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We present a derivation of the Lindblad equation - an important tool for the treatment of nonunitary evo-
lutions - that is accessible to undergraduate students in physics or mathematics with a basic background on
quantum mechanics. We consider a specific case, corresponding to a very simple situation, where a primary
system interacts with a bath of harmonic oscillators at zero temperature, with an interaction Hamiltonian that
resembles the Jaynes-Cummings format. We start with the Born-Markov equation and, tracing out the bath
degrees of freedom, we obtain an equation in the Lindblad form. The specific situation is very instructive, for it
makes it easy to realize that the Lindblads represent the effect on the main system caused by the interaction with
the bath, and that the Markov approximation is a fundamental condition for the emergence of the Lindbladian
operator. The formal derivation of the Lindblad equation for a more general case requires the use of quantum
dynamical semi-groups and broader considerations regarding the environment and temperature than we have
considered in the particular case treated here.
Keywords: Lindblad equation, open quantum systems.

Apresentamos uma derivação da equação de Lindblad - uma ferramenta importante no tratamento de
evoluções não-unitárias - acesśıvel a estudantes de graduação em f́ısica ou matemática com noções básicas de
mecânica quântica. Consideramos aqui um caso espećıfico, correspondente a uma situação bem simples, onde
o sistema principal interage com um banho de osciladores harmônicos à temperatura nula, com hamiltoniano
de interação que se assemelha ao modelo de Jaynes-Cummings. Iniciamos com a equação de Born-Markov e,
através do traço parcial dos graus de liberdade do banho, obtemos uma equação na forma de Lindblad. Essa
situação espećıfica é bem instrutiva, pois permite verificar que os lindblads representam a contribuição do sistema
principal ao hamiltoniano de interação com o banho, e que a aproximação markoviana é vital para o surgimento
do lindbladiano. A dedução formal da equação de Lindblad para situações gerais requer o uso do formalismo de
semigrupos dinâmicos quânticos e considerações mais abrangentes sobre o ambiente e a temperatura do que as
utilizadas aqui.
Palavras-chave: equação de Lindblad, sistemas quânticos abertos.

1. Introduction

The Lindblad equation [1] is the most general form for a
Markovian master equation, and it is very important for
the treatment of irreversible and non-unitary processes,
from dissipation and decoherence [2] to the quantum
measurement process [3,4]. For the latter, in recent ap-
plications [4, 5], the Lindblad equation was used in the
introduction of time in the interaction between the mea-
sured system and the measurement apparatus. Then,
the measurement process is no longer treated as instan-
taneous, but finite, with the duration of that interac-
tion changing the probabilities - diagonal elements of
the density operator - associated to the possible final

results. On the other hand, in quantum optics, the
analysis of spontaneous emission on a two-level system
conducts to the Lindblad equation [6]. At last, in the
case of quantum Brownian movement, it is possible to
transform the Caldeira-Leggett equation [7] into Lind-
blad with the addition of a term that becomes small in
the high-temperature limit [2]. These are a couple of
many applications of the Lindblad equation, justifying
its understanding by students in the early levels.

Contrasting against its importance and wide range
of applications, its original deduction [1] involves the
formalism of quantum dynamical semigroups [8, 9],
which is quite unfamiliar to most of the students and
researchers. Other more recent ways to derive it in-
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volve the use of Itô stochastic calculus [10, 11] or, in
the specific case of quantum measurements, consider-
ations about the interaction between the system and
the meter [12]. Another deduction, where the quan-
tum dynamical semigroups are not explicitly used can
be found on Ref. [2]. These methods, their assump-
tions, their applications, and, more importantly, their
physical meanings appear very intimidating to begin-
ning students.

To make the Lindblad equation more understand-
able, this article presents its deduction in the specific
case of two systems: S, the principal system, and B,
which can be the environment or the measurement
apparatus, at zero temperature, with an interaction
between them that resembles the one of the Jaynes-
Cummings model [2]. Initially we derive the Born-
Markov master equation [2] and then we trace out
the degrees of freedom of system B. The Lindbladian
emerges naturally as a consequence of the Markov ap-
proximation. Each Lindblad represents the effect on
system S caused by the S −B interaction.

