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A classical problem in mechanics, in which a solid ring of negligible thickness may oscillate around two axes,
is studied. Simple and accurate measurements of the periods of oscillation about two different axes provide both
a convincing check of the main features of this problem-solving example and a measurement of g. A simple
photogate system and “Creative Wave Studio”, an improperly used software, allows accurate measurements of
the periods of oscillation. The experiment is designed as an undergraduate student’s laboratory activity, but it
can be equally used and discussed as a classroom experiment.

Keywords: classical mechanics, measurement of g, ring pendulum.

Estudamos neste artigo um problema classico da mecénica na qual um anel sélido, de espessura desprezivel,
pode oscilar em torno de dois eixos. Medidas simples e precisas dos periodos de oscilagao em torno dos dois
diferentes eixos fornecem ndo apenas uma comprovagao convincente das caracteristicas principais deste exemplo
de problema solivel como também propiciam uma medida de g. Um simples sistema de porta de luz junto ao
“Creative Wave Studio”, um software comumente usado de maneira imprépria, permitem que facamos medidas
precisas dos periodos de oscilagdo. O experimento é feito pensando em uma atividade de laboratério para estu-

dantes de graduagao, mas pode ser igualmente usado e discutido em sala de aula.
Palavras-chave: mecanica classica, medida de g, péndulo anular.

1. Introduction

There is a problem in classical mechanics [1], involving
a thin solid ring supported by a knife edge at a point,
in which the ring may oscillate in twofold way. The so-
lution is aimed to finding the two periods of oscillation,
showing that the ratio of these periods is a constant. A
determination of the acceleration due to gravity g fol-
lows, within the small oscillations approximation, from
the analytic expression of the periods of oscillation. The
problem has a pedagogical value because it involves se-
veral concepts as the so called “parallel axis theorem”
and a direct evaluation of the moment of inertia as a
useful Trigonometry exercise. In addition, if a simple
photogate system is used through the PC sound card
and an audio software as “Creative Wave Studio” is
improperly used as an accurate times datalogger, a low
cost experiment follows. By this experimental setup
one can concretely show that small oscillations are not
isochronous compared to large oscillations of the ring
pendulum. Moreover, in the special case of small os-
cillations, a good measurement of g can be given. The
experiment can be considered as a students’ Lab ac-
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tivity or used and discussed as classroom experiment
complementary to problem-solving practice. The time
resolution of the software, which in our case is impro-
perly used, provides a rather effective mean to show to
students the difference in the periods when large and
small oscillations are considered.

2. The analytical problem

In Fig. 1 the geometry of the problem is shown. The z
axis is taken orthogonal to the paper sheet and oriented
outward. In the first problem the point A is the knife
edge suspension, in such a way that the ring may oscil-
late in the z = 0 plane about point A (namely, around
an axis orthogonal to the paper sheet through A). In
the second problem the ring is pivoted by an axis PP’
lying in the paper sheet plane and executes oscillations
in and out this plane. In practice, a knife edge suspen-
sion at A may be used in both cases using a little care in
the second case, in order to avoid undesired rotational
effects (ring oscillations around PP’ axis alone).

Let solve the first problem. The moment of inertia
1.0 around the z axis can be easily evaluated to be
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Figura 1 - The geometry of the oscillation problem. In the first
problem the ring suffers a knife edge suspension at point A and
oscillates in the z = 0 plane about point A (namely around an
axis orthogonal to the paper sheet through A). In the second
problem the ring (still suspended at A) oscillates around an axis
PP’ lying in the paper sheet, executing oscillations out the x —y
plane and orthogonally to it. In practice, a knife edge suspension
at A may be used in both cases using a little care in the second
case to avoid undesired rotational effects.
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being A the linear mass density and Rdyp the infinite-
simal length element. By the parallel-azis theorem [2],
the moment of inertia I, 4 around an axis parallel to z
through A is

I.a=10+MR?=2MR% (2)

Let us allow an angular displacement 9 out of the
equilibrium of the ring. The fundamental equation of a
rigid body dynamics applied to this special case gives

I.40 = —MgRsind (3)

giving the linear equation

. g
9+ —=09=0 4
3R )
in the special case of small oscillations. Hence the pe-
riod T} of small oscillations is given by

2R
T1 = 27’(’\/: (5)

A student may observe that a direct calculus of the
moment of inertia considering A as a fized polar azis is
easily obtained by taking into account the geometry in
Fig. 2. In fact, with reference to the triangle in Fig. 2
one can write

r = 2Rcos?, (6)
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Figura 2 - The geometry for a direct calculating the moment of
inertia around a pivot at A (see Egs. (6) and (7)).

being r the distance from A to an infinitesimal element
dl on the right half circumference. Since dl = Rd(29)
(see geometric relation between di and d(2¢9) in Fig. 2),
it is easy to evaluate the moment of inertia (with respect
to a fized polar azxis A) of the half circumference. The
calculation gives

