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We discuss first the valid time interval of a formula found in the literature which gives the theoretical dis-
tance run by a liquid which rises along a capillary tube as a function of time. A non-linear least square fitting
of experimental data to this theoretical curve allows the measurement of the kinematic viscosity of the liquid.
The goodness of the fitting for three different sets of experimental data given in the literature is above 99%.
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Discutimos inicialmente a validade do intervalo de tempo fornecido por uma férmula encontrada na literatura,
que dé a distancia percorrida em fungdo do tempo para um liquido que sobe num tubo capilar. Um ajuste nao
linear de minimos quadrados dos dados experimentais com essa férmula permite a medida da viscosidade cinética
do fluido. A qualidade do ajuste para dois conjuntos de dados experimentais daliteraura é acima de 99%.
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1. Introduction

The rise rate of a liquid in a capillary tube depends on
its viscosity. However, the familiar laboratory exper-
iments involving the rise of liquids in capillary tubes
ignores this fact and the attention is focused on the sta-
tionary regime. Despite it is described in the literature
a very simple method for the experimental determina-
tion of the kinematic viscosity using a capillary tube [0],
this method does not take into account the effect of
surface tension and does not give a statistical proce-
dure for the determination of the experimental error.
The falling sphere viscosimeter, based on the Stokes’
law, allows the determination of the kinematic viscos-
ity from the measurement of the terminal velocity of a
sphere falling into a liquid [B, Eq. (4.9.20)], but we need
to assure that the Reynolds number is small enough to
apply the Stokes’ law and to know how much time is
needed for the falling sphere to reach the stationary
regime. Other classical experimental setups for the de-
termination of the kinematic viscosity are principally
based on the liquid motion into a capillary [B], or the
friction that exerts a liquid over a rotating cylinder [].
Nevertheless, all these classical methods assume implic-
itly a stationary regime in the motion of the liquid, but
there is a lack of discussion over this point.

In this work, we offer a method for the experimen-
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tal determination of the kinematic viscosity of a liquid
which is rising through a capillary tube, taking into ac-
count the transient regime. In order to perform this
measurement, firstly we discuss the valid time interval
of the theoretical distance run by the liquid along the
capillary as a function of time [B,B] and its approxima-
tion to the Lucas-Washburn equation [@,8]. Secondly,
the theoretical curve for the liquid rise allows us to per-
form a non-linear least square fitting to experimental
data, so that we may determine the kinematic viscosity
of the liquid. The goodness of the non-linear fitting for
three different sets of experimental data given in the
literature is above 99%.

2. Time-dependent theoretical rise

Let us consider a liquid of constant density p which is
rising through a capillary tube of radius r inclined an
angle 8 with respect to the vertical, as shows Fig. 1.
The force F' that the liquid experiments along the cap-
illary is due to the surface tension v upwards, and the
weight of the liquid downwards, so that

F = 2mrycos@ — pgrr? cos B s (t), (1)
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Figure 1 - Liquid rising through a capillary tube of radius r in-
clined an angle 8 with respect to the vertical.

where 6 is the contact angle between the liquid and
the capillary, and s (¢) is the distance run by the liquid
along the capillary as a function of time t.

Therefore, according to Eq. (), there is a pressure
difference which makes the liquid rise along the capil-

lary
Apzizz?ycosé
wr r

— pgcosfBs(t). (2)

Poiseuille’s law [@, Eq. (17.10)] gives an expression for
the volume discharge @ of a liquid of dynamic viscos-
ity n flowing in laminar regime through a pipe of cir-
cular cross section of radius r and length s, in which
extrema we apply a pressure difference AP. Applying
Poiseuille’s law, according to Eq. (B), we have

AP rd (fy cosf  pgr COSﬂ)

@= 8ns  4n \ s(b) 2

3)

Since most liquids in usual conditions are incompress-
ible, the volume discharge @ is

Q=nr?s(t). (4)

Equating Eq. (B) with Eq. (@), we have the following
ODE,

fo T [7cos@  pgrcosf
o5 (S - T)

We may find Eq. (B) in Ref. [[0] for a contact an in-
clination angles both null, § = 8 = 0. Assuming that
the lower end of the capillary is initially just beneath
the surface of the liquid, we have to take in Eq. (B) as
initial condition,

5(0) = 0. (6)