Clearly, the present approach does not prove the
general validity of the Lindblad equation. Our intention
is simply to provide an accessible illustration of the va-
lidity of the Lindblad equation to non-specialists. The
only prerequisite to follow the arguments exposed here
is a basic knowledge of quantum mechanics, including
a familiarity with the concepts of the density operator
and the Liouville-von Neumann equation, at the level
of Ref. [13], for example.

The paper is structured as follows: in the sec. 2 we
derive the Born-Markov master equation by tracing out
the degrees of freedom of system B, starting from the
Liouville-von Neumann equation; in sec. 3 we derive
the Lindblad equation; and in sec. 4 we present the
conclusion.

2. The Born-Markov master equation

Let us consider a physical situation where a principal
system S, whose dynamics is the object of interest, is
coupled with another quantum system B, called bath.
Here, HS and HB are, respectively, the Hilbert spaces
of principal system S and bath B; the global Hilbert
space S + B will be represented by the tensor-product
space HS ⊗HB. The total Hamiltonian is

Ĥ (t) = ĤS ⊗ 1̂B + 1̂S ⊗ ĤB + αĤSB , (1)

where ĤS describes the principal system S, ĤB de-
scribes the bath B, ĤSB is the Hamiltonian for the
system-bath interaction and 1̂B and 1̂S are the corre-
sponding identities in the Hilbert spaces. Here, we will
considerate ĤS and ĤB both time-independent. For
the sake of simplicity, let us ignore the symbol ⊗ and
write

Ĥ (t) = ĤS + ĤB + αĤSB . (2)

Here, α is a real constant that provides the intensity of
interaction between the principal system and the bath.
Writing ρ̂SB for the global density operator (S + B),
the Liouville-von Neumann equation will be:

d

dt
ρ̂SB = − i

~

[
ĤS + ĤB + αĤSB , ρ̂SB

]
. (3)

It is convenient to write Eq. (3) in the interaction pic-
ture of ĤS + ĤB. With the definitions of the new den-
sity operator and Hamiltonian:

Ĥ (t) = e
i
~ (ĤS+ĤB)tĤSBe

− i
~ (ĤS+ĤB)t (4)

and

ρ̂ (t) = e
i
~ (ĤS+ĤB)tρ̂SB (t) e−

i
~ (ĤS+ĤB)t, (5)

the new equation forρ̂ (t) will be

d

dt
ρ̂ (t) = − i

~
α
[
Ĥ (t) , ρ̂ (t)

]
. (6)

Here and in the following, we will use the time argu-
ment explicited ((t)) to indicate the interaction-picture
transformation.

We want to find the evolution for ρ̂S (t) =
trB {ρ̂SB (t)} where, according Eq. (5),

ρ̂SB (t) = e−
i
~ (ĤS+ĤB)tρ̂e

i
~ (ĤS+ĤB)t. (7)

Equation (6) is the starting point of our iterative
approach. Its time derivative yields

ρ̂ (t) = ρ̂ (0)− i

~
α

∫ t

0

[
Ĥ (t′) , ρ̂ (t′)

]
dt′. (8)

Replacing Eq. (8) into Eq. (6), we have

d

dt
ρ̂ (t) = − i

~
α
[
Ĥ (t) , ρ̂ (0)

]
−

1

~2
α2

[
Ĥ (t) ,

∫ t

0

[
Ĥ (t′) , ρ̂ (t′)

]
dt′

]
. (9)

For the Born approximation, Eq. (9) is enough. Then,
we take the partial trace of the bath degrees of freedom,

d

dt
ρ̂S (t) = − i

~
αtrB

{[
Ĥ (t) , ρ̂ (0)

]}
− 1

~2
α2trB

{[
Ĥ (t) ,

∫ t

0

[
Ĥ (t′) , ρ̂ (t′)

]
dt′

]}
. (10)

By the definition in Eq. (4), Ĥ (t) depends on ĤSB ,
and ĤSB can always be defined in a manner in which
the first term of the right hand side of Eq. (10) is zero.
Hence, we obtain

d

dt
ρ̂S (t) = − 1

~2
α2trB

{[
Ĥ (t) ,

∫ t

0

[
Ĥ (t′) , ρ̂ (t′)

]
dt′

]}
.

