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Motion of a falling drop with accretion using Newtonian methods
(Estudio mediante métodos Newtonianos del movimiento de una gota que cae y cuya masa crece por acreción)
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The motion of a falling drop whose mass grows by accretion is studied with Newtonian methods to the
point of finding the position as a function of time. The equation of motion applied is the equation of motion of
continuum mechanics in its Eulerian or space formulation. We study three examples of laws of accretion: mass
growing linearly with time, mass growing linearly with the surface of the drop and mass growing proportionally
to the product of surface and velocity. These examples are sometimes left as exercises, without further discussion,
asking only for v(z), or the final velocity. We also show that the solutions have the correct limit of a particle of
constant mass in free fall and of such a particle with friction linear in the velocity.
Keywords: variable mass systems, accretion.

Se estudia, mediante métodos Newtonianos, el movimiento de una gota que cae y cuya masa crece por
acreción; se encuentra detalladamente la posición como función del tiempo. La ecuación de movimiento aplicada
es la ecuación de movimiento de la mecánica de medios cont́ınuos en su forma Euleriana o espacial. Estudiamos
tres ejemplos de leyes de acreción: masa incrementándose linealmente con el tiempo, masa incrementándose
propocionalmente a la superficie de la gota e incremento de la masa proporcional al producto de la superficie
por la velocidad. También mostramos que las soluciones tienen el ĺımite correcto, el de una part́ıcula, con masa
constante, en cáıda libre y el de esa part́ıcula con fricción lineal en la velocidad.
Palabras-clave: sistemas de masa variable, acreción.

1. Introduction

The motion of systems with variable mass has concep-
tual and mathematical difficulties that make its treat-
ment a challenge for teachers and students alike. The
typical example is the rocket, discussed in many texts
without beginning from an equation of motion, and
rather applying conservation of momentum in a clever
way. Other examples are the motion of a rope falling
from a table, a conveyor on which sand is dropped,
and a raindrop whose mass grows by accretion. In this
work we solve in detail this last problem by Newtonian
methods considering three specific laws of accretion.
The relevance of this problem in several fields of sci-
ence is pointed out by Krane [1]. The present work will
be useful for those interested in conceptual problems in
physics and specifically graduates and beginning gra-
duate students, as well as for teachers, interested in the
conceptual problems that variable mass systems exhi-
bit.

Among the conceptual difficulties that these pro-
blems present is the equation of motion to be applied.

Sometimes the equation used is
dp

dt
= F, as if it were

Newton’s second law, assuming now that p = m(t)v,
but we must recall that this law applies to a constant
mass particle on which only external forces act. Thus
Tiersten [2] shows that this equation holds only be-
cause other terms of the general equation are zero. Also
Krane [1] points out in a note that this equation is a
particular case of a more general equation that we dis-
cuss here. However, by their very nature, variable mass
systems are composed of many ”particles”and the sys-
tem is modeled as a continuum, where the ”particle”is
a small part of it on which now body forces as well as
surface forces act. Tiersten [2] and Krane [1] have poin-
ted out that there must be a more general equation of
motion for dealing with variable mass systems, and we
propose that such equation of motion is the equation of
motion of continuum mechanics.
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We find that there are two expressions for the ge-
neralization of Newton’s law applicable to a continuum
[2, 3-5]. One is the material or Lagrangian form

ρ
dv

dt
= ρb+∇ ·

←→
T . (1)

The other is the spatial or Eulerian form

∂ (ρv)

∂t
= ρb+∇ ·

(←→
T − ρvv

)
. (2)

In these equations ρ is the mass density, b is the

body force per unit mass,
←→
T is the stress tensor,and

v is the velocity with respect to our reference frame.
In the material or Lagrangian description, the system
is a given material particle. Therefore the system has
constant mass and this description is not appropriate
to deal with variable mass system. In the spatial or Eu-
lerian description the system is a particular volume of
a continuum. Thus mass can enter or leave this system
(sometimes called “control volume”) and therefore this
description is appropriate to deal with variable mass
systems. By the way, the usual continuity equation for

mass conservation,
∂ρ

∂t
−∇ · (ρv) = 0, is given in the

Eulerian description. The stress tensor gives the force
on the surface of a region of the continuum. This is the
way Cauchy conceptualized the force which the rest of
continuum exerts on a small part of it. The relation
between both descriptions is given in the appendix .The
first equation can be obtained from the second taking
into account mass conservation. We propose that the
equation of motion to be applied to variable mass sys-
tems is the Eulerian formulation since now the system
is a particular volume, fixed or in motion with respect
to our reference frame, in which mass may enter or le-
ave carrying or not momentum. It is in this formulation
that momentum flux must be considered.