/2
1
3loa = 2AR / cos® 9dy = MR*. (7)

o

Finally, by doubling this results for the entire cir-
cumference, Eq. (2) follows. Using the parallel-axis
theorem it follows that the moment of inertia around
PP’ axis is

IPP’ - IO+MR27 (8)

being I,0 = MR?/2 the moment of inertia referred to
a rotation around the x axis as follows by direct eva-
luation. Hence the moment of inertia around the axis
PP’ is

3
Ipp = 5MR?. (9)

Considering again Eq. (B), the period T of small
oscillations around PP’ axis becomes

3R
Ty, =2 —_—. 10
2 ™ 2 ( )

Finally, the constant ratio of the two periods is

T V3
L _9o¥Y" 11
T 3 (11)
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3. The experiment

The experiment can be performed using an iron ring
(in our case 360 mm =+ 1.3 mm outer diameter) and a
cutter blade as knife edge suspension, in order to obtain
oscillations with low damping. The experimental setup
assembled for the special case of z = 0 plane oscillations
(in-plane oscillations) is shown in Fig. 3. Oscillations
related to the first problem do not require particular
care in maintaining a stable plane of oscillation; only
little care is required when the ring is released from a
position out of equilibrium. A satisfying solution may
be realized with a small electromagnet or, more sim-
ply, with a sewing tread holding: the ring can be, in
this way, gently released from its equilibrium position.
Oscillations starting from a big initial angular displa-
cement (about 45°) show a stability of about half an
hour; after this interval of time the amplitude of oscil-
lations reduces to that of a small angle approximation
(about 5°). A photogate system can be made with a
reverse-biased photodiode and a laser pointer illumina-
ting it.2 At each light interruption event, the signal
of few millivolts appearing across the photometric cir-
cuit resistance is fed into the “audio card” jack socket.
A suitable audio software, as “Creative Wave Studio”,
will thus record a peak in correspondence to each light
interruption event. In this way, we may collect a se-
ries of peaks, one for each half oscillation time interval.
“Creative Wave Studio”, improperly used in this way,
may provide time measurements with uncertainties of
few milliseconds.® Moreover, using a suitable zoom, it
is possible to measure a set of 40-60 peaks taken in vari-
ous time regions of the oscillation history (characterized
as great and small amplitude regions), thus obtaining a
set of periods of oscillations. From a set of 50 or more
measurements, a significant value of the period 77 and
the standard deviation associated to this set of mea-
surements may be found. In Fig. 3 the experimental
setup for the first problem is shown. Recording of the
oscillation periods relative to the first problem has been
interrupted when the oscillation amplitude was under
a few degrees.

The same cutter blade as knife edge suspension has
also been used for the out-of-plane oscillation mode
(i.e., when ring displacement is aligned with the knife
edge but the plane containing the ring is obviously uns-
table in time). A practical solution in stabilizing the
oscillations around the PP’ axis is given by a pair of li-
near magnets attached at a pole to the cutter blade and
near the ring arc suspended by the knife edge as shown
in Fig. 4. Because the ring is made of iron, the light at-
traction exerted by the linear magnets maintains a suf-
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ficient stability in the oscillation but introduces some
additional damping. In this second case damping gives
about 5 minutes of measurable small amplitude oscil-
lations. Fig. 4 shows the way two “Geomag” magnets
are placed on a large cutter blade.

Figura 3 - The experimental setup assembled on a workbench. A
laser pointer coupled with photodiode system on the lab jack is
shown. In the in-plane oscillating pattern the beam of the laser
pointer impinges on the ring when it passes through it equili-
brium position at a distance equal to the ring’s radius from the
center on the x-axis.

Figura 4 - The detail of two “Geomag” magnets assembled at the
knife edge (a large cutter blade) to stabilize out-of-plane oscilla-
tions in a direction orthogonal to the zy plane of the Fig. 1. The
magnets exerts a little attraction on the ring near the knife edge.
This attraction avoids undesired deviation in time of the axis PP’
in Fig. 1, but introduces additional damping in the system.

2A BX 65 Silicon photodiode in series with a resistance R of about 20 k. A 9 V battery is connected to a reversed biased photodiode.
A low power 670 nm Laser pointer is assembled in front of the photodiode. The signal pick up from the resistor R is fed into the PC’s

MIC socket.