(11)
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Integrating Eq. (11) from t to t′ yields

ρ̂S (t)− ρ̂S (t′) =

− 1

~2
α2

∫ t′

t

dt′trB

{[
Ĥ (t′) ,

∫ t′

0

[
Ĥ (t′′) , ρ̂ (t′′)

]
dt′′

]}
,

which shows that the difference between ρ̂S (t) and
ρ̂S (t′) is of the second order of magnitude in α and,
therefore, we can write ρ̂S (t) in the integrand of
Eq. (11), obtaining a time-local equation for the density
operator, without violating the Born approximation

d

dt
ρ̂S (t) = − 1

~2
α2trB

{[
Ĥ (t) ,

∫ t

0

[
Ĥ (t′) , ρ̂ (t)

]
dt′

]}
.

(12)
The α constant was introduced in Eq. (2) only for

clarifying the order of magnitude of each term in the
iteration and, now, it can be supressed, that is, let us
take α = 1 (full interaction). Thus, let us write

d

dt
ρ̂S (t) = − 1

~2
trB

{[
Ĥ (t) ,

∫ t

0

[
Ĥ (t′) , ρ̂ (t)

]
dt′

]}
.

(13)
For this approximation, we can write ρ̂ (t) = ρ̂S (t)⊗ ρ̂B
inside the integral and obtain the equation that will be
used in the next calculations (again, for the sake of sim-
plicity, let us ignore the symbol ⊗)

d

dt
ρ̂S (t) =

− 1

~2

∫ ∞

0

dt′trB

{[
Ĥ (t) ,

[
Ĥ (t′) , ρ̂S (t) ρ̂B

]]}
, (14)

where we assume that the integration can be extended
to infinity without changing its result. Equation (14) is
the Born-Markov master equation [2].

3. Lindblad equation

3.1. The master equation commutator

Let us consider that system-bath interaction is of the
following form,

ĤSB = ~
(
ŜB̂† + Ŝ†B̂

)
, (15)

where Ŝ is a general operator that acts only on the prin-
cipal system S, and B̂ is an operator that acts only on
the bath B. Now, we consider that Ŝ commutes with
ĤS , i.e., [

Ŝ, ĤS

]
= 0,

resulting in

Ŝ (t) = Ŝ (16)

(Ŝ is not affected by the interaction-picture transfor-
mation). Let us consider the bath hamiltonian defined
by a bath of bosons,

ĤB = ~
∑
k

ωkâ
†
kâk (17)

where âk e â†k are the annihilation and creation bath
operators, the ωk are the characteristic frequencies of
each mode, and the B̂ operator on Eq. (15) defined by

B̂ =
∑
k

g∗kâk, (18)

where gk are complex coefficients representing coupling
constantes. Then, in the interaction picture,

B̂ (t) = e
i
~ ĤBtB̂e−

i
~ ĤBt. (19)

Expanding each exponential and using the commutator
relations, Eq. (19) will result in

B̂ (t) =
∑
k

g∗kâke
−iωkt. (20)

The interaction (15) with the definition (18) resembles
the Jaynes-Cummings one, who represents a single two-
level atom interacting with a single mode of the radia-
tion field [2, 14].

With this, the commutator in Eq. (14),[
Ĥ (t) ,

[
Ĥ (t′) , ρ̂S (t) ρ̂B

]]
, will be evaluated. Firstly,

⌋

[
Ĥ (t) ,

[
Ĥ (t′) , ρ̂B ρ̂S (t)

]]
= ~

[
ŜB̂† (t) + Ŝ†B̂ (t) ,

[
Ĥ (t′) , ρ̂B ρ̂S (t)

]]
= ~

[
ŜB̂† (t) ,

[
Ĥ (t′) , ρ̂B ρ̂S (t)

]]
+ ~

[
Ŝ†B̂ (t) ,

[
Ĥ (t′) , ρ̂B ρ̂S (t)

]]
. (21)

The gradual expansion of each term in Eq. (21) will result in
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[
ŜB̂† (t) ,

[
Ĥ (t′) , ρ̂B ρ̂S (t)

]]
= ~

[
ŜB̂† (t) ,

[
ŜB̂† (t′) + Ŝ†B̂ (t′) , ρ̂B ρ̂S (t)

]]
= ~ŜB̂† (t)

[
ŜB̂† (t′) + Ŝ†B̂ (t′)

