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Black body radiation as a function of frequency and wavelength:

an experimentally oriented approach
(Radiação de corpo negro como função da frequência e comprimento de onda: uma abordagem orientada experimentalmente)
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It is well known that the peak of black body radiation depends on the adopted description, whether as a
function of frequency or wavelength. This paper is a pedagogical exposition of how to write and estimate Planck’s
distribution spectrum on two distinct spectrograph scales. We show that the emitted power of the Black Body
maximum is unique and does not coincide with the peak measured whether in frequency or wavelength. We then
make a generalization with other distribution functions in order to further clarify the apparent issue.
Keywords: Planck’s law, Wien’s law, black body, electromagnetic radiation.

Sabe-se que o pico de radiação de corpo negro depende da descrição adotada, a saber, se em frequência ou em
comprimento de onda. Este artigo traz uma exposição pedagógica sobre como escrever e estimar o espectro da
distribuição de Planck em duas escalas espectrográficas distintas. Mostramos que a potência emitida do máximo
de corpo negro é única e não coincide com o pico medido, seja em frequência ou comprimento de onda. Então,
fazemos uma generalização com outras funções de distribuição com o objetivo de clarificar ainda mais a questão.
Palavras-chave: lei de Planck, lei de Wien, corpo negro, radiação eletromagnética.

1. Introduction

Every student learning the principles of Quantum Me-
chanics and following a historical approach is naturally
impressed by Max Planck pioneering work [1]. He faced
with heroism unsurmonable problems at his time to ex-
plain the Black Body (BB) radiation properties [2–5].
He successfully managed to derive a law and solve one
of the greatest anomalies that paved pre-quantum phy-
sics in the beginning of the 20th century.

A dedicated student might be impressed to know
that BB distribution law gives rise to two well distinct
maxima if the BB spectrum is written in terms of fre-
quency or wavelength intervals. Many books in Sta-
tistical Physics [6–13] prefer the frequency form. This
is not surprising since Planck’s distribution law is ob-
tained from Bose-Eistein statistics of electromagnetic
oscillator modes. Almost none of these books present
any values at all for the resulting temperature displace-
ment of the maximum or Wien’s displacement law. An
exception is Landsberg [14]. On p. 214 (section 13.3),
after deducing the frequency law, the wavelength form
is obtained. However, historical accounts of the matter
show that the spectrum was originally measured on a
wavelength scale using a spectrograph [15,16]. Most of

the time, derivations come from exclusively mathema-
tical reasoning (Section 2), with scarce or no reference
to the experimental setup required to register the BB
spectrum.

It is well known that grating laws give rise to a mul-
titude of BB maxima [17]. The subject has also served
to motivate speculations on the causes of human vi-
sion sensitivity function [18]. The subject is further
motivated by the dependence of the BB temperature
with the maximum of the spectrum. In other words,
the position of this maximum is a direct measurement
of the BB temperature which has several applications
from material science to astrophysics or even cosmo-
logy [19]. If the peak changes position with the repre-
sentation, which one should be chosen as a reference
of the BB temperature? However, spectral measure-
ments dependent strongly on experimental details that
are many times absent in reference works. This paper
intends to fill this gap following an experimental reaso-
ning (that is, we numerically estimate the BB spectrum
as seen by different experimental arragements, while no
real experimental measurement was attempt). The ap-
proach describes the energy distribution of BB photons
on spectrographic scales where wavelength are regis-
tered. In fact, there seems to exist no experimental
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linear scale for wavelength or frequency on which the
BB spectrum maxima would coincide with the theore-
tical distribution. Indeed, we will show here that at
the spectrograph there is no ‘ambiguity’ in the maxi-
mum peak position. In Section 2 we briefly present
the problem as it is often stated without any reference
to the experimental problem. In Section 3 we discuss
some experimental arrangements that are employed to
obtain the BB spectrum in wavelength. In Section 4
we generalize our results and make a simple but eluci-
dating application that we hope can further clarify the
problem. Finally, Section 5 presents some conclusions.

