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The influence of the drag force on the safety domain
(A influência da força de arraste no domı́nio de proteção)
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In this work we compute the safety domain related to projectiles fired close to the Earth’s surface, taking
into account a linear (laminar regime) and a quadratic drag force (turbulent regime).
Keywords: projectile, safety domain, drag force.

Neste trabalho calcula-se o domı́nio de segurança relacionado ao lançamento de projéteis perto da superf́ıcie
terrestre. Leva-se em consideração uma força de resistência proporcional à velocidade do projétil (regime lami-
nar) e proporcional ao quadrado da velocidade (regime turbulento).
Palavras-chave: projeteis, domı́nio de proteção, força de arraste.

1. Introduction

The motion of projectiles under the influence of Earth’s
gravitational field is an extremely useful arena for stu-
dents to exercise their knowledge of classical mechan-
ics. This problem typically consists of a projectile fired
with an arbitrary velocity and angle with respect to the
Earth’s surface, and from the appropriate initial data
one should find a number of things like the horizontal
range, time of flight and maximum height achieved by
the projectile. In the simplest possible case, where the
air resistance and Earth’s curvature effects may be ne-
glected, one can easily solve the equations for the pro-
jectile’s trajectory in terms of the parabolic Galilean
model and then discuss several aspects of the prob-
lem [1–3]. However, it is curious that just a few books
and papers deal with a interesting feature of this prob-
lem, the parabola of safety [4–6].

Let us consider a concrete example in order to un-
derstand the concept of the parabola of safety. If a
cannon fires projectiles with a certain maximum veloc-
ity in arbitrary directions, it is quite clear that there
is only a finite volume V that these projectiles can ex-
plore, what naturally leads to the definition of the re-
gion outside this volume as a safety zone. In the case of
a constant gravitational field, it is possible to show that
the safety zone is separated from the “unsafe” zone by
a paraboloid of revolution centered on the cannon [4–6],
therefore known as the parabola of safety (Fig. 1).

While the safety zone is rarely considered in the lit-

erature even for the galilean case, we don’t know of any
attempt to evaluate it when the air resistance is taken
into account. In this work, we intend to partially fill
this gap by investigating the safety domain for spher-
ical projects fired inside fluids in the laminar and tur-
bulent regimes, in an effort to increase the amount of
undergraduate-level material available when friction is
relevant for the problem at hand.

Figure 1 - Illustration of the safety domain. The solid lines rep-
resent some possible trajectories and the dashed line delimits the
safety domain. If a projectile fired with initial speed v0, it can
only reach a target in the white area.

2. The drag force and the Reynolds
number

When a solid body moves through a fluid, the latter
exerts forces on the surface of the former. A compo-
nent called drag force imposes resistance to the body’s
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motion and is given phenomenologically by [1, 7]

FD = −1
2
CDρAvv, (1)

where ρ is the density of the fluid, A is the cross-
sectional area perpendicular to the flow and v respec-
tively the velocity of the body (with v =

√
v · v). The

dimensionless drag coefficient CD depends upon the vis-
cosity η and density of the fluid, as well as upon the
shape and velocity of the solid body.

It is natural to expect the drag force to depend on
the type of flow around the object moving though the
fluid. An extremely useful quantity for characterizing
different types of flow is the Reynolds number [7,8], that
in the case of a a smooth sphere with radius r, may be
defined as

Re =
2rρv

η
. (2)

As an illustrative example, in Fig. 2 we plot the drag
coefficient versus the Reynolds number for a smooth
sphere [7, 8]. Together with Eq.(1), it shows us that
the drag force on a smooth sphere has a simple form
in two different regimes: For small Reynolds numbers,
the dashed line in Fig. 2 yields

CD ' 24
Re

⇒ FD ' −6πηrv; Re < 1, (3)

while for intermediate Reynolds numbers, the dotted
line gives

CD ' 0.45 ⇒ FD ' −9
4
πρr2vv;

103 < Re < 105. (4)

Figure 2 - Log-Log plot of experimental data of drag coefficient
versus the Reynolds number for a smooth sphere.