]
ρ̂B ρ̂S (t)

− ~ŜB̂† (t) ρ̂B ρ̂S (t)
[
ŜB̂† (t′) + Ŝ†B̂ (t′)

]
− ~

[
ŜB̂† (t′) + Ŝ†B̂ (t′)

]
ρ̂B ρ̂S (t) ŜB̂† (t)

+ ~ρ̂B ρ̂S (t)
[
ŜB̂† (t′) + Ŝ†B̂ (t′)

]
ŜB̂† (t) (22)

and

[
Ŝ†B̂ (t) ,

[
Ĥ (t′) , ρ̂B ρ̂S (t)

]]
= ~

[
Ŝ†B̂ (t) ,

[
ŜB̂† (t′) + Ŝ†B̂ (t′) , ρ̂B ρ̂S (t)

]]
= ~Ŝ†B̂ (t)

[
ŜB̂† (t′) + Ŝ†B̂ (t′)

]
ρ̂B ρ̂S (t)

− ~Ŝ†B̂ (t) ρ̂B ρ̂S (t)
[
ŜB̂† (t′) + Ŝ†B̂ (t′)

]
− ~

[
ŜB̂† (t′) + Ŝ†B̂ (t′)

]
ρ̂B ρ̂S (t) Ŝ†B̂ (t)

+ ~ρ̂B ρ̂S (t)
[
ŜB̂† (t′) + Ŝ†B̂ (t′)

]
Ŝ†B̂ (t) , (23)

or, expanding Eqs. (22) and (23) and grouping the similar terms in S and B, we have

[
ŜB̂† (t) ,

[
Ĥ (t′) , ρ̂B ρ̂S (t)

]]
= ~ŜŜρ̂S (t) B̂† (t) B̂† (t′) ρ̂B + ~ŜŜ†ρ̂S (t) B̂† (t) B̂ (t′) ρ̂B

− ~Ŝρ̂S (t) ŜB̂† (t) ρ̂BB̂
† (t′)− ~Ŝρ̂S (t) Ŝ†B̂† (t) ρ̂BB̂ (t′)

− ~Ŝρ̂S (t) ŜB̂† (t′) ρ̂BB̂
† (t)− ~Ŝ†ρ̂S (t) ŜB̂ (t′) ρ̂BB̂

† (t)

+ ~ρ̂S (t) ŜŜρ̂BB̂
† (t′) B̂† (t) + ~ρ̂S (t) Ŝ†Ŝρ̂BB̂ (t′) B̂† (t) (24)

and

[
Ŝ†B̂ (t) ,

[
Ĥ (t′) , ρ̂B ρ̂S (t)

]]
= ~Ŝ†Ŝρ̂S (t) B̂ (t) B̂† (t′) ρ̂B + ~Ŝ†Ŝ†ρ̂S (t) B̂ (t) B̂ (t′) ρ̂B

− ~Ŝ†ρ̂S (t) ŜB̂ (t) ρ̂BB̂
† (t′)− ~Ŝ†ρ̂S (t) Ŝ†B̂ (t) ρ̂BB̂ (t′)

− ~2Ŝρ̂S (t) Ŝ†B̂† (t′) ρ̂BB̂ (t)− ~Ŝ†ρ̂S (t) Ŝ†B̂ (t′) ρ̂BB̂ (t)

+ ~ρ̂S (t) ŜŜ†ρ̂BB̂
† (t′) B̂ (t) + ~ρ̂S (t) Ŝ†Ŝ†ρ̂BB̂ (t′) B̂ (t) . (25)

3.2. The partial trace

Now we are in a position to trace out the bath degrees of freedom in Eqs. (24) and (25). As we can verify with
Eq. (20),

trB

{
B̂ (t) B̂ (t′) ρ̂B

}
= trB

{
B̂† (t) B̂† (t′) ρ̂B

}
= 0, ∀t, t′.