2. BB spectrum

Planck’s distribution function [1] gives the intensity of
the emitted radiation (emitted power per unit area),
per unit of a physical quantity interval (frequency, wa-
velength or wavenumber), from a BB at absolute tem-
perature T . It takes two forms in frequency (ν) and
wavelength (λ), respectively

Iν(ν, T ) =

(
2hν3

c2

)
1

ehν/kT − 1
, (1)

Iλ(λ, T ) =

(
2hc2

λ5

)
1

ehc/λkT − 1
. (2)

where h = 6.62×10−34 Js, c = 3× 108 m Hz and
k = 1.38 ×10−23 JK−1. Equations (1) and (2) are such
that the total energy flux in both descriptions are the
same ∫ ∞

0

Iν(ν, T )dν =

∫ ∞

0

Iλ(λ, T )dλ, (3)

for all T . These integrals give rise to the well known
Stefan’s law for the total energy emitted by a BB [16].
The relation between frequency and wavelength is gi-
ven by λν = c. Imposing conditions for the maxima of
Eqs. (1) and (2), two distinct characteristic equations
are found for frequency and wavelength respectively

xex

ex − 1
− 3 = 0, (4)

yey

ey − 1
− 5 = 0, (5)

with x = hν/kT and y = hc/λkT . Equations (4) and
(5) are similar in form, but result in distinct roots or
distinct displacement laws as a function of frequency
and wavelength, respectively

hν

kT
≈ 2.8214, (6)

hc

λkT
≈ 4.9651. (7)

As a numerical example, for T = 5500 K (i.e. an appro-
ximate value for the Sun’s photosphere temperature),

the maxima in frequency is νmax = 325.2 THz and in
wavelength, λmax = 532.5 nm. Applying the frequency
wavelength relationship to the maximum in frequency,
the equivalent maximum in wavelength (λ⋆

max) is loca-
ted at 922.5 nm. While the maximum in wavelength
is in the visible part of the spectrum, the maximum in
frequency is located in the near infrared region. As we
will see, such maxima occur at different wavelengths de-
pending on the used ‘dispersion law’. Regardless of the
particular dispersion rule chosen, all possible BB dis-
tributions still represent the same physical BB emitted
spectrum.

3. Experimental setup for measuring
BB spectrum

The relationship between emitted and measured BB
spectra is governed by a transfer function that de-
pends on a variety of physical and mathematical pro-
perties. These include, among others, transmission
scattering, material dispersion and absorption rules as
well as quantum responsivity of the detector as a func-
tion of frequency or wavelength. To experimentally re-
gister the BB spectrum, we need a way to separate fre-
quency or wavelength intervals. In general, light inten-
sity can be measured at distinct wavelengths within a
small bandwidth by employing a spectrograph and a
bolometer [20]. In the following, we present numerical
estimates for the BB spectrum through different spec-
trograph arrangements.

3.1. Diffraction grating spectrograph

Fig. 1 shows a schematic arrangement of this type using
a diffraction grating with normal incidence. A light
source S is positioned in front of a slit with width ∆w.
The light beam is collimated by a lens L1 with focal dis-
tance f and diffracted by a grating G. At the detector,
an image of the slit is formed. In what follows, we derive
the BB spectrum distribution for a diffraction grating.
The spectrum of S is scanned by rotating the detector
arm as shown in Fig. 1 by an angle θ in relation to
the undeflected direction. For reflection gratings with
normal incidence, there is a straightforward and simple
relationship between the wavelength and the deflection
angle at first order [24]

ϵ sin θ = λ, (8)

where ϵ is the groove spacing (lines per inch or mm).
We only analyse the spectrum of a single grating order.
According to Eq. (8), the grating theoretical range goes
from λmin = 0 to λmax = ϵ. If f is the collimator focal
distance, then the wavelength resolution will be given
by

δλ = ϵ cos θ
∆w

f
. (9)
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Figura 1 - Scheme of a grating spectrograph for measuring the
BB spectrum.

The spectrograph measures light intensity as a func-
tion of the body emissivity and angular resolution
δθ = ∆w/f at the position θ, or a function propor-
tional to Iθ(θ, T )δθ for which

Iλ(λ, T )dλ = IG(θ, T )dθ. (10)

In reality the sensor photocurrent will be proportional
to a function F (IGδθ) that depends on many other de-
tails such as: detector response function, grating effici-
ency curve [24], sensor operational area and its distance
from the grating (given by the focal distance of lens L2).
For instance, the detector area can be taken to be lf2δθ
where l is an orthogonal dimension (sensor height) and
f2 is the focal distance of lens L2. For simplicity, we
will assume that the detector response is linear in in-
tensity and that all other details may be represented
by a proportionality parameter α < 1. Starting with
Eqs. (2), (8) and (9), the detector response (photocur-
rent) will be proportional to the energy flux within dθ
given by