In the stationary regime, the liquid does not rise any
more, so that the distance covered by it is maximum,
$ = Smax, and the velocity of the liquid is null, s’ (t) =
0. Thus, according to Eq. (B), we have,

2 0
Smax = 708 . (7)
pgr cos 3
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Equation (@) is known as Jurin’s law [[]. If we neglect
the gravity term in Eq. (8), we have

v cos 6 pgr cos
s(t) 2 7
so, according to Eq. (@),
2+ cos 6
t — - = Smax; 8
S()<<pg1"cosﬁ y (8)

and Eq. (8) becomes

~r cos 6

% (s> ()] = s(t)s' (t) ™

(9)

N | =

Taking into account the initial condition (B) we may
solve Eq. (8), arriving to

~r cos 6

s(t) = o

t, (10)

which is known as Lucas-Washburn equation [@,8]. No-
tice that Eq. () is a good approximation when Eq. (B)
is satisfied, that is, at the first stage of the liquid rise.
Therefore, substituting Eq. (M) in Eq. (B), Lucas-
Washburn equation is a good approximation when

81y cos O
t<L 19 = it}

(11)

02g2r3 cos? 3

In the literature [B,8], we may find the explicit solution
of Eq. (B)

2
$(t) = Smax {1 + W [—exp (—1 — grcosﬁt>} } ,
8VSmax

(12)
where v is the kinematic viscosity,
7
o
p

and the Lambert W function is the inverse function of
ze® [[A]. Straightforward from the Lambert W function
definition, we have W (—e™!) = —1 and W (0) = 0 [I2],
so Eq. (I7) satisfies the initial condition (B)

$(0) = max [L+ W (= )] =0,
and the stationary regime (@)

. o _,—0)] —
tlgglos (t) = Smax [1+W( e )] Smax-
There is a very simple connection between Eq. (I)
and Eq. () that, as far as we know, it is absent in the
literature. If we define the function « (t) as the height
proportion reached at time ¢,

at) =, (13)
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and the parameter

2
. grcosf (14)

8VSmax ’
we may rewrite Eq. (I[2) as
at,k)=1+W (—e 7", (15)

Remembering the definition of the Lambert W function
as the inverse function of ze?, we may invert Eq. (I3)
obtaining

! [a+log (1 —a)]. (16)

KR

t(a)=

In the first stage of the liquid rise, we have a = 0, so
we may take the following approximation in Eq. (D)
log (1 — a) = —a — a?/2, thus,

2
~ %.

t ()

Inverting in Eq. () and taking into account Eq. (I3),
we arrive to

(17)

s (t) & SmaxV2kt,

Substituting now Eq. (@) and Eq. (Id) in Eq. (), we
recover the Lucas-Washburn equation (I).

In order to know the valid time range for Lucas-
Washburn equation, notice that from Eq. (I2) we can
define the following characteristic time for the liquid
rise,

t>0. (18)

1 8V S max 167y cos 6
to=—="5 = 2023 cos2 B (19)
gricosf8  p?g*r3cos?

so, according to Eq. (I2), the proportion of distance
covered with respect to spax at the relaxation time tg
is

a(te) =14+ W (—e?) ~ 84.14%.

Therefore, the relaxation time to defined in Eq. (I9)
gives us an idea of how rapid is the liquid rise within
the capillary tube. Comparing Eq. () with Eq. (9),
we may rewrite Eq. (I) as

t K to = 2’7’0,

that is, Lucas-Washburn equation is a good approxima-
tion when is much lesser than the characteristic time for
the liquid rise, as we have considered before.

2.1. Limitations of the model

Notice that we have assumed Poiseuille’s law during the
whole rise of the liquid along the capillary. In fact, there
is a transient regime for the liquid, which is initially at
rest

s (0) =0, (20)

and the steady flow regime given by Poiseuille’s law.
Moreover, the model described by the differential equa-
tion (H) does not work at ¢t = 0 since the substitution
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of the initial condition (B) in Eq. (B) does not give
Eq. (£0) but

. 12 _

}g%s (t) = o0. (21)
For a more detailed discussion about the ill-posedness
of the model see Ref. [[3]. Therefore, at the beginning
of the liquid rise, there is a transient regime whose char-
acteristic time is given by [B, Eq. (4.3.19)],

7“2

t'= 5 (22)
where A1 = 2.41 is the first positive root of the Bessel
function of the first kind of order zero Jy. Therefore,
in our results we must check out if ¢ty > t*, in order to
be consistent in the use of Eq. (I3).