With this, then,

trB

{[
ŜB̂† (t) ,

[
Ĥ (t′) , ρ̂B ρ̂S (t)

]]}
= ~ŜŜ†ρ̂S (t) trB

{
B̂† (t) B̂ (t′) ρ̂B

}
− ~Ŝρ̂S (t) Ŝ†trB

{
B̂† (t) ρ̂BB̂ (t′)

}
− ~Ŝ†ρ̂S (t) ŜtrB

{
B̂ (t′) ρ̂BB̂

† (t)
}

+ ~ρ̂S (t) Ŝ†ŜtrB

{
ρ̂BB̂ (t′) B̂† (t)

}
(26)
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and

trB

{[
Ŝ†B̂ (t) ,

[
Ĥ (t′) , ρ̂B ρ̂S (t)

]]}
= ~Ŝ†Ŝρ̂S (t) trB

{
B̂ (t) B̂† (t′) ρ̂B

}
− ~Ŝ†ρ̂S (t) ŜtrB

{
B̂ (t) ρ̂BB̂

† (t′)
}

− ~Ŝρ̂S (t) Ŝ†trB

{
B̂† (t′) ρ̂BB̂ (t)

}
+ ~ρ̂S (t) ŜŜ†trB

{
ρ̂BB̂

† (t′) B̂ (t)
}
, (27)

where, if we use the ciclic properties of the trace,

trB

{[
ŜB̂† (t) ,

[
Ĥ (t′) , ρ̂B ρ̂S (t)

]]}
= ~

[
ŜŜ†ρ̂S (t)− Ŝ†ρ̂S (t) Ŝ

]
trB

{
B̂† (t) B̂ (t′) ρ̂B

}
+ ~

[
ρ̂S (t) Ŝ†Ŝ − Ŝρ̂S (t) Ŝ†

]
trB

{
B̂ (t′) B̂† (t) ρ̂B

}
(28)

and

trB

{[
Ŝ†B̂ (t) ,

[
Ĥ (t′) , ρ̂B ρ̂S (t)

]]}
= ~

[
Ŝ†Ŝρ̂S (t)− Ŝρ̂S (t) Ŝ†

]
trB

{
B̂ (t) B̂† (t′) ρ̂B

}
+ ~

[
ρ̂S (t) ŜŜ† − Ŝ†ρ̂S (t) Ŝ

]
trB

{
B̂† (t′) B̂ (t) ρ̂B

}
. (29)

The terms represented by Eqs. (28) and (29) allow us to return to the Eq. (21)

trB

{[
Ĥ (t) ,

[
Ĥ (t′) , ρ̂B ρ̂S (t)

]]}
= ~2

[
ŜŜ†ρ̂S (t)− Ŝ†ρ̂S (t) Ŝ

]
trB

{
B̂† (t) B̂ (t′) ρ̂B

}
+ ~2

[
ρ̂S (t) Ŝ†Ŝ − Ŝρ̂S (t) Ŝ†

]
trB

{
B̂ (t′) B̂† (t) ρ̂B

}
+ ~2

[
Ŝ†Ŝρ̂S (t)− Ŝρ̂S (t) Ŝ†

]
trB

{
B̂ (t) B̂† (t′) ρ̂B

}
+ ~2

[
ρ̂S (t) ŜŜ† − Ŝ†ρ̂S (t) Ŝ

]
trB

{
B̂† (t′) B̂ (t) ρ̂B

}
. (30)

3.3. The expansion of the integrand of the master equation

With the results of the preceding paragraphs, the integrand in Eq. (14) becomes

trB

{[
Ĥ (t) ,

[
Ĥ (t′) , ρ̂B ρ̂S (t)

]]}
= ~2

[
ŜŜ†ρ̂S (t)− Ŝ†ρ̂S (t) Ŝ

]
trB

{
B̂† (t) B̂ (t′) ρ̂B

}
+ ~2

[
ρ̂S (t) Ŝ†Ŝ − Ŝρ̂S (t) Ŝ†

]
trB

{
B̂ (t′) B̂† (t) ρ̂B

}
+ ~2

[
Ŝ†Ŝρ̂S (t)− Ŝρ̂S (t) Ŝ†

]
trB

{
B̂ (t) B̂† (t′) ρ̂B

}
+ ~2

[
ρ̂S (t) ŜŜ† − Ŝ†ρ̂S (t) Ŝ

]
trB

{
B̂† (t′) B̂ (t) ρ̂B

}
. (31)

For convenience, let us define the functions

F (t) =

∫ t

0

dt′trB

{
B̂ (t) B̂† (t′) ρ̂B

}
,

G (t) =

∫ t

0

dt′trB

{
B̂† (t′) B̂ (t) ρB

}
. (32)