We analyze three different laws of accretion: mass
growing in proportion to time, mass growing in propor-
tion to surface, equivalent to assuming that the radius
of the drop grows linearly with time, and mass growing
in proportion to the product of surface and velocity,
equivalent to assuming that the radius of the drop grows
proportionally to the distance travelled in falling. In all
cases we find the correct limit of a constant mass par-
ticle freely falling.

2. Newtonian formulation

We solve the problem by Newtonian methods, which
imply knowing all the forces acting on the system, and
from these calculating the trajectory of the system in
physical space. In the present case we find that this
is the most difficult part of solving the problem, which
explains why in texts it is asked usually to find only the
velocity as function of height.

We use as equation of motion the volume integral
of the Eulerian expression, which after a volume inte-
gration takes the form

d (mv)

dt
= F−Φ+

∮
S

←→
T · n̂dS, (3)

where F is the body force, in our case gravity and fric-
tion, and Φ is the momentum flux given by

Φ =

∮
S

ρvv · n̂dS. (4)

In the case that the considered volume is in motion,
like in the rocket, it is convenient to distinguish the
relative velocity of the particles respect to the moving
volume, so that v = vr +u where vr is the velocity of
the particles with respect to the volume, and u is the
velocity of the volume. Then the momentum flux Φ is
expressed as [4]

Φ =

∮
S

ρvvr · n̂dS. (5)

The last integral in Eq. (3) is the force that the sur-
rounding medium exerts on the mass enclosed by the
surface.

In our case the momentum flux is zero, since the
velocity of the mass sticking to the drop is zero. Also,
the surface integral of the stress, corresponding to sur-
face tension, is zero, because of the spherical symmetry.
The surface integral of the pressure gives the buoyancy
force, that we discard assuming a small drop. Then our
equation of motion is as a particular case of Eq. (3)

d (mv)

dt
= F, (6)

which can be written in the form

dv

dt
+

1

m

dm

dt
v =

F

m
. (7)

Equation (6) seems the usual expression of Newton’s
second law, but it is not so. It is a particular case of
Eq. (3) and has the same structure of the equation of
motion of a particle subject to a friction linear in the
velocity. In other cases, as in the rocket [6, 7] or in the
rope falling of a table [8], the particular expression of
this equation is different.

We need to specify the mass as function of time in
order to have an equation of motion to solve. We study
three usual cases, the mass being proportional to:
a) the time
b) the surface of the spherical drop, and
c) surface times the velocity

3. Accretion proportional to time

In this case we have

m (t) = mo + bt, (8)

where m0 is the initial mass and b is a constant. If we
take gravity as the only body force our equation is

dv

dt
+

bv

m
= −g. (9)
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It is easy to take into account a friction force of the
form

f = −kv, (10)

since then our equation is of the same form

dv

dt
+

(b + k)v

m
= −g. (11)

A friction quadratic in v is more difficult to treat,
since then we have a differential equation of Riccati’s
type. We consider only friction linear in the velocity.

Now we proceed to solve the differential Eq. (9)
with the initial condition

v (t = 0) = 0. (12)

This equation is of type

dv

dt
+ P (t) v = Q (t) . (13)

Then the solution can be obtained with an integra-
ting factor of the form e

∫
P (t)dt . That is

v(t) = e−
∫
P (t)dt

∫
Q(t)e

∫
P (t)dt + ce−

∫
P (t)dt ,

(14)

where P (t) =
(b + k)

m (t)
, Q = −g and c is a constant

determined by initial conditions.
The solution satisfying the initial condition v(0) =

0 is

v (t) = −
g

b

m

(λ + 1)
+

g

b

mλ+1
o m−λ

(λ + 1)
, (15)

where

λ = 1 +
k

b
. (16)

This solution, Eq. (15), if correct must contain the
case of a constant mass particle in free fall as a limit
when k = 0 and b→ 0. It must contain also the case
of a constant mass particle falling with friction linear in
the velocity. Some authors [1, 9, 10] consider the limit
mo → 0,which for the case without friction (λ = 1)

gives v =
−gt
2

. As we show below, this limit gives in

other laws of accretion v =
−gt
n

, with some integer

(see section 4 below and [1]). This result seems strange
and may be that the limit mo → 0 is rather formal,
with uncertain physical meaning.