Following the usual terminology in fluid mechanics,
we denote by laminar the regime set by Eq. (3), i.e.,
the one characterized by a drag force proportional to
the speed, and by turbulent the regime one character-
ized by a quadratic law of resistance.2

3. The drag force and the deformation
of the parabola of safety

In this section, we consider spherical projectiles charac-
terized by a radius r and a mass m fired through a fluid
with viscosity η and density ρ at the ground level. In
addition, the projectiles are fired with a fixed speed v0

but at an arbitrary elevation angle θ to the horizontal.
We restrict our attention to the case where v0 ¿

√
gRE

(being RE the Earth radius), so it is a good approxima-
tion to assume a constant gravitational field. A simple
application of Newton’s second law then gives the pro-
jectile’s equations of motion

mr̈ = −mgẑ + FD, (5)

which is our starting point for the computation of the
safety domain.

3.1. The laminar regime and the linear drag
force

The laminar regime occurs when Re < 1 and, as we
have seen, the drag force is approximately linear in the
velocity. In that situation, we define s and z as the
horizontal and vertical distances to the origin, in order
to rewrite (5) as

s̈ = −klṡ; (6)
z̈ = −g − klż, (7)

where kl = 6πηr/m. Given the initial conditions
r(0) = 0 and v(0) = v0 (cos θ ŝ + sin θ ẑ), the solu-
tions to the previous equations of motion are given by

s(t; θ) =
v0

kl

(
1− e−klt

)
cos θ, (8)

0 < t < tmax,

z(t; θ) =
1
kl

(
v0 sin θ +

g

kl

)
×

(
1− e−klt

)− gt

kl
, 0 < t < tmax, (9)

where tmax is the (θ-dependent) time when the pro-
jectile hits the ground. By eliminating the time t in
Eqs. (8) and (9), we obtain the path equation

z(s; θ) =
(

tan θ +
g

klv0 cos θ

)
s+

g

k2
l

ln
(

1− kls

v0 cos θ

)
.

(10)
Just as a consistency check, we can take the limit of
small fluid resistance effect,

z(s; θ) ' s tan θ − gs2

2v2
0 cos2 θ

− klgs3

3v3
0 cos3 θ

, (11)

2Technically, in this regime the flow is not entirely turbulent, since in the boundary layer the flow it is still laminar. However, as the
wake is mainly turbulent at this point, we feel the jargon is adequate
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where it is clear that at zeroth order in kl (kltmax ¿ 1)
we recover the parabolic Galilean solution [1–3].

In order to determine the safety zone, we have to
calculate the envelope of all possible trajectories the
projectiles may take. This can be done by evaluating
the maximum vertical displacement z(s, θ) for a given
horizontal displacement s, or, in other words, by finding
all the points p = (s, z(s,Θs)) that satisfy

∂z(s; θ)
∂θ

∣∣∣∣
Θs

= 0. (12)

Actually, the condition (12) only gives the condition
for an extremum, which could be a minimum or a max-
imum. In this case, however, it follows at once from
Eqs. (7) and (9) that

z̈ = −e−klt(g + klv0 sin θ) < 0 ∀t, (13)

assuring that any occurring extremum is in fact a max-
imum.

In Fig. 3 we illustrate the procedure for a fixed hori-
zontal distance s = S: from all possible trajectories, the
one characterized by a inclination angle Θs is the one
that gives the maximum vertical displacement z(S,Θs).
Now, using the path Eq. (10) into Eq. (12) and drop-
ping the subscript s from Θs, we obtain the horizontal
coordinate of the surface delimiting the safety zone

S(Θ) =
v2
0 cosΘ

klv0 + g sinΘ
. (14)

Figure 3 - By using equation (12), we are searching for the angle
Θ that maximizes Z(s, θ).

By substituting Eq. (14) into Eq. (10), we get the
vertical coordinate of that surface as a function of Θ

Z(Θ) =
klv

2
0 sin Θ + gv0

k2
l v0 + klg sinΘ

− g

k2
l

ln
(

1 +
klv0

g sinΘ

)
. (15)

Given that sin Θ is in principle unknown, we have to
eliminate it from the previous equation in order to get
an explicit expression for the boundary of the safety
domain. This can be done by manipulating Eq. (14) to
obtain
(
S2g2 + v4

0

)
sin2 Θ + 2S2klv0g sinΘ + S2k2

l v2
0 − v4

0 = 0
(16)

and therefore

sinΘ = − S2klv0g

S2g2 + v4
0

+
v2
0

√
(g2 − k2

l v2
0)S2 + v4

0

S2g2 + v4
0

. (17)

Inserting Eq. (17) into Eq. (15) and consequently elim-
inating sinΘ, we obtain the analytical expression