3 Creative Wave Studio is one of the various software furnished with any Creative Sound Blaster package. It is freely downloadable

at EEEp://TilesZ.curope.creative.con/Applications/AVP/ 10609/ 0xb2EA/DAF /WAWESTD _PCAPP_LB_7_T10_724.exd. If the “sound” (any

variable electrical signal under 2 V) is recorded in a time interval At, the total uncertainty is dt = £2 ms.


http://files2.europe.creative.con/Applications/AVP/10609/0x52EA7DAF/WAWESTD_PCAPP_LB_7_10_24.exe
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4. Check between theory and practice

For the special case of the first problem oscillation starts
from an angle of about 45° and the laser pointer beam is
periodically interrupted by the oscillating ring. The sig-
nal across the resistance in series with the photodiode
is fed into the audio card with the software “Creative
Wave Studio” running. In a typical experimental run,
large oscillations survive for about a half-hour period.
By selecting a convenient zoom factor on the software
and by recording about 40-60 complete “electric peaks”
relative to complete oscillations, a measurement of the
period of the oscillation 77 is possible with a maximum
uncertainty of 2 ms per group. A set of 50 groups of
“electric peaks” can be selected in the domain of the os-
cillations having great amplitude (around 40°) and 50
groups of “electric peaks” can be selected in the domain
of small amplitude (under 5°). In a typical measure a
significant difference in the period T3 is detected. The
mean value of T; found for great oscillations is T} =
1.231 s £ 0.004 s, where the uncertainty is assumed to
be the standard deviation on the series of 50 measu-
rements. Analogously, the mean value of T} found for
small oscillations is 77 = 1.206 s £+ 0.005 s, where the
uncertainty is again the standard deviation on the series
of 50 measurements in the domain of small oscillations.
So, the so called “small oscillation” approximation has
a concrete checking in the measurements done.

If a measurement is made for small oscillations (un-
der 5°) around the PP’ axis by still selecting groups of
50 groups of “electrical peaks”, the period T5 found in
a typical measurement is To= 1.037 s 4+ 0.005 s, where
uncertainty is still the standard deviation on the series
of the 50 measurements considered. The experimental
ratio is thus 77 /T» = 1.16 £+ 0.01 and agrees with the
theoretical value given by Eq. () within the uncer-
tainty width.

The value of the acceleration due to gravity g fol-
lowing from Eq. (B) is found to be

g~98m/s*+£0.1 m/s”. (12)

On the other hand, the value of g following from Eq.
(m) is found to be

g~9.9m/s>+£0.1 m/s. (13)

In both cases the relative uncertainty is calculated
as follows

dg dR _dT
AT Yl 14
g R T (14)

by taking dR = 1.3 mm and d7T = 0.005 s.
5. Correction due to the ring thickness

In Section 2 we have considered a very thin ring. In or-
der to see how the measurement of g are affected by the
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mass distribution of the torus, we may use the following
expressions of the moments of inertia as calculated for
the in-plane (I,0) and the out-of-plane (I,0) oscillati-
ons

Lo = Mc? (1 + Zv) , (15a)
M 2
Lo = 8C (4+5X%), (15b)

where ¢ = R 4 a, R and a being the inner radius and
the cross section radius of the torus, respectively, and
where A = €. By adding MR? = Mc* (1 — \)? to both
terms, as prescribed by the parallel axis theorem, we
have

Loa = Mc? {(1 + iv) (- A)Q} . (16a)
Loa = Mc? [(; 4 gv) (- A)ﬂ . (16b)

To first order in A\, we can therefore write

Ia=2Mc*(1-)), (17a)

Ioa = Mc? (‘;’ - 2)\> . (17b)

Recalling now Eq. (B), for small oscillations we have

T =27 =2my/ —, 18a

L= 2m | =4 — o 2 (18a)
IIA (3—4)\)0

Ty =2 =2my | —— 18b

2GR T 21— N g (18b)

In this way, by calculating ¢ from the above expres-
sions, we obtain

=9.7m/s* +0.2m/s%; (19a)
g=9.8m/s?+0.2m/s? (19b)

where the uncertainty has been calculated by conside-
ring the sum of the relative uncertainties as follows

dg dc dI'  dR da AT

—=—42—==—=4+ — 42— 20

g c + T R + a + T’ (20)
withc = R—a = 178.7 mm, dT = 0.005 s, dR = 1.0 mm
and da = 0.05 mm.
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6. Conclusions

We have performed an experiment on the period of os-
cillations of a ring pendulum. Both the in-plane period
T1 and the out-of-plane period T, were measured by
acquiring data through an improper use of “Creative
Wave Studio” software. This data acquisition system
is coupled to a photometric resistance across which a
voltage signal of few millivolts appears each time an
opportunely positioned photogate system is obscured
by the oscillating ring. Measurement of the periods T
and Ty in the limit of small oscillations provide a mean
to measure the acceleration due to gravity g. Moreo-
ver, by analyzing the problem from an analytic point
of view, we may derive, for a very thin ring, the expres-
sion for the ratio of the two periods, which is in good
agreement with experimental findings. The value of g
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is found within the uncertainty width estimated for it.

Correction due to the ring thickness has also been
considered. When this problem is tackled, one finds
that the relative uncertainty is greater than the one
found for the “ideal” problem of a very thin ring. This
last step adds some pedagogical value to the experi-
ment. In fact, the student may concretely see how, by
the refinement of the analysis of the problem, an in-
crease of the uncertainty due to correction factors is
introduced.
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