Now, to show that Eq. (15) has the correct limits we
proceed by cases, first without friction (k = 0, b→ 0)
and then with friction (k ̸= 0, b→ 0).

The frictionless case is given by k = 0 or λ =
1,then

v (t) = −
g

2b
m (t) +

g

2b

m2
o

m (t)
. (17)

It seems that this solution diverges for b → 0
(m(t)→ mo) , but writing

v (t) = −
g

2b
(mo + bt) +

gmo

2b

(
1 +

bt

mo

)−1

,

(18)
we see that with the binomial theorem we obtain the
correct limit

v (t)→ −
g

2b
(mo + bt) +

gmo

2b

(
1−

bt

mo

)
(19)

= −gt.

The same result can be obtained by writing the so-
lution Eq. (17) in the form

v (t) = −
g

2

(
m−m2

o/m

b

)
, (20)

and applying l’Hopital rule to this indeterminate limit,
since b→ 0 implies m→ mo.

Now for the case k ̸= 0, b → 0 we must proceed
carefully, since λ→∞.

First we notice that m(t)−λ can be written as

m(t)−λ = (mo + bt)
−λ

= m−λ
o

(
1 +

bt

mo

)−λ

.

(21)
With the change of variable

x =
bt

mo

, (22)

we obtain

m(t)−λ = mo
−λ (1 + x)

−(1+k/b)
(23)

= mo
−λ (1 + x)

−1
(1 + x)

− kt
mox

= mo
−λ (1 + x)

−1
[
(1 + x)

1
x

]− kt
mo

.

But

lim
x→0

(1 + x)
1/x

= e, (24)

thus

lim
b→0

m(t)−λ = lim
x→0

m(t)−λ = m−λ
o e−kt/mo .

(25)
With this result it is easy to see from Eq. (15), that
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lim
b→0

v (t) = lim
b→0

{
−

gmo

2b + k
+

gmλ+1
o m−λ

o

2b + k

(
1 +

b

mo

t

)−λ
}
,

(26)
because b (λ + 1) = 2b + k, and using Eq. (24)

lim
b→0

v (t) = −
gmo

k

(
1− e−

kt
mo

)
, (27)

which is the expected result.
A further integration of Eq. (15) gives the solu-

tion for the height of the center of mass of the drop,
satisfying the initial condition y (0) = h (Fig. 1).

y (t) = h−
gm2

o

2b2 (−λ + 1)
−

gm2

2b2 (λ + 1)
+

gmλ+1
o m−λ+1

b2 (−λ2 + 1)
.

For the case without friction (λ = 1) this result se-
ems to diverge, but we can see that it is not so.

First we rewrite Eq. (28) as

y (t) = h−
gm2

o

2b2

1− 2mλ−1
o m−λ+1

(λ+1)

(−λ + 1)

− gm2

2b2 (λ + 1)
.

(28)
We define

∆1 = 1−
2mλ−1

o m−λ+1

(λ+1)

(−λ + 1)
, (29)

where it is necessary to take the limit λ → 0. Using
l’Hopital rule again, we obtain

lim
x→1

∆1 =
2 d
dλ

(
mλ−1

o m−λ+1

(λ+1)

)
d
dλ

(−λ + 1)
⌋λ=1 (30)

= −2
d

dλ

((
mo

m

)λ−1

λ + 1

)
⌋λ=1.

Figura 1 - Accretion proportional to time mo = 1 × 10−4,
b = 9.1, free fall (·−), λ = 1.3 (××), λ = 1.5 (−−) , λ =
1.8 (♢♢).

Using

d

dx
au = au ln a

du

dx
,

we can write

lim
x→1

∆1 = 2

[
(λ + 1)

(
mo

m

)λ−1
ln
(
mo

m

)
+
(
mo

m

)λ−1

(λ + 1)
2

]
λ=1

(31)

= ln

(
m

mo

)
−

1

2
.