It is worth noting as well that we have made the
implicit assumption that the contact angle 6 given in
Eq. (@) for equilibrium (static contact angle) is equal to
the contact angle during the liquid rise given in Eq. (B)
(dynamic contact angle). In fact, this is not full satis-
fied, as it is could be found in the literature [I4].

3. Curve fitting
Let us rewrite Eq. (@) as
y=1log(l—a)+a=—xkt. (23)

We may perform a linear fitting using Eq. (E3) in or-
der to obtain &, and therefore v according to Eq. (Id).
However, the linearization performed in Eq. (E3) is
not always advisable because violates the implicit as-
sumption that the distribution of errors is normal [I3].
Therefore, we may determine the parameter s mini-
mizing the quadratic residuals between the theoretical
curve « (t,x) Eq. (), and the experimental data «;
Eq. (I3),

F(r):=> la(tir) - o],

i=1

so that
F' (kgt) = 0. (24)

Equation (B2) may be solved numerically, using as
starting iteration the result obtained in the linear fit-
ting. The uncertainty in x may be obtained from the
residual standard deviation of the function « (¢, k)

1 n
Aa=,|— Z [ (ti, k) — o),

n
i=1

If we consider that the variability of « is mainly due to
the variability of k

oo
Aa=|—|A
o ‘aﬁ‘ .
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we have

Oal|™
o fit

where we can take the average of all the experimental
points t;,

Akge = Aa , (25)

da( tl, Kfit)

1 n
W

From Eq. (@), we may give an experimental measure
of the kinematic viscosity, Vexp £ Avexp, Where

gr?cos
exp
3 Rfit Smax

(26)

Vexp =

and

AVexp

dk

T2 COS
% Alﬂlﬁt . (27)

8 Kfy Smax

AK}ﬁt =

AVexp = ‘

L ex . . .
being spP the experimental maximum distance run by

the liquid. Notice that by using s3P , we avoid using
an experimental contact angle (@), because it is quite
easier to measure sg. X than the contact angle between

the liquid and the capillary.

4. Experimental method

Figure 2 depicts the experimental setup that can be
used for an undergraduate laboratory experience. The
experimental procedure is as follows. First, assure that
the glass strip attached to the clamp stand is vertical.
Then, fix a capillary tube to the glass strip with plas-
ticine. Take a tampered capillary tube, disinfect and
pre-wet it. Knowing the glass strip length and using
the graduated rules at both ends of it, measure the
inclination angle 8 of the capillary. Prepare the lig-
uid in a petri dish and put it on a stand of adjustable
height. Align a high speed CCD camera and focus it
on the base of the capillary tube. In order to preserve
the initial condition (B), begin recording with the CCD
camera, and then rise the Petri dish very slowly until
the liquid starts rising into the capillary tube. In order
to have enough experimental data points (n ~ 20), ad-
just the camera speed (frames per second) and extract
stills from the recorded movies (1 frame out of every 20
up to 100) depending on the liquid speed. Analyze the
stills with some commercial software, converting pixel
distances into mm. For this purpose it can be used as a
reference the graduated rule recorded during the liquid
rise. To find the inner radius of the capillary, remove
the capillary from the glass strip and cut it at where
it was the meniscus. Use a caliber to measure the ex-
ternal radius of the capillary. Place it horizontally and
zoom the camera to focus the cut end of the capillary.
The image of the cross section of the capillary is then
analyzed converting pixel distances into mm, with ref-
erence to the external radius of the capillary previously
measured.
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Figure 2 - Experimental setup for observing the liquid rise in a
capillary tube.