Z(S) =
v2
0

g
+

(
g2S2 + v4

0

) (
g2 − k2

l v2
0

)

klg2v0

√
(g2 − k2v2

0)S2 + v4
0 + k2

l gv4
0

+
g

k2
l

ln

(
gv0

√
(g2 − k2

l v2
0)S2 + v4

0 − klg
2S2

gv0

√
(g2 − k2

l v2
0) S2 + v4

0 + klv4
0

)
. (18)

The region above that surface represents the safety do-
main when a drag force linear in the velocity is consid-
ered. In Fig. 4, we plot the surface that delimits the
safety domain for some different values of ξl = klvo/g.
As expected, the safety domain increases as the fluid
resistance effects becomes more relevant, i.e., as ξl in-
creases. Expanding Eq. (18) for small values of klv0/g,
we obtain

Z(S) ' 1
2

(
v2
0

g
− gS2

v2
0

)
− kl

3g2v3
0

(
g2S2 + v4

0

)3/2
, (19)

from where it is clear that we obtain the parabola of
safety in the limit of no fluid resistance [4–6].

Figure 4 - Plots of the envelope of all the possible trajectories
with different values of ξl. The solid line represents ξl = 0 (the
case without the fluid resistance effect), the dashed, the dotted
and the discontinuous line represents ξl = 0.25, ξl = 0.5 and
ξl = 0.75, respectively.

In addition, we may also obtain the time T when
a projectile fired with an elevation Θ reaches the enve-
lope. A simple substitution of Eq. (14) into Eq. (8)
and subsequent isolation of t quickly yields

T =
1
kl

ln
(

klv0

g sinΘ
+ 1

)
, (20)

but this is not quite the complete story: the previous
equation makes sense only if T < tmax, the latter given
implicitly by the non-zero solution of z(t,Θ) = 0. Bear-
ing that in mind, from Eqs. (9) and (20) it is straight-
forward to get the z-component of the velocity at the
time T

Ż(T ; Θ) = − v0g cos2 Θ
klv0 + g sinΘ

. (21)

Given that all quantities on the previous expression are
positive we conclude that Ż(T ; Θ) ≤ 0 always, and
therefore that the projectile always touch the surface
that delimits the safety domain after it reaches the high-
est point.
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3.2. The turbulent regime and the quadratic
drag force

In the turbulent regime, the drag force is quadratic in
the speed and then Newton’s second law becomes

s̈ = −kq

√
ṡ2 + ż2ṡ; (22)

z̈ = −g − kq

√
ṡ2 + ż2ż, (23)

where now kq ' 9πρr2/(4m). Equations (22) and (23)
are a set of non-linear coupled differential equations and
unfortunately not amenable to simple analytical proce-
dures, which means that a numerical analysis is needed
to continue our study.

In Fig. 5, we plot the trajectory with θ = π/4 for
different values of ξq = kqv

2
0/g. As we can see, the

drag force can have a dramatic effect on the projectiles
motion.

Figure 5 - Plots of the trajectories for different values of ξq =
kqv2

0/g. The solid line represents ξq = 0 (the case without the
fluid resistance effect), the dashed, the dotted and the discontinu-
ous line represents ξq = 0.25, ξq = 0.5 and ξq = 0.75, respectively.
The elevation angle was fixed in π/4.

In order to analyze the behavior of the safety do-
main, we used the same idea of Eq. (12), we made a
short computational routine that searches for the value
of the elevation angle θ that maximizes the function
z(s, θ) for a fixed value s = S on the horizontal coordi-
nate. In Fig. 6, we plot our results. As expected, the
safety domain increases while the while ξl increases.

Figure 6 - Plots of the envelope of the safety domain for different
values of ξq (Same patterns used in Fig. 5).

In Fig. 7, we plot the z component of the velocity
when the projectile reaches the envelope of the safety

domain. As in the laminar regime, in the turbulent
regime, the projectile always reaches the envelope when
it is falling.

Figure 7 - Plots of the vertical component of the velocity ż when
the projectile reaches the envelope of the safety domain as a func-
tion of the horizontal component S for different values of ξq (Same
patterns used in Fig. 5).

4. Final remarks

We obtained an exact analytical expression for the
safety domain in the laminar regime, which is a good
approximation when Re < 1. An interesting example
where such condition is satisfied consists on a small pro-
jectile fired though a high viscous medium (like glycer-
ine, honey or glucose) with a small initial speed. The
turbulent regime with a quadratic drag force does not
have an analytical solution, but since that it describes
very well the extremely relevant case of the motion of a
cannonball fired in air, we solved it numerically in order
to analyze its safety domain as well.
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