On the other hand, if we define

∆2 =
gm2

2b2 (λ + 1)
, (32)

it is evident that

lim
λ→1

∆2 =
gm2

4b2
. (33)

Using Eqs. (32) and (34) we get

lim
λ→1

y (t) = h−
gm2

o

2b2

(
ln

(
m

mo

)
−

1

2

)
−

gm2

4b2

(34)

= h−
gm2

o

2b2
ln

(
m

mo

)
−

gmo

2b
−

gt2

4
.

The particle of constant mass in free fall is obtained

expanding ln
(

m
mo

)
, that is

ln

(
m

mo

)
= ln

(
1 +

bt

mo

)
≈

bt

mo

−
1

2

(
bt

mo

)2

.

(35)
Then

y (t) = h−
gm2

o

2b2

(
bt

mo

−
1

2

(
bt

mo

)2
)
−

gmo

2b
−

gt2

4

(36)

= h−
gt2

2
.

The expected result (Fig. 2).

Figura 2 - Free fall.
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4. Accretion proportional to the surface
of the drop

Now we make the assumption that

dm

dt
= α4πr2. (37)

Then the equation of motion for this case is

dv

dt
+

1

m

(
α4πr2

)
v = −g. (38)

The assumption, Eq. (38), is equivalent to the hy-
pothesis that the radius of the drop grows linearly with
time, since

m = ρ
4π

3
r3, (39)

and then

dm

dt
= ρ4πr2

dr

dt
. (40)

Therefore r (t) = ro + αt implies that dr
dt

= α,
and we obtain the usual assumption that mass grows
proportionally to the surface of the drop.

Our equation of motion is then

dv

dt
+

3vα

ro + αt
= −g. (41)

This differential equation can be solved by the same
method used for the case of accretion proportional
to time, and the solution with the initial condition
v(0) = 0 is

v = −
g

4α

(
r −

r4o
r3

)
. (42)

In the formal limit mo → 0, or ro → 0, r = αt
and then we obtain

v (t) =
gt

4
; (43)

as we mentioned previously, it is a strange result.
With the binomial theorem we can write this solu-

tion as

v = −
g

4α

[
ro + αt− ro

(
1−

3αt

ro
+ · · ·

)]
,

(44)
obtaining the free fall case, v = −gt, as α→ 0.

An integration of Eq. (44), with the initial condition
y(0) = h, gives (Fig. 3)

y (t) = h−
g

8α2

[
(ro + αt)

2
+

r4o

(ro + αt)
2 − 2r2o

]
.

(45)
Again, an expansion with the binomial theorem to

second order in t shows that we can obtain the free fall
case as α→ 0.

Figura 3 - Accretion proportional to the surface of the drop:
ro = 1 × 10−4, free fall (·−), α = 1 × 10−4 (××), α =
1 × 10−3 (−−), α = 0.4 (♢♢).

5. Accretion proportional to the surface
times the velocity

The assumption that

dm

dt
= −β4πr2v, (46)

seems more natural if we notice that it is equivalent to
assuming that

r (t) = ro + β (h− y (t)) . (47)

That is, from m (t) = m (r (y (t))) = ρ4π
3
r3 we

find that

dm

dt
= ρ4πr2

dr

dy

dy

dt
= −β4πr2v. (48)

Therefore our equation of motion is now the non
linear equation

dv

dt
−

3βv2

ro + β (h− y (t))
= −g. (49)

This equation can be transformed with the identity

dv

dt
=

dv

dr

dr

dt
= −βv

dv

dr
= −

1

2
β
d
(
v2
)

dr
. (50)

Then the equation of motion is

d(v2)

dr
+

6v2

r
=

2g

β
. (51)

Now we have a differential equation for v2 of the
same type we have solved before, and the solution, with
the initial condition v(0) = 0, is

v2 =
2g

7β

[
r −

r7o
r6

]
. (52)

We can show with the binomial theorem that this
solution reduces to the free fall case as β → 0.

