x'2 — B/x% + J(J + 1)/(px)?
where A = 0.124 x 10712 eV.nm!2, B =1.488 x 1076 eV.nm®
and m = 469.4 MeV/c2. (b) Eigenfunctions of the three first vi-
brational states for the case J = 0, indicated by arrows in (a),
are shown in the same scheme as before (Fig. 2), i.e. in sets of 20
curves per time period of amplitude oscillation. Wave amplitudes

are in a common scale. Plot of U(z) (thick-solid line), J = 0, is
also shown.

Potential functions with singularities do not com-
promise the applicability of the presented method since
only solutions with null wave functions at the singular-
ities are those with physical meaning. In other words,
when representing the potential by a discretized func-
tion, a finite value has to be assigned to the singular-
ity. It compromises mostly the modes with non-null
wave functions at the singularity, but these are artifi-
cial modes that do not exist in the actual physical sys-
tem. Occurrence of artificial modes has been observed
when solving the potential U(z) = —e?/[|z| + |¢|] with
€ — 0. In this case, the odd solutions with respect to
the singularity provide the well-known eigenvalues of
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the hydrogen atom.

Another situation that can also be addressed by
the recursive method occurs when the potential func-
tion has closely spaced minima, as for instance in the
potential shown in Fig. 5. In the present formal-
ism, the two minima (or wells) of this potential can
be treated separately after establishing distinct inter-
vals in X for calculating the function f(FE). For each
E,, € [Enin; Emag|, we first compute the R;’s and F_{j’s
in the entire interval X that contains the wells, i.e.
from xg to x. Then, by selecting a position z; some-
where in between the wells as indicated in Fig. 5(b),
two f(E,) values are obtained: one for x; € [z¢,x]
and another for z; € [xp41,2n], and always obeying
that U(z;) < E,,. Both f(E) curves thus obtained are
shown in Fig. 5(a). As tunneling across the barrier sep-
arating the wells become relevant, the minima of the
f(E) curves are coincidental. It means that the energy
levels, or eigenvalues &, in each well are independent
from each other only if tunneling is negligible. It is
more evident when visualizing the wave functions of
the confined modes shown in Figs. 5(b), 5(c), and (d).
In practice, potential with two minima are found for
Cooper pairs (2 spin-coupled electrons) in Josephson-
junction of superconducting materials [27].

In semiconductor heterostructures, the validity of
this recursive method in its present formalism holds
true when the charge carrier’s effective mass can be ap-
proximated by a constant value through out the struc-
ture. However, accounting for effective mass variation
across heterojunctions has only been possible in cases of
abrupt interfaces and by using appropriated boundary
conditions [28, 29].

Computing wave functions recursively is limited to
problems treatable in one dimension, such as spherically
symmetric potentials, or cases where the potentials in
orthogonal directions are independent from each other,
as for instance U(z,y) = Ux (z) + Uy (y), in which the
wave functions are obtained by the product of indepen-
dent one-dimensional solutions. In all other cases of two
and three dimensions, it is not possible to extend this
recursive method since the number of unknown ampli-
tude coefficients are more than the number of equations
written by matching the wave function and its deriva-
tive at every steps of the discretized potentials. Hence
only mathematical methods for solving 2D and 3D dif-
ferential equations are available [3, 5, 29, 30].
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Figure 5 - Energies and stationary wave functions of confined modes in a potential with two minima. (a) f(F) curves for the right (black
line) and left (gray line) minima, showing the allowed energies in the wells. (b), (c¢), (d) Confined modes at the energies —62.68(12) MeV,
—57.27(13) MeV, and —51.86(12) MeV, as indicated by arrows in (a). ¥(z)e~*?* (thin lines) for several values of wt, and |¥(z)|? (gray
shaded curves) are shown as well as the plot of U(z) = A(z — a)? + Bexp[—(z — a — §)2/a?] + C (thick line); A = 4.0 MeV (= 2.4 MeV)
for x < a (z > a), B =450 MeV, C' = —500 MeV, 6 = 0.5 nm, and o = 10 nm. zxn,0 = a £+ 20 nm and dz; = 0.1 nm (N = 400).

Particle’s mass m = 1.022 MeV /c?.

4. Conclusions

This work has demonstrated that any one-dimensional
quantum potential, wherever representing an open or
closed system, can be solved by a single method and
within good numerical accuracy. It is a simple tool
ready to be used in applied physics or just in devel-
oping illustrative examples of quantum mechanics. It
should also be emphasized that, in the presented formu-
lation, the quantum potentials are solved by a physical
treatment where the particle’s wave function is molded
by the same elemental action of the given force field.
This is a completely different approach of the one that
is usually taken where, once the potential is known, the
problem became the mathematical solution of a differ-

ential equation.

Appendix: Routines for computing wave
solutions recursively

There are several ways to program the recursive formal-
ism presented in this work, depending on what infor-
mation is desired. The flowchart in Fig. 6 describes the
basic structure of the routines used to elaborate the ex-
amples in Figs. 2 to 5. Once the U(z) function and the
discretization of X is defined, the user can choose ei-
ther route () or (2) to scan a given energy range in fixed
increments of energy, dFE, or wavevector, dr, respec-
tively. The latter route is suitable to study time evo-
lution of wave packets by ending through route (7), i.e.
@—B@—©—@. Eigenvalues {&1, &,...}, of confined
modes are obtained from the f(FE) curve in route (@),
and used as input to provide the eigenfunctions ¥, (z)
through route (8). The straight route 3)— &) are exclu-
sive for users interested only in transmission coefficients
across arbitrary potential barriers.
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R;, T; (Eqgs. 10) } forj=1:N{ oL g L{
A;, B; (Eq. 9), R; (Eq. 10b) }
® U(z;, E,) (Eq. 18) } for j=1:N {
T(EN < ITT" 7.2 R; (Eq. 14b) }
(k) =], 7l

@)

f(E,) (Eq. 15)

F 9 Y

T(E)

forn=1:Ng {
cn (BEg. 21) }

for y =0:
ki =@ VE, —Ulx;) }

N {

| Ry =0,RBy=0

lp(:];. t) for J =N:1 { By o= Ap(1+ Ry )1+ ff‘.,.,...|}
(E-r{ é[}) R.T (E i for j=h +1: N{
: i Ty (Egs. 10) } A, B (Eq. 9),
for j=1:N{ W, (x;) (Eq. 16} }
Dy = DBy

R;, Ty (Egs. 14) }

forj=nh—-1:1{

(Dy(x)e—i&;t/ﬁ

®

D;, ¢ (Eq. 13),
U, (x;) (Eq. 16) }

Figure 6 - Flowchart of possible routines for studying one-dimensional potentials with the present recursive formalism. Transmission
coefficients, T'(F) curves only: Q—®—®. Wave function ¥(z, F) plots, and/or T(E) curves: D—®—®. Time evolution of wave
packet U(z,t) plots: @—@—®—@. Eigenvalues &,, and eigenfunction ¥, (z) plots: D—@—®.
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