IG(θ, T )dθ = α

(
2hc2

ϵ4

)
cos θdθ

sin5 θ(ehc/ϵkT sin θ − 1)
. (11)

The characteristic equation for the maximum of
Eq. (11) is given by

(5z2 − 4ζ2)− zez
(z2 − ζ2)

ez − 1
= 0, (12)

with

z =
ζ

sin θ
(13)

and ζ = hc/ϵkT . To find a solution zmax, first we note
that Eq. (12) can be written as

A(z) = −
∞∑

n=0

(
ζ

z

)2n+1

, (14)

with

A(z) = 5− zez

ez − 1
. (15)

In the limit of high temperatures, ζ/z << 1, the root
zmax approximates the root of Eq. (7)

hc

sin θmaxkT
≈ 4.9. (16)

In this limit, T is such that θmax is between 0 and
π/2 (grazing reflectance). In general, the grating spec-
trograph scale will not give a simple relationship for
Wien’s law as in Eq. (16). Wien’s peak for the spec-
trum given by Eq. (11) does not coincide with the
wavelength peak as would be expected since the new
scale introduces a nonlinear relationship for the wave-
length. In other words, to get the right peak position,
it is not sufficient to simply rescale the spectrograph
according to Eq. (8). As a numerical example, we
take a grating with 1000 grooves per millimeter so that
λmax = 1 µm. The resulting BB spectrum is seen in
Fig. (2). For T1 = 9000 K and T2 = 5500 K, the soluti-
ons of Eq. (11) are z1 = 5.0782 and z2 = 5.296 corres-
ponding to θmax(T1) = 18.35◦ and θmax(T2) = 29.6◦.
Such values correspond to λmax(T1) = 314.7 nm and
λmax(T2) = 495.6 nm. Again, for the sun’s photosphere
temperature, the maximum is in the green part of the
spectrum for the grating spectrograph.

Figura 2 - BB spectrum as seen through a grating spectrograph
at first order, Eq. (11), for T1 = 9000 K (thick line) and
T2 = 5500 K (dashed line). Maximum values are at 18.35◦ and
29.6◦, corresponding to 495.6 nm and 314.7 nm, respectively.
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We can also scale the spectrograph to work in fre-
quency. In this case, Eq. (10) will be equivalent to

Iν(ν, T )dν = IG(θ, T )dθ. (17)

The frequency is given by

ν =
c

ϵ sin θ
, (18)

and

− cdν

ν2
= ϵ cos θdθ. (19)

If we multiply and divide Eq. (1) - the frequency re-
presentation - by ν2 we obtain Eq. (11) again.

Since the condition for the maxium depends on ζ, it
is not possible to have a simple relationship as Eqs. (7)
and (6) for Wien’s law. As a function of T , solutions
θmax will be given by the approximate formula

hc

sin θmaxkT
≈ 5.24− 4363

T
+

(
5273

T

)2

−
(
2431

T

)3

.

(20)
Eq. (20) is of order 10−2 and is valid for a 1000 gro-
oves/mm grating under the assumed approximations.
Other gratings will have different laws with the same
funcional dependence on temperature T .

3.2. Prism spectrograph

The experimental setup for a the prism spectrograph
[22] is represented in Fig. 3. However, in this arran-
gement, the deviation angle is governed by refraction
of light in a prism made of an optical material. Again,
we assume a prism P with an internal angle A between
faces. The light beam hits the entrance face with angle
φ1 (in relation to the face normal). The total deviation
angle will be given by

θ = φ1 −A+ φ2, (21)

Figura 3 - Scheme of a prism spectrograph.

where φ2 is the refracted angle in relation to the exit
face normal. Function φ2 depends in fact on the wave-
length according to

φ2(λ) = arcsin[sinA

√
n(λ)2 − sin2 φ1

− cosA sinφ1],

with n(λ) being the prism dispersion relation. To get
the material optical behavior, we use an approximate
formula for Sellmeier’s dispersion relation [21]

n2 = a

(
1 + γ

λ2

λ2 − λ2
0

)
, (22)

with a = 0.72, γ = 1.91 and λ0 = 0.085 µm for Quartz.
The absolute error of this aproximation in the interval
200 nm to 1800 nm is less than 0.5% as compared to
the ‘exact’ Sellmeier’s relation. For λ in the interval
400 nm to 600 nm (corresponding to the visible region)
n(λ) goes from 1.469 to 1.457. The relation between
λ and the total deviation angle θ is more complicated
than the equivalent Eq. (8) for the grating spectro-
graph, but it can be summarized by the following rela-
tions

λ(Θ) = λ0D(Θ), (23)

and

D(Θ) =

√
sin2 Θ+B sinΘ + C

sin2 Θ+B sinΘ + C ′ , (24)

with
Θ = θ +A− φ1, (25)

and

B = 2 sinA sinφ1,

C = sin2 A(1− a),

C ′ = sin2 A[1− a(1 + γ)].