Then,

F ∗ (t) =

∫ t

0

dt′trB

{
B̂ (t′) B̂† (t) ρ̂B

}
,

G∗ (t) =

∫ t

0

dt′trB

{
B̂† (t) B̂ (t′) ρ̂B

}
.
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Replacing Eq. (31) in Eq. (14) yields

d

dt
ρ̂S (t) = −

[
ŜŜ†ρ̂S (t)− Ŝ†ρ̂S (t) Ŝ

]
G∗ (t)−

[
ρ̂S (t) Ŝ†Ŝ − Ŝρ̂S (t) Ŝ†

]
F ∗ (t)

−
[
Ŝ†Ŝρ̂S (t)− Ŝρ̂S (t) Ŝ†

]
F (t)−

[
ρ̂S (t) ŜŜ† − Ŝ†ρ̂S (t) Ŝ

]
G (t) . (33)

Actually, the usual Lindblad equation emerges when G(t) = 0 and F (t) = F ∗(t). In the following, we make
some specifications about the environment to discuss these approximations in detail.

3.4. The bath specification

Furthermore, for the initial state of the thermal bath, we consider the vacuum state

ρ̂B = (|0⟩ |0⟩ ...)⊗ (⟨0| ⟨0| ...) . (34)

The evaluation of the F (t) and G (t) functions defined in Eq. (32) are done considering the B̂ (t) and ρ̂B
definitions in Eqs. (20) and (34). By Eq. (20), B̂† (t) is

B̂† (t) =
∑
k

gkâ
†
ke

iωkt. (35)

Then, the partial trace in F (t) and G (t) can be evaluated

trB

{
B̂ (t) B̂† (t′) ρ̂B

}
= trB

{
B̂ (t) B̂† (t′) (|0⟩ |0⟩ ...)⊗ (⟨0| ⟨0| ...)

}
(36)

and

trB

{
B̂† (t′) B̂ (t) ρ̂B

}
= trB

{
B̂† (t′) B̂ (t) (|0⟩ |0⟩ ...)⊗ (⟨0| ⟨0| ...)

}
. (37)

If we use some bath state basis{|b⟩}, Eqs. (36) and (37) become

trB

{
B̂ (t) B̂† (t′) ρ̂B

}
=

∑
b

⟨b| B̂ (t) B̂† (t′) (|0⟩ |0⟩ ...)⊗ (⟨0| ⟨0| ...) |b⟩

=
∑
b

(⟨0| ⟨0| ...) |b⟩ ⟨b| B̂ (t) B̂† (t′) (|0⟩ |0⟩ ...)

= (⟨0| ⟨0| ...)
∑
b

|b⟩ ⟨b| B̂ (t) B̂† (t′) (|0⟩ |0⟩ ...)

= (⟨0| ⟨0| ...) B̂ (t) B̂† (t′) (|0⟩ |0⟩ ...) (38)

and

trB

{
B̂† (t′) B̂ (t) ρ̂B

}
=

∑
b

⟨b| B̂† (t′) B̂ (t) (|0⟩ |0⟩ ...)⊗ (⟨0| ⟨0| ...) |b⟩

=
∑
b

(⟨0| ⟨0| ...) |b⟩ ⟨b| B̂† (t′) B̂ (t) (|0⟩ |0⟩ ...)

= (⟨0| ⟨0| ...)
∑
b

|b⟩ ⟨b| B̂† (t′) B̂ (t) (|0⟩ |0⟩ ...)

= (⟨0| ⟨0| ...) B̂† (t′) B̂ (t) (|0⟩ |0⟩ ...) . (39)

Let us expand B̂† (t) and B̂ (t) using Eqs. (20) and (35)

trB

{
B̂ (t) B̂† (t′) ρ̂B

}
= (⟨0| ⟨0| ...)

∑
k

g∗kâke
−iωkt

∑
k′

gk′ â†k′e
iωk′ t′ (|0⟩ |0⟩ ...)

=
∑
k,k′

g∗kgk′e−i(ωkt−ωk′ t′) (⟨0| ⟨0| ...) âkâ†k′ (|0⟩ |0⟩ ...) (40)
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and

trB

{
B̂† (t′) B̂ (t) ρB

}
= (⟨0| ⟨0| ...)