The solution can be put in terms of y, obtaining
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v2 =
2g

7

[
(ho − y)−

(ro

β
)7

(ho − y)
6

]
. (53)

Here h0 is defined by

ho = h +
ro

β
. (54)

Then it is obvious that

dy

dt
= v = −

√
2g

7

√
(ho − y)

7 − (ro

β
)7

(ho − y)
3 , (55)

and in order to obtain y(t) we have to solve the integral

t = −

√
7

2g

∫ y

h

(ho − ý)
3
dý√

(ho − ý)
7 − (ro

β
)7

. (56)

From this equation it is easy to obtain the formal
limit ro → 0, considered by some authors [11]. In this
case ho = h and Eq. (56) becomes

t = −

√
7

2g

∫ y

h

(h− y)
− 1

2 dý, (57)

which after integration and some simplifications results

y = h−
gt2

14
. (58)

This result implies that

v =
gt

7
, (59)

that as we mention before, is strange.
This integral is not immediate and it is convenient

to define zo = ro

β
and ź = ho − y, in order to trans-

form the integral to the form

t =

√
7

2g

∫ z

zo

ź3dz′√
ź7 − z7

o

. (60)

We need another change of variable

θ =
z7

z7
o

− 1, (61)

so that we have now the integral

t =

√
7

2g

√
zo

7

∫ θ

0

θ́− 1
2

(
1 + θ́

)− 3
7

dθ́, (62)

This integral is found in standard tables [12] and is
given as

t =

√
2zo

7g
θ

1
2 2F1

[
3

7
,
1

2
,
3

2
,−θ

]
, (63)

where 2F1 is the hypergeometric function.

In terms of the original variables we have

t =

√√√√2
(

ro

β

)
7g

(
(ho − y)

7

(
β

ro

)7

− 1

) 1
2

×

2F1

[
3

7
,
1

2
,
3

2
,−

(
(ho − y)

7

(
β

ro

)7

− 1

)]
, (64)

that with a Taylor expansion around y = h results in

t = −

√
2

g
(h− y)

1
2 +

(h− y)
3
2

√
2g

(
β

ro

)
+

(h− y)
5
2

√
32g

(
β

ro

)2

+ O (h− y)
7
2 . (65)

Finally, inverting this series we find

(h− y)
1
2 = −

√
g

2
t−

g
3
2

4
√
2

(
β

ro

)
t3 −

7g
5
2

32
√
2

(
β

ro

)2

t5 + O (t)
7
, (66)

which after squaring gives y(t) (Fig. 4) as

y (t) = h−
g

2
t2 −

g2

4

(
β

ro

)
t4 + O

(
t6
)
. (67)

This time it is obvious that we get the free fall case
as β → 0.

Figura 4 - Accretion proportional to the surface times the ve-
locity: ro = 1 × 10−4, free fall (·−) , β = 0.5 (××),
β = 1.0 (−−), β = 1.5 (♢♢).
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6. Conclusions

We have solved in a general way the problem of the
motion of a falling drop whose mass grows by accretion
according to a specific law of accretion. We have consi-
dered three specific laws of accretion, and have solved
the problem by Newtonian methods. Then we had to
apply a generalization of Newton’s second law, which
we took as the Eulerian formulation of the equation
of motion for a continuum. Specifying clearly the hy-
pothesis that lead to the particular equation of motion,
these examples were solved to the point of getting the
path of the center of mass of the falling drop, which is
the aim of the Newtonian method. As a check of the
solution obtained, we obtained in all cases the correct
limit of a constant mass particle in free fall and that of
a particle falling with friction linear in the velocity.

Appendix

The natural generalization of Newton´s second law for a
continuum is given by the Lagrangian description, since
a small part of this continuum, a “particle” of constant
mass, is followed through its motion under the action
of external forces, the body force and the surface force
given by a surface integral of the stress tensor.

Then the equation of motion in this description is

ρ
dv

dt
= ρfb +∇ ·←→T ,

where dv
dt

is the total derivative, also called material
derivative, given by

dv

dt
=

∂v

∂t
+ (v · ∇) v .

Then

ρ
dv

dt
= ρ

∂v

∂t
+ ρ (v · ∇) v .

The term (ρv · ∇) v can be developed with the aid
of the tensor identity

∇ · (ρvv) = (ρv · ∇) v + v (∇ · ρv) ,

and the continuity equation for conservation of mass in
a given volumen,

∂ρ

∂t
+∇ · ρv = 0 .

Thus

(ρv · ∇) v = ∇ · (ρvv) + v
∂ρ

∂t
.

Then

ρ
dv

dt
= ρ

∂v

∂t
+v

∂ρ

∂t
+∇·(ρvv) =

∂ (ρv)

∂t
+∇·(ρvv) .

Finally, the equation of motion for matter in a given
volume is

∂ (ρv)

∂t
= ρfb +∇ ·

(←→
T − ρvv

)
,

which is the Eulerian description of motion, the last
term representing the momentum flux.
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