5. Experimental evidence

Figure 3 shows the experimental data (n = 10) of a
55% sugar solution at 25 °C rising through a vertical
capillary tube of radius » = 10~* m [Id], and the error
band within the theoretical curves « (¢, kar + Akat) and

o (t, kay — Akgg) . The experimental maximum height
obtained was s&P = 0.123 m. According to Eqs. (E2)
and (E3)

5.352 x 1073 ¢!
2.859 x 1074 s~ 1L

Rfit

A:‘ﬁ}ﬁt

According to Egs. (B8) and (E2), the experimental kine-
matic viscosity is

Vexp £ AlVeyp = (1.862 +0.099) x 107° m?s™ !,

which agrees with the value given by Ref. [[], v =
1.984 x 107° m?s~!. The adjusted coefficient of deter-
mination for the non-linear fitting is [I@, Eq. (3.18)]

R = 0.999625,

which indicates that the fitting is quite good. The char-
acteristic time for the liquid rise (IM) is

8Vexp St

(57 = = = 1882,

which is much more greater than the characteristic time
for Poiseuille’s law (£32),

7,2

——5 =922x10"s

tr. =
Vexp AT

exp
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Figure 3 - Non-linear regression for experimental data given by
(o).

Figure 4 shows the experimental data (n 16)
of water rising through a capillary tube of radius
r = 1.777 x 107* m, inclined an angle 8 = 45°
[1], and the error band within the theoretical curves
a(t, ke + Akay) and o (t, kas — Akgg) . The experi-
mental maximum height obtained was siP = 0.1217
m. According to Egs. (E4) and (EH)

1.802 x 10~ 571,
2.064 x 1072 7L,

Rfit
Z&Hﬁt

According to Egs. (B0) and (E2), the experimental kine-
matic viscosity is

Vexp & AlVeyp = (1.247 £ 0.143) x 107 m?*s™1,

which agrees with the value given by Ref. [[¥] within
10 °C and 20 °C (v = 1.307 x 107 m%s~! for 10 °C
and v = 1.004 x 107% m?s™! for 20 °C). The adjusted
coefficient of determination for the non-linear fitting is

R = 0.997866,

t[s]
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which indicates that the fitting is also good. The char-
acteristic time for the liquid rise (M) is

1P = 563 s,

which is much more greater than the characteristic time
for Poiseuille’s law (E2)

tr =431x1073s.

exp

Figure 5 shows the experimental data (n 22)
of silicone fluid rising through a vertical capillary
tube of radius r = 8.8 x 107° m, inclined an angle
B =57.7° [M], and the error band within the theoretical
curves « (t, kgt + Akge) and « (¢, kay — Akae) . The ex-
perimental maximum height obtained was s3> = 9.25
cm. According to Egs. (E4) and (E3)

418 x 1072 571,
3.90 x 1073 s~ L.

Rfit
Zkﬁﬁt

According to Egs. (E8) and (E2), the experimental kine-
matic viscosity is

Vexp £ Alexp = (1.31 £0.12) x 107 m?s™1.  (28)

The value given by [[@] is v = 1076 m?s~! at 25 °C.
This discrepancy could be explained because of the vari-
ation of viscosity with temperature. Let us assume that
dynamic viscosity varies with temperature according to
Andrade-Guzman equation [E0, Eq. (4.15)]

1 (T) = 1o exp (TTO) :

where T is the absolute temperature and 7., and Tj
are parameters which depend on the liquid considered.
Knowing that at 73 = 25 °C and at 7o = 0 °C the
density of the silicone fluid used in the experiment is
p(T1) = 816 kg m~2 and p(Tz) = 840 kg m~3, and
the kinematic viscosity is v (T1) = 107¢ m?s~! and
v(Ty) =1.68 x 107 m2s~! 2], then

(29)

15 20

Figure 4 - Non-linear regression for experimental data given by
().

t[s]

10 20 30 40 50

Figure 5 - Non-linear regression for experimental data given by
().

ot®
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8.16 x 107* Pa s, (30)
1.41 x 1073 Pas. (31)

n (T1)
n(Tz)

Therefore, from Egs. (BO) and (B) we may calculate
the parameters of Eq. (Z9)

Ty = 1786 K, (32)
Moo = 2.04x107° Pas. (33)

Performing a linear interpolation of the density between
Ty and T5 and taking into account Eq. (E9) with the pa-
rameters found in Eq. (82) and Eq. (B3), we may evalu-
ate numerically the temperature at which the kinematic
viscosity should be Eq. (E8), obtaining a temperature
for the experiment of Ty, = (11.6 £4.5) °C.

The adjusted coefficient of determination for the
non-linear fitting is

R = 0.997757,

which indicates that the fitting is good. The character-
istic time for the liquid rise () is

P =239 s,

which is much more greater than the characteristic time
for Poiseuille’s law (E32)

. =1.02x 1073 s.

exp
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