∑
k′

gk′ â†k′e
iωk′ t′

∑
k

g∗kâke
−iωkt (|0⟩ |0⟩ ...)

=
∑
k,k′

g∗kgk′e−i(ωkt−ωk′ t′) (⟨0| ⟨0| ...) â†k′ âk (|0⟩ |0⟩ ...) = 0 (41)

Hence, we can rewrite Eq. (40) with the â†k operators on the left of the âk operators. We know that

âkâ
†
k′ = δk,k′ + â†k′ âk. (42)

Then

trB

{
B̂ (t) B̂† (t′) ρ̂B

}
=

∑
k,k′

g∗kgk′e−i(ωkt−ωk′ t′)δk,k′ +
∑
k,k′

g∗kgk′e−i(ωkt−ωk′ t′) (⟨0| ⟨0| ...) â†k′ âk (|0⟩ |0⟩ ...)

=
∑
k

|gk|2 e−iωk(t−t′). (43)

Therefore, from Eqs. (41) and (43), it follows that

F (t) =
∑
k

|gk|2
∫ t

0

dt′e−iωk(t−t′),

G (t) = 0. (44)

3.5. Transition to the continuum

In the expression of F (t) in Eq. (44), if we adopt the general definition of the density of states as

J (ω) =
∑
l

|gl|2 δ (ω − ωl) , (45)

then the sum over k can be replaced by an integral over a continuum of frequencies

F (t) =

∫ ∞

0

dωJ (ω)

∫ t

0

dt′e−iω(t−t′).

⌈

Let us introduce the new variable

τ = t− t′,

dτ = −dt′,

with

∫ t

0

dt′ = −
∫ 0

t

dτ =

∫ t

0

dτ,

yielding

F (t) =

∫ ∞

0

dωJ (ω)

∫ t

0

dτe−iωτ .

3.6. The Markov approximation

In the Markov approximation, the limit t → ∞ is taken
in the time integral, as we have mentioned regarding

Eq. (14), that is, we take∫∞
0

dτe−iωτ .

As the integrand oscillates, we will use the device∫ ∞

0

dτe−iωτ = lim
η→0+

∫ ∞

0

dτe−iωτ−ητ

= lim
η→0+

1

η + iω

= lim
η→0+

η − iω

η2 + ω2

= lim
η→0+

η

η2 + ω2
− lim

η→0+

iω

η2 + ω2

= πδ (ω)− iP
1

ω
,

where P stands for the Cauchy principal part. Then,

F = π

∫ ∞

0

dωJ (ω) δ (ω)− iP

∫ ∞

0

dω
J (ω)

ω
.
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3.7. The final form

For a general density of states, F yields

F =
γ + iε

2
, (46)

where ⌋

γ ≡ 2π

∫ ∞

0

dωJ (ω) δ (ω) , (47)

ε ≡ −2P

∫ ∞

0

dω
J (ω)

ω
. (48)

As we have verified that G = 0, let us replace Eq. (46)
in Eq. (33)

d

dt
ρ̂S (t) = −

[
ρ̂S (t) Ŝ†Ŝ − Ŝρ̂S (t) Ŝ†

] γ − iε

2
−
[
Ŝ†Ŝρ̂S (t)− Ŝρ̂S (t) Ŝ†

] γ + iε

2

= −γ

2

[
ρ̂S (t) Ŝ†Ŝ − Ŝρ̂S (t) Ŝ† + Ŝ†Ŝρ̂S (t)− Ŝρ̂S (t) Ŝ†

]
+ i

ε

2

[
ρ̂S (t) Ŝ†Ŝ − Ŝρ̂S (t) Ŝ† − Ŝ†Ŝρ̂S (t)− Ŝρ̂S (t) Ŝ†

]
.