We here write the BB spectrum distribution in the
prism reference as determined by the dispersion rela-
tion Eq. (24). As usual, we start with the wavelength
form Eq. (5) by noting that dθ = dΘ, we have

IP (Θ, T ) =

(
2hc2

λ4
0D(Θ)5

)
1

ehc/λ0D(Θ)kT − 1

∣∣∣∣dDdΘ
∣∣∣∣ dΘ,

(26)
with

dD

dΘ
=

(C ′ − C) cosΘ(2 sinΘ +B)

2D(Θ)(sin2 Θ+B sinΘ + C ′)2
. (27)

Fig. 4 is the numerical estimate of the BB spectrum
distribution as given by Eq. (26) for a prism with
A = 60◦ and entrance angle φ1 = 45◦. To obtain
the new peak position at a certain temperature T, one
must again impose dIP /dΘ = 0 to Eq. (26). To
avoid unnecessary complications, we provide numeri-
cal values only. As shown in Fig. 3, a BB peak for



Black body radiation as a function of frequency and wavelength: an experimentally oriented approach 2304-5

T = 5500 K is at θmax = 21.27◦. Using the prism
dispersion relation, Eq. (24), the corresponding wave-
length is λmax = 1671.5 nm which is again in the infra-
red part of the spectrum.

Figura 4 - BB spectrum curves of a Quartz prism spectrograph,
Eq. (26), for T1 = 9000 K (thick line) and T2 = 5500 K (dashed
line). Maximum values are at 21.42◦ and 21.27◦, corresponding
to λmax(T1) = 1025.7 nm and λmax(T2) = 1671.5 nm, respecti-
vely.

4. Generalization

The results obtained so far can be generalized. Suppose
two functions f1(x) and f2(y) are given such that

f1(x)dx = f2(y)dy, (28)

together with the ‘dispersion relation’

y = g(x). (29)

Then

f1(x) = f2(g(x))g
′(x), (30)

where g′(x) = dy/dx. Imposing the condition for the
maximum at x̄

f ′
1(x)|x=x̄ = 0, (31)

we find
df2
dy

∣∣∣∣
ȳ=g(x̄)

= −f2(g(x̄))g
′′(x̄)

g′(x̄)2
, (32)

that is clearly not zero, unless f2(g(x̄)) = 0 or g′′(x̄) = 0
(that is, this is not the case for the relationship between
frequency and wavelength). Suppose that we further
make a transformation for a new variable z so that

x = h(z). (33)

We call z the ‘experimental scale’ (as in the case of fre-
quency or wavelength scales). The following relations
are valid

f1(x)dx = f3(z)dz, (34)

f2(y)dy = f3(z)dz. (35)

Then, in terms of f1(x)

df3
dz

= f ′
1

(
dh

dz

)2

+ f1
d2h

dz2
. (36)

In terms of f2(y)

df3
dz

=

(
df2
dy

g′2 + f2g
′′
)(

dh

dz

)2

+ f2g
′ d

2h

dz2
. (37)

Given Eq. (30), both ways of calculating the maxi-
mum of f3(z), Eqs. (36) and (37) lead to the same
value. Eqs. (36) and (37) also show that the condi-
tion df3(z̄)/dz = 0 does not led to df2(ȳ)/dy = 0 and
f ′
1(x̄) = 0. The derivatives at the extremum ȳ = g(x̄)
can be found by imposing df3/dz = 0 in Eqs. (36) and
(37) and extracting both f ′

1(x̄) and df2(ȳ)/dy

df1
dx

∣∣∣∣
x̄

= −f1(x̄)

(
d2h

dz2

)(
dh

dz

)−2

,

df2
dy

∣∣∣∣
ȳ

=
1

g′(x̄)2

[
f2(ȳ)

d2h

dz2

(
dh

dz

)2

+ f2(ȳ)g
′′(x̄))

]
.

A somewhat more prosaic example is the search for the
maximum position through a new ‘gauge’, say, y = x2,
knowing that

f1(x) =
1

σ
√
2π

e−(x−µ)2/2σ2

. (38)

To be more specific, suppose that a distribution of
bar lengths was found to be in accordance to the normal
rule of Eq. (38) with x̄ = µ. At this point, the maxi-
mum value of Eq. (38) is reached, that is df1(x̄)/dx = 0.
In the new ‘squared’ scale, the distribution will be

f2(y) =
1

2σ
√
2yπ

e−(
√
y−µ)2/2σ2

, (39)

which has as characteristic equation df2(y)/dy = 0

y − µ
√
y + σ2 = 0.

Solutions are

ȳ± =
µ2

4

(
1±

√
1− 4

σ2

µ2

)2

. (40)

The distribution given by Eq. (39) diverges as y → 0.
If, for example, µ = 10 and σ = 2, then ȳ+ = 91.82 cor-
responds to the peak at the ‘intuitive’ maximum posi-
tion ȳ = 100. Such maximum in y depends on the
variance σ2, and only when σ → 0, ȳ → x̄2. If we dis-
regard the region y << 1, for µ < 2σ, there is no real
extrema for the distribuition of Eq. (39). At µ = 2σ,
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there is only one extremum at ȳ = µ2/4. Such simple
example shows that when the scale changes acording
to some nonlinear function, the extrema chage position
and are not described by the simple nonlinear relati-
onship between scales.

Now, if we use another scale (z ) with x = 10z, the
resulting distribution f3(z) will be

f3(z) =

(
ln(10)

σ
√
2π

)
10ze−(10z−µ)2/2σ2

. (41)

The characteristic equation, df3(z)/dz = 0, in this case
is

102z − µ10z − σ2 = 0.

Again, a real solution can be written as

z̄+ = log

(√
µ2 + 4σ2 − µ

2

)
. (42)

For the numerical example given above (µ = 10 and
σ = 2), z̄ = 1.016 which neither coincides with
z̄(x̄ = 10) = 1, as expected by the x = 10z law, or
z̄(ȳ = 91.82) = 0.981 as expected by the z = log(

√
z)

relationship. Fig. 5 represents plots of functions f1(x),
f2(y) and f3(z) for two distinct values of σ. For f2(y),
the maximum position shifts to the left as σ increases,
while the opposite happens to f3(z).

Figura 5 - Plot of f1(x) for µ = 10, σ = 2 (thick line) and σ = 4
(dashed line). For the normal distribution, the maximum posi-
tion does not depend on variance. (b) Plot of f2(y). The maxium
shifts to the left as σ increases. (c) Plot of f3(z). The opposite
of (b) happens.

In general, the maxima will hardly coincide,
although the transformation to a third ‘experimental’
function shows only one maximum (if there is only one
extremum). In the same sense, the spectrum of Eqs. (2)
and (1) can only be measured if an experimental device
with linear scales for λ or ν becomes available.

5. Conclusion

This paper addresses and answers the question: ‘where
is the Wien’s peak?’ [17]. The emitted power density
maxima are derived from Planck’s distribution law des-
cribed either in frequency or wavelength intervals. We
showed that such emitted power of a BB body at ab-
solute temperature T is unique and does not coincide
with the measured spectra (in fact we present theoreti-
cal estimates of measurable values). Estimated spectral
shifts are caused by nonlinear frequency or wavelength
‘gauge’ relations to the experimentally accessible para-
meter (an intensity within an interval of such parame-
ter). In general, there is no simple relation between
the temperature and the maximum position (Wien’s
law) in the spectrograph scale given by this parameter.
For prism spectrographs, the highly non linear disper-
sion relation complicates the task of obtaining a sim-
ple relationship between the maximum position and the
temperature. We have found that the maximum posi-
tion (in fact, the spectrum distribution) depends on the
way that light interact with the dispersing element (i.e.,
prism or grating). The more linear the dispersion rela-
tion is, the closer we get to the Planck´s distribution,
Eq. (5).

All these conclusions are valid under ideal assumpti-
ons, which means to assume achromatic response for the
lenses and sensing elements. If such assumptions are re-
laxed, then Eq. (11) will not be valid. The spectrum
will be modulated by the transfer function of the com-
bined spectrograph elements and the maximum will be
found againg by imposing the condition dF (θ)/dθ = 0
where F (θ) is the output spectrum.

In spite of the nonlinear dependency of the BB ra-
diation spectrum function on ν or λ, the shift observed
for the peak can be easily demonstrated with other dis-
tribution fuctions under nonlinear scales.
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