If the density of states is chosen to yield ε = 0 (a Lorentzian, for example, where we can extend the lower limit of
integration to −∞), the final result is

d

dt
ρ̂S (t) = γ

[
Ŝρ̂S (t) Ŝ† − 1

2

{
Ŝ†Ŝ, ρ̂S (t)

}]
. (49)

Let us, then, return to the original picture. Since

ρ̂S (t) = e
i
~ ĤStρ̂Se

− i
~ ĤSt, (50)

then

d

dt
ρ̂S (t) =

i

~
e

i
~ ĤStĤS ρ̂Se

− i
~ ĤSt + e

i
~ ĤSt dρ̂S

dt
e−

i
~ ĤSt − i

~
e

i
~ ĤStρ̂SĤSe

− i
~ ĤSt

= e
i
~ ĤSt dρ̂S

dt
e−

i
~ ĤSt +

i

~
e

i
~ ĤSt

[
ĤS , ρ̂S

]
e−

i
~ ĤSt. (51)

Performing the same operation on the right-hand side of Eq. (49) gives[
Ŝρ̂S (t) Ŝ† − 1

2

{
Ŝ†Ŝ, ρ̂S (t)

}]
= e

i
~ ĤSt

[
Ŝρ̂SŜ

† − 1

2

{
Ŝ†Ŝ, ρ̂S

}]
e−

i
~ ĤSt. (52)

Replacing Eqs. (51) and (52) in Eq. (49), we obtain

dρ̂S
dt

= − i

~

[
ĤS , ρ̂S

]
+ γ

[
Ŝρ̂SŜ

† − 1

2

{
Ŝ†Ŝ, ρ̂S

}]
. (53)

⌈

4. Conclusion

In summary, in this paper we consider an interaction
that resembles the Jaynes-Cummings interaction [2],
Eq. (15), between a bath and a system S, assum-
ing that the operator Ŝ commutes with the system
Hamiltonian, ĤS , at zero temperature. We substi-
tuted Eq. (15) in the Born-Markov master Eq. (14)
and took the partial trace of the degrees of freedom of
B. The T = 0 hypothesis is necessary to simplify the
calculations, making them more accessible to the stu-
dents, simplifying the treatment of Eqs. (36) and (37),

and avoiding complications such as the Lamb shift in
Eq. (46). The Markov approximation in sec. 3-F was
also vital to obtain the final result, Eq. (53). All these
simplifications limit the validity of our derivation to
more general cases, but it provides a detailed illustra-
tion of the physical meaning of each term appearing in
the Lindblad equation.

Equation (53) is commonly presented with several
Ŝ operators, usually denoted by L̂, in a linear combi-
nation of Lindbladian operators. The L̂ operators are
named Lindblad operators and, in the general case, the
Lindblad equation takes the form
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dρ̂S
dt

= − i

~

[
ĤS , ρ̂S

]
+γ

∑
j

[
L̂j ρ̂SL̂

†
j −

1

2

{
L̂†
jL̂j , ρ̂S

}]
.

(54)
If we consider only the first term on the right hand
side of Eq. (54), we obtain the Liouville-von Neumann
equation. This term is the Liouvillian and describes the
unitary evolution of the density operator. The second
term on the right hand side of the Eq. (53) is the Lind-
bladian and it emerges when we take the partial trace
- a non-unitary operation - of the degrees of freedom of
system B. The Lindbladian describes the non-unitary
evolution of the density operator. By the interaction
form adopted here, Eq. (15), the physical meaning of
the Lindblad operators can be understood: they repre-
sent the system S contribution to the S−B interaction
- remembering once more that the Lindblad equation
was derived from the Liouville-von Neumann one by
tracing the bath degrees of freedom. This conclusion is
also achieved with the more general derivation [1,2]. It
is important to emphasize that, due to our simplifying
assumptions, the summation appearing in Eq. (54) was
not obtained in our derivation of Eq. (53).

If the Lindblad operators L̂j are Hermitian (ob-
servables), the Lindblad equation can be used to treat
the measurement process. A simple application in this
sense is the Hamiltonian ĤS ∝ σ̂z (σ̂z is the 2-level z -
Pauli mattrix) when we want to measure one specific
component of the spin (L̂ ∝ σ̂α, α = x, y, z, without the
summation) [3,5]. If the Lindblads are non-Hermitian,
the equation can be used to treat dissipation, deco-
herence or decays. For this, a simple example is the
same Hamiltonian ĤS ∝ σ̂z with the Lindblad L̂ ∝ σ̂−
(σ̂− =

σ̂x−iσ̂y

2 ), where γ will be the spontaneous emis-
sion rate [6].
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